1
|
Li D, Zhang J, Jin Y, Zhu Y, Lu X, Huo X, Pan C, Zhong L, Sun K, Yan L, Yan L, Huang P, Li Q, Han JY, Li Y. Silibinin inhibits PM2.5-induced liver triglyceride accumulation through enhancing the function of mitochondrial Complexes I and II. Front Pharmacol 2024; 15:1435230. [PMID: 39351086 PMCID: PMC11440093 DOI: 10.3389/fphar.2024.1435230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Background The standardized extract of milk thistle seeds, known as silibinin, has been utilized in herbal medicine for over two centuries, with the aim of safeguarding the liver against the deleterious effects of various toxic substances. However, the role of silibinin in Particulate Matter (PM2.5)-induced intrahepatic triglyceride accumulation remains unclear. This study seeks to investigate the impact of silibinin on PM2.5-induced intrahepatic triglyceride accumulation and elucidate potential underlying mechanisms. Methods A model of intrahepatic triglyceride accumulation was established in male C57BL/6J mice through intratracheal instillation of PM2.5, followed by assessment of liver weight, body weight, liver index, and measurements of intrahepatic triglycerides and cholesterol after treatment with silibinin capsules. Hep G2 cells were exposed to PM2.5 suspension to create an intracellular triglyceride accumulation model, and after treatment with silibinin, cell viability, intracellular triglycerides and cholesterol, fluorescence staining for Nile Red (lipid droplets), and DCFH-DA (Reactive Oxygen Species, ROS), as well as proteomics, real-time PCR, and mitochondrial function assays, were performed to investigate the mechanisms involved in reducing triglycerides. Results PM2.5 exposure leads to triglyceride accumulation, increased ROS production, elevated expression of inflammatory factors, decreased expression of antioxidant factors, and increased expression of downstream genes of aryl hydrocarbon receptor. Silibinin can partially or fully reverse these factors, thereby protecting cells and animal livers from PM2.5-induced damage. In vitro studies show that silibinin exerts its protective effects by preserving oxidative phosphorylation of mitochondrial complexes I and II, particularly significantly enhancing the function of mitochondrial complex II. Succinate dehydrogenase (mitochondrial complex II) is a direct target of silibinin, but silibinin A and B exhibit different affinities for different subunits of complex II. Conclusion Silibinin improved the accumulation of intrahepatic triglycerides induced by PM2.5, and this was, at least in part, explained by an enhancement of oxidative phosphorylation in mitochondrial Complexes I and II.
Collapse
Affiliation(s)
- Dexin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jingxin Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Yuxin Jin
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Yaoxuan Zhu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Xiaoqing Lu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Xinmei Huo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Chunshui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Lijun Zhong
- Peking University Medical and Health Analysis Center, Peking University, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Lulu Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|
2
|
Wang X, Wang X, Cheng Y, Luo C, Xia W, Gao Z, Bu W, Jiang Y, Fei Y, Shi W, Tang J, Liu L, Zhu J, Zhao X. Construction of metal interpretable scoring system and identification of tungsten as a novel risk factor in COPD. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116842. [PMID: 39106568 DOI: 10.1016/j.ecoenv.2024.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Numerous studies have highlighted the correlation between metal intake and deteriorated pulmonary function, emphasizing its pivotal role in the progression of Chronic Obstructive Pulmonary Disease (COPD). However, the efficacy of traditional models is often compromised due to overfitting and high bias in datasets with low-level exposure, rendering them ineffective in delineating the contemporary risk trends associated with pulmonary diseases. To address these limitations, we embarked on developing advanced, interpretable models, crucial for elucidating the intricate mechanisms of metal toxicity and enriching the domain knowledge embedded in toxicity models. In this endeavor, we scrutinized extensive, long-term metal exposure datasets from NHANES to explore the interplay between metal and pulmonary functionality. Employing a variety of machine-learning approaches, we opted for the "Mixer of Experts" model for its proficiency in identifying a myriad of toxicological trends and sensitivities. We conceptualized and illustrated the TSAP (Toxicity Score at Population-level), a metal interpretable scoring system offering performance nearly equivalent to the amalgamation of standard interpretable methods addressing the "black box" conundrum. This streamlined, bifurcated procedural analysis proved instrumental in discerning established risk factors, thereby uncovering Tungsten as a novel contributor to COPD risk. SYNOPSIS: TSAP achieved satisfied performance with transparent interpretability, suggesting tungsten intake need further action for COPD prevention.
