1
|
Shreeve N, Sproule C, Choy KW, Dong Z, Gajewska-Knapik K, Kilby MD, Mone F. Incremental yield of whole-genome sequencing over chromosomal microarray analysis and exome sequencing for congenital anomalies in prenatal period and infancy: systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:15-23. [PMID: 37725747 DOI: 10.1002/uog.27491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVES First, to determine the incremental yield of whole-genome sequencing (WGS) over quantitative fluorescence polymerase chain reaction (QF-PCR)/chromosomal microarray analysis (CMA) with and without exome sequencing (ES) in fetuses, neonates and infants with a congenital anomaly that was or could have been detected on prenatal ultrasound. Second, to evaluate the turnaround time (TAT) and quantity of DNA required for testing using these pathways. METHODS This review was registered prospectively in December 2022. Ovid MEDLINE, EMBASE, MEDLINE (Web of Science), The Cochrane Library and ClinicalTrials.gov databases were searched electronically (January 2010 to December 2022). Inclusion criteria were cohort studies including three or more fetuses, neonates or infants with (i) one or more congenital anomalies; (ii) an anomaly which was or would have been detectable on prenatal ultrasound; and (iii) negative QF-PCR and CMA. In instances in which the CMA result was unavailable, all cases of causative pathogenic copy number variants > 50 kb were excluded, as these would have been detectable on standard prenatal CMA. Pooled incremental yield was determined using a random-effects model and heterogeneity was assessed using Higgins' I2 test. Subanalyses were performed based on pre- or postnatal cohorts, cases with multisystem anomalies and those meeting the NHS England prenatal ES inclusion criteria. RESULTS A total of 18 studies incorporating 902 eligible cases were included, of which eight (44.4%) studies focused on prenatal cohorts, incorporating 755 cases, and the remaining studies focused on fetuses undergoing postmortem testing or neonates/infants with congenital structural anomalies, constituting the postnatal cohort. The incremental yield of WGS over QF-PCR/CMA was 26% (95% CI, 18-36%) (I2 = 86%), 16% (95% CI, 9-24%) (I2 = 85%) and 39% (95% CI, 27-51%) (I2 = 53%) for all, prenatal and postnatal cases, respectively. The incremental yield increased in cases in which sequencing was performed in line with the NHS England prenatal ES criteria (32% (95% CI, 22-42%); I2 = 70%) and in those with multisystem anomalies (30% (95% CI, 19-43%); I2 = 65%). The incremental yield of WGS for variants of uncertain significance (VUS) was 18% (95% CI, 7-33%) (I2 = 74%). The incremental yield of WGS over QF-PCR/CMA and ES was 1% (95% CI, 0-4%) (I2 = 47%). The pooled median TAT of WGS was 18 (range, 1-912) days, and the quantity of DNA required was 100 ± 0 ng for WGS and 350 ± 50 ng for QF-PCR/CMA and ES (P = 0.03). CONCLUSION While WGS in cases with congenital anomaly holds great promise, its incremental yield over ES is yet to be demonstrated. However, the laboratory pathway for WGS requires less DNA with a potentially faster TAT compared with sequential QF-PCR/CMA and ES. There was a relatively high rate of VUS using WGS. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- N Shreeve
- Department of Obstetrics & Gynaecology, University of Cambridge, Cambridge, UK
| | - C Sproule
- Department of Obstetrics & Gynaecology, South Eastern Health and Social Care Trust, Belfast, UK
| | - K W Choy
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Z Dong
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - K Gajewska-Knapik
- Department of Obstetrics & Gynaecology, Cambridge University Hospitals, Cambridge, UK
| | - M D Kilby
- Fetal Medicine Centre, Birmingham Women's and Children's Foundation Trust, Birmingham, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Medical Genomics Research Group, Illumina, Cambridge, UK
| | - F Mone
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
4
|
Lowther C, Valkanas E, Giordano JL, Wang HZ, Currall BB, O'Keefe K, Pierce-Hoffman E, Kurtas NE, Whelan CW, Hao SP, Weisburd B, Jalili V, Fu J, Wong I, Collins RL, Zhao X, Austin-Tse CA, Evangelista E, Lemire G, Aggarwal VS, Lucente D, Gauthier LD, Tolonen C, Sahakian N, Stevens C, An JY, Dong S, Norton ME, MacKenzie TC, Devlin B, Gilmore K, Powell BC, Brandt A, Vetrini F, DiVito M, Sanders SJ, MacArthur DG, Hodge JC, O'Donnell-Luria A, Rehm HL, Vora NL, Levy B, Brand H, Wapner RJ, Talkowski ME. Systematic evaluation of genome sequencing for the diagnostic assessment of autism spectrum disorder and fetal structural anomalies. Am J Hum Genet 2023; 110:1454-1469. [PMID: 37595579 PMCID: PMC10502737 DOI: 10.1016/j.ajhg.2023.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
Short-read genome sequencing (GS) holds the promise of becoming the primary diagnostic approach for the assessment of autism spectrum disorder (ASD) and fetal structural anomalies (FSAs). However, few studies have comprehensively evaluated its performance against current standard-of-care diagnostic tests: karyotype, chromosomal microarray (CMA), and exome sequencing (ES). To assess the clinical utility of GS, we compared its diagnostic yield against these three tests in 1,612 quartet families including an individual with ASD and in 295 prenatal families. Our GS analytic framework identified a diagnostic variant in 7.8% of ASD probands, almost 2-fold more than CMA (4.3%) and 3-fold more than ES (2.7%). However, when we systematically captured copy-number variants (CNVs) from the exome data, the diagnostic yield of ES (7.4%) was brought much closer to, but did not surpass, GS. Similarly, we estimated that GS could achieve an overall diagnostic yield of 46.1% in unselected FSAs, representing a 17.2% increased yield over karyotype, 14.1% over CMA, and 4.1% over ES with CNV calling or 36.1% increase without CNV discovery. Overall, GS provided an added diagnostic yield of 0.4% and 0.8% beyond the combination of all three standard-of-care tests in ASD and FSAs, respectively. This corresponded to nine GS unique diagnostic variants, including sequence variants in exons not captured by ES, structural variants (SVs) inaccessible to existing standard-of-care tests, and SVs where the resolution of GS changed variant classification. Overall, this large-scale evaluation demonstrated that GS significantly outperforms each individual standard-of-care test while also outperforming the combination of all three tests, thus warranting consideration as the first-tier diagnostic approach for the assessment of ASD and FSAs.
