1
|
Weekman EM, Rogers CB, Sudduth TL, Wilcock DM. Hyperhomocysteinemia-induced VCID results in visual deficits, reduced neuroinflammation and vascular alterations in the retina. J Neuroinflammation 2025; 22:23. [PMID: 39885592 PMCID: PMC11783940 DOI: 10.1186/s12974-025-03332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/01/2025] [Indexed: 02/01/2025] Open
Abstract
Over recent years, the retina has been increasingly investigated as a potential biomarker for dementia. A number of studies have looked at the effect of Alzheimer's disease (AD) pathology on the retina and the associations of AD with visual deficits. However, while OCT-A has been explored as a biomarker of cerebral small vessel disease (cSVD), studies identifying the specific retinal changes and mechanisms associated with cSVD are lacking. Using our model of hyperhomocysteinemia-induced cSVD, we aimed to identify the effects of cSVD on visual sensitivity and cognition, retinal glial and vascular cells, and neuroinflammatory and cardiovascular gene expression changes. We placed C57Bl6/SJL mice on a HHcy-inducing diet, a model that has been well characterized to have vascular pathologies in the brain similar to pathologic cSVD. After 14 weeks on diet, mice underwent the Visual-Stimuli 4-arm Maze to identify visual deficits. Whole mount retinas were stained for vessels, microglia and astrocytes to identify glial and vascular changes. Finally, neuroinflammatory and cardiovascular gene expression was measured using NanoString's nCounter system. Ultimately, HHcy led to visual changes that specifically affected the reaction to blue and white light, slightly decreased vascular volume and significantly decreased interaction of microglia with the vasculature, as well as downregulation of inflammatory and vascular genes. These changes provide novel insights and reproduce some prior observations. These studies highlight retinal changes in association with cSVD and serve as a precaution when interpreting vision-dependent cognitive testing of cSVD models.
Collapse
Affiliation(s)
- Erica M Weekman
- Stark Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Sanders Brown Center on Aging, Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W 15th St Rm 200A, Indianapolis, IN, 46202, USA.
| | - Colin B Rogers
- Sanders Brown Center on Aging, Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Tiffany L Sudduth
- Sanders Brown Center on Aging, Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Donna M Wilcock
- Stark Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Sanders Brown Center on Aging, Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
2
|
Carey A, Parodi‐Rullan R, Vazquez‐Torres R, Canepa E, Fossati S. Homocysteine potentiates amyloid β -induced death receptor 4- and 5-mediated cerebral endothelial cell apoptosis, blood brain barrier dysfunction and angiogenic impairment. Aging Cell 2024; 23:e14106. [PMID: 38358083 PMCID: PMC11113365 DOI: 10.1111/acel.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Cerebrovascular dysfunction has been implicated as a major contributor to Alzheimer's Disease (AD) pathology, with cerebral endothelial cell (cEC) stress promoting ischemia, cerebral-blood flow impairments and blood-brain barrier (BBB) permeability. Recent evidence suggests that cardiovascular (CV)/cerebrovascular risk factors, including hyperhomocysteinemia (Hhcy), exacerbate AD pathology and risk. Yet, the underlying molecular mechanisms for this interaction remain unclear. Our lab has demonstrated that amyloid beta 40 (Aβ40) species, and particularly Aβ40-E22Q (AβQ22; vasculotropic Dutch mutant), promote death receptor 4 and 5 (DR4/DR5)-mediated apoptosis in human cECs, barrier permeability, and angiogenic impairment. Previous studies show that Hhcy also induces EC dysfunction, but it remains unknown whether Aβ and homocysteine function through common molecular mechanisms. We tested the hypotheses that Hhcy exacerbates Aβ-induced cEC DR4/5-mediated apoptosis, barrier dysfunction, and angiogenesis defects. This study was the first to demonstrate that Hhcy specifically potentiates AβQ22-mediated activation of the DR4/5-mediated extrinsic apoptotic pathway in cECs, including DR4/5 expression, caspase 8/9/3 activation, cytochrome-c release and DNA fragmentation. Additionally, we revealed that Hhcy intensifies the deregulation of the same cEC junction proteins mediated by Aβ, precipitating BBB permeability. Furthermore, Hhcy and AβQ22, impairing VEGF-A/VEGFR2 signaling and VEGFR2 endosomal trafficking, additively decrease cEC angiogenic capabilities. Overall, these results show that the presence of the CV risk factor Hhcy exacerbates Aβ-induced cEC apoptosis, barrier dysfunction, and angiogenic impairment. This study reveals specific mechanisms through which amyloidosis and Hhcy jointly operate to produce brain EC dysfunction and death, highlighting new potential molecular targets against vascular pathology in comorbid AD/CAA and Hhcy conditions.