Collapse
Affiliation(s)
- Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiangdong Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yulan Cheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Chao Luo
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Weiyi Xia
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhengnan Gao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Wenxia Bu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yichen Jiang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yue Fei
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Weiwei Shi
- Nantong Hospital to Nanjing University of Chinese Medicine, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Lei Liu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Jinfeng Zhu
- Nantong Hospital to Nanjing University of Chinese Medicine, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
3
|
Mussalo L, Lampinen R, Avesani S, Závodná T, Krejčík Z, Kalapudas J, Penttilä E, Löppönen H, Koivisto AM, Malm T, Topinka J, Giugno R, Jalava P, Kanninen KM. Traffic-related ultrafine particles impair mitochondrial functions in human olfactory mucosa cells - Implications for Alzheimer's disease. Redox Biol 2024; 75:103272. [PMID: 39047637 PMCID: PMC11321383 DOI: 10.1016/j.redox.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Constituents of air pollution, the ultrafine particles (UFP) with a diameter of ≤0.1 μm, are considerably related to traffic emissions. Several studies link air pollution to Alzheimer's disease (AD), yet the exact relationship between the two remains poorly understood. Mitochondria are known targets of environmental toxicants, and their dysfunction is associated with neurodegenerative diseases. The olfactory mucosa (OM), located at the rooftop of the nasal cavity, is directly exposed to the environment and in contact with the brain. Mounting evidence suggests that the UFPs can impact the brain directly through the olfactory tract. By using primary human OM cultures established from nasal biopsies of cognitively healthy controls and individuals diagnosed with AD, we aimed to decipher the effects of traffic-related UFPs on mitochondria. The UFP samples were collected from the exhausts of a modern heavy-duty diesel engine (HDE) without aftertreatment systems, run with renewable diesel (A0) and petroleum diesel (A20), and from an engine of a 2019 model diesel passenger car (DI-E6d) equipped with state-of-the-art aftertreatment devices and run with renewable diesel (Euro6). OM cells were exposed to three different UFPs for 24-h and 72-h, after which cellular processes were assessed on the functional and transcriptomic levels. Our results show that UFPs impair mitochondrial functions in primary human OM cells by hampering oxidative phosphorylation (OXPHOS) and redox balance, and the responses of AD cells differ from cognitively healthy controls. RNA-Seq and IPA® revealed inhibition of OXPHOS and mitochondrial dysfunction in response to UFPs A0 and A20. Functional validation confirmed that A0 and A20 impair cellular respiration, decrease ATP levels, and disturb redox balance by altering NAD and glutathione metabolism, leading to increased ROS and oxidative stress. RNA-Seq and functional assessment revealed the presence of AD-related alterations in human OM cells and that different fuels and engine technologies elicit differential effects.