Collapse
Affiliation(s)
- Chelsea Lowther
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Elise Valkanas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Jessica L Giordano
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Harold Z Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin B Currall
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kathryn O'Keefe
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emma Pierce-Hoffman
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nehir E Kurtas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christopher W Whelan
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie P Hao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ben Weisburd
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vahid Jalili
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack Fu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Isaac Wong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christina A Austin-Tse
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Emily Evangelista
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vimla S Aggarwal
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Laura D Gauthier
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charlotte Tolonen
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nareh Sahakian
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christine Stevens
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joon-Yong An
- School of Biosystem and Biomedical Science, Korea University, Seoul, South Korea
| | - Shan Dong
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mary E Norton
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Tippi C MacKenzie
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kelly Gilmore
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bradford C Powell
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alicia Brandt
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michelle DiVito
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel G MacArthur
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Centre for Population Genomics, Garvan Institute of Medical Research, and University of New South Wales Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jennelle C Hodge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anne O'Donnell-Luria
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Heidi L Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neeta L Vora
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ronald J Wapner
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA; Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Coccia E, Valeri L, Zuntini R, Caraffi SG, Peluso F, Pagliai L, Vezzani A, Pietrangiolillo Z, Leo F, Melli N, Fiorini V, Greco A, Lepri FR, Pisaneschi E, Marozza A, Carli D, Mussa A, Radio FC, Conti B, Iascone M, Gargano G, Novelli A, Tartaglia M, Zuffardi O, Bedeschi MF, Garavelli L. Prenatal Clinical Findings in RASA1-Related Capillary Malformation-Arteriovenous Malformation Syndrome. Genes (Basel) 2023; 14:genes14030549. [PMID: 36980822 PMCID: PMC10048332 DOI: 10.3390/genes14030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Pathogenic variants in RASA1 are typically associated with a clinical condition called “capillary malformation-arteriovenous malformation” (CM-AVM) syndrome, an autosomal dominant genetic disease characterized by a broad phenotypic variability, even within families. In CM-AVM syndrome, multifocal capillary and arteriovenous malformations are mainly localized in the central nervous system, spine and skin. Although CM-AVM syndrome has been widely described in the literature, only 21 cases with prenatal onset of clinical features have been reported thus far. Here, we report four pediatric cases of molecularly confirmed CM-AVM syndrome which manifested during the prenatal period. Polyhydramnios, non-immune hydrops fetalis and chylothorax are only a few possible aspects of this condition, but a correct interpretation of these prenatal signs is essential due to the possible fatal consequences of unrecognized encephalic and thoracoabdominal deep vascular malformations in newborns and in family members carrying the same RASA1 variant.
Collapse
Affiliation(s)
- Emanuele Coccia
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Department of Medical and Surgical Science, Postgraduate School of Medical Genetics, Alma Mater StudiorumUniversity of Bologna, 40126 Bologna, Italy
| | - Lara Valeri
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Paediatrics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Roberta Zuntini
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-0522-296158/+39-0522-296244
| | - Francesca Peluso
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Luca Pagliai
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Antonietta Vezzani
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Zaira Pietrangiolillo
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesco Leo
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Nives Melli
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Valentina Fiorini
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Andrea Greco
- Postgraduate School of Paediatrics, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Francesca Romana Lepri
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Elisa Pisaneschi
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Annabella Marozza
- Medical Genetics Unit, Careggi University Hospital, 50134 Florence, Italy
- Medical Genetics Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
| | - Diana Carli
- Department of Public Health and Pediatric Sciences, Regina Margherita Children’s Hospital, Azienda Ospedaliero-Universitaria di Torino, 10126 Turin, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, Regina Margherita Children’s Hospital, Azienda Ospedaliero-Universitaria di Torino, 10126 Turin, Italy
| | | | - Beatrice Conti
- Clinical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Iascone
- Laboratory of Medical Genetics, Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Giancarlo Gargano
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maria Francesca Bedeschi
- Clinical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|