1
|
Herzig L, Uellendahl K, Malkowsky Y, Schreiber L, Grünhofer P. In a Different Light: Irradiation-Induced Cuticular Wax Accumulation Fails to Reduce Cuticular Transpiration. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39806923 DOI: 10.1111/pce.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
The cuticle, an extracellular hydrophobic layer impregnated with waxy lipids, serves as the primary interface between plant leaves and their environment and is thus subject to external cues. A previous study on poplar leaves revealed that environmental conditions outdoors promoted the deposition of about 10-fold more cuticular wax compared to the highly artificial climate of a growth chamber. Given that light was the most significant variable distinguishing the two locations, we hypothesized that the quantity of light might serve as a key driver of foliar wax accumulation. Thus, this study aimed to isolate the factor of light quantity (photosynthetic photon flux density [PPFD]) from other environmental stimuli (such as relative humidity and ambient temperature) and explore its impact on cuticular wax deposition and subsequent rates of residual foliar transpiration in different species. Analytical investigations revealed a significant increase in cuticular wax amount with increasing PPFD (between 50 and 1200 µmol m-2 s-1) in both monocotyledonous (maize and barley) and dicotyledonous (tomato and bean) crop species, without altering the relative lipid composition. Despite the increased wax coverages, rates of foliar water loss did not decrease, further confirming that the residual (cuticular) transpiration is independent of the cuticular wax amount.
Collapse
Affiliation(s)
- Lena Herzig
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Kora Uellendahl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Yaron Malkowsky
- Department of Biodiversity of Plants, Bonn Institute for Organismic Biology, University of Bonn, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Long Z, Tu M, Xu Y, Pak H, Zhu Y, Dong J, Lu Y, Jiang L. Genome-wide-association study and transcriptome analysis reveal the genetic basis controlling the formation of leaf wax in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2726-2739. [PMID: 36724105 DOI: 10.1093/jxb/erad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/01/2023] [Indexed: 06/06/2023]
Abstract
Cuticular wax protects plants from various biotic and abiotic stresses. However, the genetic network of wax biosynthesis and the environmental factors influencing leaf wax production in rapeseed (Brassica napus) remains unclear. Here, we demonstrated the role of leaf wax in the resistance to Sclerotinia infection in rapeseed. We found that leaves grown under high light intensity had higher expression of genes involved in wax biosynthesis, and produced more wax on the leaf surface, compared with those grown under low light conditions. Genome-wide association study (GWAS) identified 89 single nucleotide polymorphisms significantly associated with leaf wax coverage. A cross-analysis between GWAS and differentially expressed genes (DEGs) in the leaf epidermis of the accessions with contrasting differences in wax content revealed 17 candidate genes that control this variation in rapeseed. Selective sweep analysis combined with DEG analysis unveiled 510 candidate genes with significant selective signatures. From the candidate genes, we selected BnaA02.LOX4, a putative lipoxygenase, and BnaCnn.CER1, BnaA02.CER3, BnaC02.CER3, and BnaA01.CER4 (ECERIFERUM1-4) that were putatively responsible for wax biosynthesis, to analyse the allelic forms and haplotypes corresponding to high or low leaf wax coverage. These data enrich our knowledge about wax formation, and provide a gene pool for breeding an ideal leaf wax content in rapeseed.
Collapse
Affiliation(s)
- Zhengbiao Long
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Mengxin Tu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Ying Xu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Haksong Pak
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Yang Zhu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Jie Dong
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Yunhai Lu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, 310058, Hangzhou, China
| |
Collapse
|
3
|
Li JJ, Zhang CL, Zhang YL, Gao HN, Wang HB, Jiang H, Li YY. An apple long-chain acyl-CoA synthase, MdLACS1, enhances biotic and abiotic stress resistance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:115-125. [PMID: 36084527 DOI: 10.1016/j.plaphy.2022.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Epidermal waxes are part of the outermost hydrophobic structures of apples and play a significant role in enhancing apple resistance and improving fruit quality. The biosynthetic precursors of epidermal waxes are very long-chain fatty acids (VLCFAs), which are made into different wax components through various wax synthesis pathways. In Arabidopsis thaliana, the AtLACS1 protein can activate the alkane synthesis pathway to produce very long-chain acyl CoAs (VLC-acyl-CoAs), which provide substrates for wax synthesis, from VLCFAs. The apple protein MdLACS1, encoded by the MdLACS1 gene, belongs to the AMP-binding superfamily and has long-chain acyl coenzyme A synthase activity, but its function in apple remains unclear. Here, we identified MdLACS1 in apple (Malus × domestica) and analyzed its function. Our results suggest that MdLACS1 promotes wax synthesis and improves biotic and abiotic stress tolerance, which were directly or indirectly dependent on wax. Our study further refines the molecular mechanism of wax biosynthesis in apples and elucidates the physiological function of wax in resistance to external stresses. These findings provide candidate genes for the synergistic enhancement of apple fruit quality and stress tolerance.