Collapse
Affiliation(s)
- Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Riikka Lampinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Simone Avesani
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Táňa Závodná
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Zdeněk Krejčík
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland; Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland; Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Jan Topinka
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
4
|
Li D, Zhang X, Song Z, Zhao S, Huang Y, Qian W, Cai X. Advances in common in vitro cellular models of pulmonary fibrosis. Immunol Cell Biol 2024; 102:557-569. [PMID: 38714318 DOI: 10.1111/imcb.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/24/2023] [Accepted: 04/09/2024] [Indexed: 05/09/2024]
Abstract
The development of in vitro models is essential for a comprehensive understanding and investigation of pulmonary fibrosis (PF) at both cellular and molecular levels. This study presents a literature review and an analysis of various cellular models used in scientific studies, specifically focusing on their applications in elucidating the pathogenesis of PF. Our study highlights the importance of taking a comprehensive approach to studing PF, emphasizing the necessity of considering multiple cell types and organs and integrating diverse analytical perspectives. Notably, primary cells demonstrate remarkable cell growth characteristics and gene expression profiles; however, their limited availability, maintenance challenges, inability for continuous propagation and susceptibility to phenotypic changes over time significantly limit their utility in scientific investigation. By contrast, immortalized cell lines are easily accessible, cultured and continuously propagated, although they may have some phenotypic differences from primary cells. Furthermore, in vitro coculture models offer a more practical and precise method to explore complex interactions among cells, tissues and organs. Consequently, when developing models of PF, researchers should thoroughly assess the advantages, limitations and relevant mechanisms of different cell models to ensure their selection is consistent with the research objectives.
Collapse
Affiliation(s)
- Die Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinyue Zhang
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ziqiong Song
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Shan Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuan Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Weibin Qian
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinrui Cai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
5
|
Zhang S, Li X, Zhang L, Zhang Z, Li X, Xing Y, Wenger JC, Long X, Bao Z, Qi X, Han Y, Prévôt ASH, Cao J, Chen Y. Disease types and pathogenic mechanisms induced by PM 2.5 in five human systems: An analysis using omics and human disease databases. ENVIRONMENT INTERNATIONAL 2024; 190:108863. [PMID: 38959566 DOI: 10.1016/j.envint.2024.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Atmospheric fine particulate matter (PM2.5) can harm various systems in the human body. Due to limitations in the current understanding of epidemiology and toxicology, the disease types and pathogenic mechanisms induced by PM2.5 in various human systems remain unclear. In this study, the disease types induced by PM2.5 in the respiratory, circulatory, endocrine, and female and male urogenital systems have been investigated and the pathogenic mechanisms identified at molecular level. The results reveal that PM2.5 is highly likely to induce pulmonary emphysema, reperfusion injury, malignant thyroid neoplasm, ovarian endometriosis, and nephritis in each of the above systems respectively. The most important co-existing gene, cellular component, biological process, molecular function, and pathway in the five systems targeted by PM2.5 are Fos proto-oncogene (FOS), extracellular matrix, urogenital system development, extracellular matrix structural constituent conferring tensile strength, and ferroptosis respectively. Differentially expressed genes that are significantly and uniquely targeted by PM2.5 in each system are BTG2 (respiratory), BIRC5 (circulatory), NFE2L2 (endocrine), TBK1 (female urogenital) and STAT1 (male urogenital). Important disease-related cellular components, biological processes, and molecular functions are specifically induced by PM2.5. For example, response to wounding, blood vessel morphogenesis, body morphogenesis, negative regulation of response to endoplasmic reticulum stress, and response to type I interferon are the top uniquely existing biological processes in each system respectively. PM2.5 mainly acts on key disease-related pathways such as the PD-L1 expression and PD-1 checkpoint pathway in cancer (respiratory), cell cycle (circulatory), apoptosis (endocrine), antigen processing and presentation (female urogenital), and neuroactive ligand-receptor interaction (male urogenital). This study provides a novel analysis strategy for elucidating PM2.5-related disease types and is an important supplement to epidemiological investigation. It clarifies the risks of PM2.5 exposure, elucidates the pathogenic mechanisms, and provides scientific support for promoting the precise prevention and treatment of PM2.5-related diseases.