Collapse
Affiliation(s)
- Ashley Carey
- Department of Neural Sciences, Alzheimer's Center at TempleTemple University Lewis Katz School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Rebecca Parodi‐Rullan
- Department of Neural Sciences, Alzheimer's Center at TempleTemple University Lewis Katz School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Rafael Vazquez‐Torres
- Department of Neural Sciences, Alzheimer's Center at TempleTemple University Lewis Katz School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Elisa Canepa
- Department of Neural Sciences, Alzheimer's Center at TempleTemple University Lewis Katz School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Silvia Fossati
- Department of Neural Sciences, Alzheimer's Center at TempleTemple University Lewis Katz School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Zhou L. Homocysteine and Parkinson's disease. CNS Neurosci Ther 2024; 30:e14420. [PMID: 37641911 PMCID: PMC10848096 DOI: 10.1111/cns.14420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Homocysteine (Hcy) is an important metabolite in methionine metabolism. When the metabolic pathway of homocysteine is abnormal, it will accumulate in the body and eventually lead to hyperhomocysteinemia. In recent years, many studies have found that hyperhomocysteinemia is related to the occurrence and development of Parkinson's disease. This study reviews the roles of homocysteine in the pathogenesis of Parkinson's disease and illustrates the harmful effects of hyperhomocysteinemia on Parkinson's disease.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
4
|
Weekman EM, Johnson SN, Rogers CB, Sudduth TL, Xie K, Qiao Q, Fardo DW, Bottiglieri T, Wilcock DM. Atorvastatin rescues hyperhomocysteinemia-induced cognitive deficits and neuroinflammatory gene changes. J Neuroinflammation 2023; 20:199. [PMID: 37658433 PMCID: PMC10474691 DOI: 10.1186/s12974-023-02883-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Epidemiological data suggests statins could reduce the risk of dementia, and more specifically, Alzheimer's disease (AD). Pre-clinical data suggests statins reduce the risk of dementia through their pleiotropic effects rather than their cholesterol lowering effects. While AD is a leading cause of dementia, it is frequently found co-morbidly with cerebral small vessel disease and other vascular contributions to cognitive impairment and dementia (VCID), which are another leading cause of dementia. In this study, we determined if atorvastatin ameliorated hyperhomocysteinemia (HHcy)-induced VCID. METHODS Wild-type (C57Bl6/J) mice were placed on a diet to induce HHcy or a control diet each with or without atorvastatin for 14 weeks. Mice underwent novel object recognition testing before tissue collection. Plasma total cholesterol and total homocysteine as well as related metabolites were measured. Using qPCR and NanoString technology, we profiled glial cell-associated gene expression changes. Finally, microglial morphology, astrocyte end feet, and microhemorrhages were analyzed using histological methods. RESULTS Atorvastatin treatment of HHcy in mice led to no changes in total cholesterol but decreases in total homocysteine in plasma. While HHcy decreased expression of many glial genes, atorvastatin rescued these gene changes, which mostly occurred in oligodendrocytes and microglia. Microglia in HHcy mice with atorvastatin were trending towards fewer processes compared to control with atorvastatin, but there were no atorvastatin effects on astrocyte end feet. While atorvastatin treatment was trending towards increasing the area of microhemorrhages in HHcy mice in the frontal cortex, it only slightly (non-significantly) reduced the number of microhemorrhages. Finally, atorvastatin treatment in HHcy mice led to improved cognition on the novel object recognition task. CONCLUSIONS These data suggest that atorvastatin rescued cognitive changes induced by HHcy most likely through lowering plasma total homocysteine and rescuing gene expression changes rather than impacts on vascular integrity or microglial changes.
Collapse
Affiliation(s)
- Erica M Weekman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Sherika N Johnson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Colin B Rogers
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Tiffany L Sudduth
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Kevin Xie
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Qi Qiao
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX, 75204, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|