1
|
Bartake AR, Sarode S, Palaskar S, Girme A, Sarode G, Kamble S, Narang B, Bhale P. Evaluation of CYP1B1, oxidative stress and phase II detoxification enzyme status in oral cancer progression model. J Oral Biol Craniofac Res 2024; 14:169-174. [PMID: 38384675 PMCID: PMC10879803 DOI: 10.1016/j.jobcr.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Background Tobacco is one of the main etiological factors for oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMD). CYP1B1 is an enzyme which plays a major role in the phase I detoxification of tobacco, the byproducts of which are subsequently detoxified by phase II enzymes Glutathione S Transferase (GST). We attempted to evaluate the L432V polymorphism and tissue expression of CYP1B1, along with the oxidant-antioxidant status in OSCC progression model. Method ology: Tissue biopsies and blood samples were collected from the subjects; L432V polymorphism was evaluated by TaqMan RT-PCR, immunohistochemistry was performed on the tissue sample using CYP1B1 polyclonal primary antibody and Allred quick scoring system was used to evaluate the stained slides. Malonaldehyde (MDA) and GST activity were measured spectrophotometrically to assess oxidative-antioxidative status. Results When the L432V polymorphism was analyzed, it was observed that in oral epithelial dysplasia (OED) and OSCC, CG was more common than GG genotype. Highest mean Allred score was observed in tobacco users (6.27), highest GST activity was seen in oral epithelial dysplasia (5.006 U/ml) and highest MDA activity was observed in OSCC (1553.94 nm/ml). Conclusion Tobacco users with CG and GG genotypes are at equal risk of developing oral epithelial dysplasia or OSCC and L432V polymorphism does not appear to increase the risk of malignant transformation in oral epithelial dysplasia. Moreover, tobacco users with GG genotype and tissue expression of CYP1B1 may be at a greater risk of oxidative damage.
Collapse
Affiliation(s)
- Anirudha R. Bartake
- Department of Oral Pathology and Microbiology, Sinhgad Dental College and Hospital, Pune, Maharashtra, India
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College & Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sachin Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College & Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Dr. D.Y. Patil Unitech Society, Pimpri Pune, 411018, India
| | - Sangeeta Palaskar
- Department of Oral Pathology and Microbiology, Sinhgad Dental College and Hospital, Pune, Maharashtra, India
| | - Amit Girme
- Department of Surgery, Dr. DY Patil Medical College & Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Gargi Sarode
- Department of Oral Pathology and Microbiology, Sinhgad Dental College and Hospital, Pune, Maharashtra, India
| | - Samruddhi Kamble
- Department of Oral Pathology and Microbiology, Sinhgad Dental College and Hospital, Pune, Maharashtra, India
| | - Bindiya Narang
- Department of Oral Pathology and Microbiology, Sinhgad Dental College and Hospital, Pune, Maharashtra, India
| | - Pradnya Bhale
- Department of Oral Pathology and Microbiology, Sinhgad Dental College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
2
|
Álvarez-González B, Porras-Quesada P, Arenas-Rodríguez V, Tamayo-Gómez A, Vázquez-Alonso F, Martínez-González LJ, Hernández AF, Álvarez-Cubero MJ. Genetic variants of antioxidant and xenobiotic metabolizing enzymes and their association with prostate cancer: A meta-analysis and functional in silico analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165530. [PMID: 37453710 DOI: 10.1016/j.scitotenv.2023.165530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The development and progression of prostate cancer (PCa) depends on complex interactions between genetic, environmental and dietary factors that modulate the carcinogenesis process. Interactions between chemical exposures and genetic polymorphisms in genes encoding xenobiotic metabolizing enzymes (XME), antioxidant enzymes and DNA repair enzymes have been reported as the main drivers of cancer. Thus, a better understanding of the causal risk factors for PCa will provide avenues to identify men at increased risk and will contribute to develop effective detection and prevention methods. We performed a meta-analysis on 17,518 cases and 42,507 controls obtained from 42 studies to determine whether seven SNPs and one CNV pertaining to oxidative stress, xenobiotic detoxification and DNA repair enzymes are associated with the risk of PCa (GPX1 (rs1050450), XRCC1 (rs25487), PON1 (rs662), SOD2 (rs4880), CAT (rs1001179), GSTP1 (rs1695) and CNV GSTM1). A significant increased risk of PCa was found for SOD2 (rs4880) ORGG+GA vs. AA 1.08; 95%CI 1.01-1.15, CAT (rs1001179) ORTT vs. TC+CC 1.39; 95%CI 1.17-1.66, PON1 (rs662) ORCT vs. CC+TT 1.17; 95%CI 1.01-1.35, GSTP1 (rs1695) ORGG vs. GA+AA 1.20; 95%CI 1.05-1.38 and GSTM1 (dual null vs. functional genotype) ORN vs. NN1+NN2 1.34; 95%CI 1.10-1.64. The meta-analysis showed that the CNV GSTM1, and the SNPs GSTP1 (rs1695) and CAT (rs1001179) are strongly associated with a greater risk of PCa and, to a lesser extent, the genetic variants SOD2 (rs4880) and PON1 (rs662). Although several antioxidant enzymes and XME play an important role in the PCa development, other risk factors such as chemical exposures should also be considered to gain insight on PCa risk. The functional in silico analysis showed that the genetic variants studied had no clinical implication regarding malignancy, except for GPX1 (rs1050450) SNP.