Collapse
Affiliation(s)
- Shumin Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiaomeng Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Liru Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Zhengliang Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xuan Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yan Xing
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - John C Wenger
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Xin Long
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhier Bao
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xin Qi
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yan Han
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, Villigen, PSI 5232, Switzerland
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
6
|
Chen PC, Yen MH, Hsiao SY, Kao WC, Wang MT, Chiou PC, Chao CC. Melatonin prevents pulmonary fibrosis caused by PM 2.5 exposure by targeting epithelial-mesenchymal transition. Toxicol Appl Pharmacol 2024; 487:116949. [PMID: 38688425 DOI: 10.1016/j.taap.2024.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Pulmonary fibrosis is a lung disorder characterized by the accumulation of abnormal extracellular matrix, scar tissue formation, and tissue stiffness. Type II alveolar epithelial cells (AEII) play a critical role in repairing lung tissue after injury, and repeated injury to these cells is a key factor in the development of pulmonary fibrosis. Chronic exposure to PM2.5, a type of air pollution, has been shown to increase the incidence and severity of pulmonary fibrosis by enhancing the activation of EMT in lung epithelial cells. Melatonin, a hormone with antioxidant properties, has been shown to prevent EMT and reduce fibrosis in previous studies. However, the mechanism through which melatonin targets EMT to prevent pulmonary fibrosis caused by PM2.5 exposure has not been extensively discussed before. In this current study, we found that melatonin effectively prevented pulmonary fibrosis caused by prolonged exposure to PM2.5 by targeting EMT. The study demonstrated changes in cellular morphology and expression of EMT markers. Furthermore, the cell migratory potential induced by prolonged exposure to PM2.5 was greatly reduced by melatonin treatment. Finally, in vivo animal studies showed reduced EMT markers and improved pulmonary function. These findings suggest that melatonin has potential clinical use for the prevention of pulmonary fibrosis.
Collapse
Affiliation(s)
- Po-Chun Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Translational medicine center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ming-Hong Yen
- Department of Chest Surgery, Cathay General Hospital, New Taipei City, Taiwan
| | - Sheng-Yen Hsiao
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Chen Kao
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Mei-Ting Wang
- Division of Physical Medicine and Rehabilitation, Fu Jen Catholic University Hospital, Taipei, Taiwan, ROC
| | - Pei-Chen Chiou
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Chia Chao
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
7
|
Zhang K. Environmental PM 2.5-triggered stress responses in digestive diseases. EGASTROENTEROLOGY 2024; 2:e100063. [PMID: 38895535 PMCID: PMC11185827 DOI: 10.1136/egastro-2024-100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Airborne particulate matter in fine and ultrafine ranges (aerodynamic diameter less than 2.5 μm, PM2.5) is a primary air pollutant that poses a serious threat to public health. Accumulating evidence has pointed to a close association between inhalation exposure to PM2.5 and increased morbidity and mortality associated with modern human complex diseases. The adverse health effect of inhalation exposure to PM2.5 pollutants is systemic, involving multiple organs, different cell types and various molecular mediators. Organelle damages and oxidative stress appear to play a major role in the cytotoxic effects of PM2.5 by mediating stress response pathways related to inflammation, metabolic alteration and cell death programmes. The organs or tissues in the digestive tract, such as the liver, pancreas and small intestines, are susceptible to PM2.5 exposure. This review underscores PM2.5-induced inflammatory stress responses and their involvement in digestive diseases caused by PM2.5 exposure.