Collapse
Affiliation(s)
- Jiao-Jiao Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Ling Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Li Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - He-Bing Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
4
|
Cheng D, Li L, Rizhsky L, Bhandary P, Nikolau BJ. Heterologous Expression and Characterization of Plant Wax Ester Producing Enzymes. Metabolites 2022; 12:metabo12070577. [PMID: 35888701 PMCID: PMC9319179 DOI: 10.3390/metabo12070577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Wax esters are widely distributed among microbes, plants, and mammals, and they serve protective and energy storage functions. Three classes of enzymes catalyze the reaction between a fatty acyl alcohol and a fatty acyl-CoA, generating wax esters. Multiple isozymes of two of these enzyme classes, the membrane-bound O-acyltransferase class of wax synthase (WS) and the bifunctional wax synthase/diacylglycerol acyl transferase (WSD), co-exist in plants. Although WSD enzymes are known to produce the wax esters of the plant cuticle, the functionality of plant WS enzymes is less well characterized. In this study, we investigated the phylogenetic relationships among the 12 WS and 11 WSD isozymes that occur in Arabidopsis, and established two in vivo heterologous expression systems, in the yeast Saccharomyces cerevisiae and in Arabidopsis seeds to investigate the catalytic abilities of the WS enzymes. These two refactored wax assembly chassis were used to demonstrate that WS isozymes show distinct differences in the types of esters that can be assembled. We also determined the cellular and subcellular localization of two Arabidopsis WS isozymes. Additionally, using publicly available Arabidopsis transcriptomics data, we identified the co-expression modules of the 12 Arabidopsis WS coding genes. Collectively, these analyses suggest that WS genes may function in cuticle assembly and in supporting novel photosynthetic function(s).
Collapse
Affiliation(s)
- Daolin Cheng
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (D.C.); (L.L.); (L.R.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Ling Li
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (D.C.); (L.L.); (L.R.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
- Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Ludmila Rizhsky
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (D.C.); (L.L.); (L.R.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Priyanka Bhandary
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (D.C.); (L.L.); (L.R.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Correspondence: ; Tel.: +1-515-290-3382
| |
Collapse
|
5
|
Lee SB, Suh MC. Regulatory mechanisms underlying cuticular wax biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2799-2816. [PMID: 35560199 DOI: 10.1093/jxb/erab509] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 05/24/2023]
Abstract
Plants are sessile organisms that have developed hydrophobic cuticles that cover their aerial epidermal cells to protect them from terrestrial stresses. The cuticle layer is mainly composed of cutin, a polyester of hydroxy and epoxy fatty acids, and cuticular wax, a mixture of very-long-chain fatty acids (>20 carbon atoms) and their derivatives, aldehydes, alkanes, ketones, alcohols, and wax esters. During the last 30 years, forward and reverse genetic, transcriptomic, and biochemical approaches have enabled the identification of key enzymes, transporters, and regulators involved in the biosynthesis of cutin and cuticular waxes. In particular, cuticular wax biosynthesis is significantly influenced in an organ-specific manner or by environmental conditions, and is controlled using a variety of regulators. Recent studies on the regulatory mechanisms underlying cuticular wax biosynthesis have enabled us to understand how plants finely control carbon metabolic pathways to balance between optimal growth and development and defense against abiotic and biotic stresses. In this review, we summarize the regulatory mechanisms underlying cuticular wax biosynthesis at the transcriptional, post-transcriptional, post-translational, and epigenetic levels.
Collapse
Affiliation(s)
- Saet Buyl Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| |
Collapse
|
6
|
Huang Y, Zheng Z, Bi X, Guo K, Liu S, Huo X, Tian D, Liu H, Wang L, Zhang Y. Integrated morphological, physiological and omics analyses reveal the arylalkylamine N-acetyltransferase (AANAT) gene contributing to growth, flowering and defence in switchgrass (Panicum virgatum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111165. [PMID: 35151442 DOI: 10.1016/j.plantsci.2021.111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Arylalkylamine N-acetyltransferase (AANAT) catalyses the acetylation of serotonin, a rate-limiting process in melatonin biosynthesis. To obtain better insight into the underlying mechanism of AANAT's actions in switchgrass growth, flowering and defence, we performed integrated morphological, physiological and omics analyses between overexpressed oAANAT transgenic lines in wild-type and transgenic control (expressing only the empty vector) plants. We showed that oAANAT played pivotal roles in modulating plant growth through its regulation of cell elongation, and regulating flowering through photoperiod and GA pathways. In relation to photosynthesis, oAANAT promoted photosynthetic efficiency primarily through regulating leaf anatomical structures, stomatal development and chlorophyll metabolism. Moreover, oAANAT overexpression can trigger a number of defence responses or strategies, including antioxidant enzymatic properties, non-enzymatic capacity, significantly activated phenylpropanoid biosynthesis, and adaptive morphological characteristics. This study unveils the possible molecular mechanisms underlying oAANAT dependent melatonin functions in switchgrass, providing an important starting point for further analyses.
Collapse
Affiliation(s)
- Yanhua Huang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China.
| | - Zehui Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China.
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Kai Guo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China.
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Xuexue Huo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China.
| | - Danyang Tian
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Huayue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Lei Wang
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China.
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|