Collapse
Affiliation(s)
- Beatriz Álvarez-González
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, PTS, Granada, Spain; GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Patricia Porras-Quesada
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, PTS, Granada, Spain
| | - Verónica Arenas-Rodríguez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, PTS, Granada, Spain
| | - Alba Tamayo-Gómez
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, Granada, Spain
| | - Fernando Vázquez-Alonso
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, Granada, Spain
| | - Luis Javier Martínez-González
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain.
| | - Antonio F Hernández
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, PTS, Granada, Spain; Biosanitary Research Institute, ibs.GRANADA, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - María Jesús Álvarez-Cubero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, PTS, Granada, Spain; Biosanitary Research Institute, ibs.GRANADA, Granada, Spain
| |
Collapse
|
3
|
Yan CF, Xia J, Qun WS, Bing WY, Guo WJ, Yong HG, Sheng SJ, Lei ZG. Tumor-associated macrophages-derived exo-let-7a promotes osteosarcoma metastasis via targeting C15orf41 in osteosarcoma. ENVIRONMENTAL TOXICOLOGY 2023; 38:1318-1331. [PMID: 36919336 DOI: 10.1002/tox.23766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Osteosarcoma (OS) immune environment is complexed and the immune factors-related to OS progression need to be explored. Tumor-associated macrophages (TAMs) are regarded as immune suppressive and tumor-promoting cells. However, the underlying mechanisms through which TAMs function are still fragmentary. Here, we aim to explore the underlying mechanisms by which TAMs regulate OS progression. METHODS TAMs from OS tissues were isolated by flow cytometry. Exosomes derived from TAMs were separated using ultracentrifugation and western blotting. Transmission electron microscopy (TEM), and flow cytometry were constructed to characterize TAMs-derived exosomes. Additionally, the differential MicroRNAs (miRNAs) and genes were detected through RNA sequencing, and further validated using real-time PCR (RT-PCR). OS cell metastasis ability was assessed using transwell invasion and scratch wound healing assays. MiRNAs mimic and lentiviral vectors were utilized to explore the effects on OS progression. RESULTS Exosome secreted by TAMs accelerated the OS metastasis. Let-7a level was upregulated in TAMs derived exosomes, which downregulated C15orf41 by targeting 3'-untranslated region (UTR). Furthermore, overexpressing let-7a enhanced invasion and migration by blocking the transcription of C15orf41. In consistent, up-regulating let-7a promoted OS progression and made the prognosis to be worse, which can be reversed by C15orf41 overexpression. CONCLUSION This study highlighted the critical role of TAMs-derived exosomes in OS progression and explored the potential value of the let-7a/C15orf41 axis as an indicator or target for OS.
Collapse
Affiliation(s)
- Chen-Fei Yan
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Wang-Si Qun
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Yi Bing
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Wu-Jian Guo
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Huang-Gang Yong
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Shi-Jing Sheng
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhao-Guang Lei
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Zhang Q, Teow JY, Kerishnan JP, Abd Halim AA, Chen Y. Clusterin and Its Isoforms in Oral Squamous Cell Carcinoma and Their Potential as Biomarkers: A Comprehensive Review. Biomedicines 2023; 11:biomedicines11051458. [PMID: 37239129 DOI: 10.3390/biomedicines11051458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent type of head and neck cancer, ranked as the sixth most common cancer worldwide, accounting for approximately 300,000 new cases and 145,000 deaths annually. Early detection using biomarkers significantly increases the 5-year survival rate of OSCC by up to 80-90%. Clusterin (CLU), also known as apolipoprotein J, is a sulfated chaperonic glycoprotein expressed in all tissues and human fluids and has been reported to be a potential biomarker of OSCC. CLU has been implicated as playing a vital role in many biological processes such as apoptosis, cell cycle, etc. Abnormal CLU expression has been linked with the development and progression of cancers. Despite the fact that there are many studies that have reported the involvement of CLU and its isoforms in OSCC, the exact roles of CLU and its isoforms in OSCC carcinogenesis have not been fully explored. This article aims to provide a comprehensive review of the current understanding of CLU structure and genetics and its correlation with OSCC tumorigenesis to better understand potential diagnostic and prognostic biomarker development. The relationship between CLU and chemotherapy resistance in cancer will also be discussed to explore the therapeutic application of CLU and its isoforms in OSCC.
Collapse
Affiliation(s)
- Qinyi Zhang
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jun Yao Teow
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Adyani Azizah Abd Halim
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yeng Chen
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|