Collapse
Affiliation(s)
- Kezhong Zhang
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
8
|
Zheng L, Yang Z, Xue Z, Chen M, Zhang Y, Cai S, Zheng K, Dai B, Liu S, Zhuang S, Sui G, Zhang D. Air-Liquid Interface Microfluidic Monitoring Sensor Platform for Studying Autophagy Regulation after PM2.5 Exposure. ACS Sens 2024; 9:1178-1187. [PMID: 38437216 DOI: 10.1021/acssensors.3c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Undoubtedly, a deep understanding of PM2.5-induced tumor metastasis at the molecular level can contribute to improving the therapeutic effects of related diseases. However, the underlying molecular mechanism of fine particle exposure through long noncoding RNA (lncRNA) regulation in autophagy and, ultimately, lung cancer (LC) metastasis remains elusive; on the other hand, the related monitoring sensor platform used to investigate autophagy and cell migration is lacking. Herein, this study performed an air-liquid interface microfluidic monitoring sensor (AIMMS) platform to analyze human bronchial epithelial cells after PM2.5 stimulation. The multiomics analysis [RNA sequencing (RNA-seq) on lncRNA and mRNA expressions separately] showed that MALAT1 was highly expressed in the PM2.5 treatment group. Furthermore, RNA-seq analysis demonstrated that autophagy-related pathways were activated. Notably, the main mRNAs associated with autophagy regulation, including ATG4D, ATG12, ATG7, and ATG3, were upregulated. Inhibition or downregulation of MALAT1 inhibited autophagy via the ATG4D/ATG12/ATG7/ATG3 pathway after PM2.5 exposure and ultimately suppressed LC metastasis. Thus, based on the AIMMS platform, we found that MALAT1 might become a promising therapeutic target. Furthermore, this low-cost AIMMS system as a fluorescence sensor integrated with the cell-monitor module could be employed to study LC migration after PM2.5 exposure. With the fluorescence cell-monitoring module, the platform could be used to observe the migration of LC cells and construct the tumor metastasis model. In the future, several fluorescence probes, including nanoprobes, could be used in the AIMMS platform to investigate many other biological processes, especially cell interaction and migration, in the fields of toxicology and pharmacology.
Collapse
Affiliation(s)
- Lulu Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Zhijin Yang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Zhiwei Xue
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Mengya Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yule Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shuqi Cai
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Kejie Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Sixiu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
9
|
Kayalar Ö, Rajabi H, Konyalilar N, Mortazavi D, Aksoy GT, Wang J, Bayram H. Impact of particulate air pollution on airway injury and epithelial plasticity; underlying mechanisms. Front Immunol 2024; 15:1324552. [PMID: 38524119 PMCID: PMC10957538 DOI: 10.3389/fimmu.2024.1324552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Air pollution plays an important role in the mortality and morbidity of chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Particulate matter (PM) is a significant fraction of air pollutants, and studies have demonstrated that it can cause airway inflammation and injury. The airway epithelium forms the first barrier of defense against inhaled toxicants, such as PM. Airway epithelial cells clear airways from inhaled irritants and orchestrate the inflammatory response of airways to these irritants by secreting various lipid mediators, growth factors, chemokines, and cytokines. Studies suggest that PM plays an important role in the pathogenesis of chronic airway diseases by impairing mucociliary function, deteriorating epithelial barrier integrity, and inducing the production of inflammatory mediators while modulating the proliferation and death of airway epithelial cells. Furthermore, PM can modulate epithelial plasticity and airway remodeling, which play central roles in asthma and COPD. This review focuses on the effects of PM on airway injury and epithelial plasticity, and the underlying mechanisms involving mucociliary activity, epithelial barrier function, airway inflammation, epithelial-mesenchymal transition, mesenchymal-epithelial transition, and airway remodeling.
Collapse
Affiliation(s)
- Özgecan Kayalar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Hadi Rajabi
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Nur Konyalilar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Deniz Mortazavi
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Gizem Tuşe Aksoy
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Jun Wang
- Department of Biomedicine and Biopharmacology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Hasan Bayram
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
- Department of Pulmonary Medicine, School of Medicine, Koç University, Zeytinburnu, Istanbul, Türkiye
| |
Collapse
|
10
|
Murphy MP, O'Neill LAJ. A break in mitochondrial endosymbiosis as a basis for inflammatory diseases. Nature 2024; 626:271-279. [PMID: 38326590 DOI: 10.1038/s41586-023-06866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/14/2023] [Indexed: 02/09/2024]
Abstract
Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered 'the enemy within' the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Park YJ, Heo J, Kim Y, Cho H, Shim M, Im K, Lim W. Glucocorticoids alleviate particulate matter-induced COX-2 expression and mitochondrial dysfunction through the Bcl-2/GR complex in A549 cells. Sci Rep 2023; 13:18884. [PMID: 37919369 PMCID: PMC10622527 DOI: 10.1038/s41598-023-46257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
Exposure to particulate matter (PM) causes mitochondrial dysfunction and lung inflammation. The cyclooxygenase-2 (COX-2) pathway is important for inflammation and mitochondrial function. However, the mechanisms by which glucocorticoid receptors (GRs) suppress COX-2 expression during PM exposure have not been elucidated yet. Hence, we examined the mechanisms underlying the dexamethasone-mediated suppression of the PM-induced COX-2/prostaglandin E2 (PGE2) pathway in A549 cells. The PM-induced increase in COX-2 protein, mRNA, and promoter activity was suppressed by glucocorticoids; this effect of glucocorticoids was antagonized by the GR antagonist RU486. COX-2 induction was correlated with the ability of PM to increase reactive oxygen species (ROS) levels. Consistent with this, antioxidant treatment significantly abolished COX-2 induction, suggesting that ROS is involved in PM-mediated COX-2 induction. We also observed a low mitochondrial membrane potential in PM-treated A549 cells, which was reversed by dexamethasone. Moreover, glucocorticoids significantly enhanced Bcl-2/GR complex formation in PM-treated A549 cells. Glucocorticoids regulate the PM-exposed induction of COX-2 expression and mitochondrial dysfunction and increase the interaction between GR and Bcl-2. These findings suggest that the COX-2/PGE2 pathway and the interaction between GR and Bcl-2 are potential key therapeutic targets for the suppression of inflammation under PM exposure.
Collapse
Affiliation(s)
- Yeon-Ji Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - June Heo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Yonghyeon Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Hyeseong Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Myeongkuk Shim
- BL Healthcare, Yongin-si, Gyeonggi-do, 16827, South Korea
| | - Kyunghyun Im
- BL Healthcare, Yongin-si, Gyeonggi-do, 16827, South Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju, 28503, South Korea.
| |
Collapse
|
12
|
Lee KY, Yang CC, Shueng PW, Wu SM, Chen CH, Chao YC, Chang YC, Han CL, Chuang HC, Lee CC, Lin CW. Downregulation of TAZ elicits a mitochondrial redox imbalance and ferroptosis in lung epithelial cells exposed to diesel exhaust particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115555. [PMID: 37832483 DOI: 10.1016/j.ecoenv.2023.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Mitochondrial dysfunction was reported to be involved in the development of lung diseases including chronic obstructive pulmonary disease (COPD). However, molecular regulation underlying metabolic disorders in the airway epithelia exposed to air pollution remains unclear. In the present study, lung bronchial epithelial BEAS-2B and alveolar epithelial A549 cells were treated with diesel exhaust particles (DEPs), the primary representative of ambient particle matter. This treatment elicited cell death accompanied by induction of lipid reactive oxygen species (ROS) production and ferroptosis. Lipidomics analyses revealed that DEPs increased glycerophospholipid contents. Accordingly, DEPs upregulated expression of the electron transport chain (ETC) complex and induced mitochondrial ROS production. Mechanistically, DEP exposure downregulated the Hippo transducer transcriptional co-activator with PDZ-binding motif (TAZ), which was further identified to be crucial for the ferroptosis-associated antioxidant system, including glutathione peroxidase 4 (GPX4), the glutamate-cysteine ligase catalytic subunit (GCLC), and glutathione-disulfide reductase (GSR). Moreover, immunohistochemistry confirmed downregulation of GPX4 and upregulation of lipid peroxidation in the bronchial epithelium of COPD patients and Sprague-Dawley rats exposed to air pollution. Finally, proteomics analyses confirmed alterations of ETC-related proteins in bronchoalveolar lavage from COPD patients compared to healthy subjects. Together, our study discovered that involvement of mitochondrial redox dysregulation plays a vital role in pulmonary epithelial cell destruction after exposure to air pollution.
Collapse
Affiliation(s)
- Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ching-Chieh Yang
- Division of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan; Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Min Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hsuan Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chun Chao
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|