1
|
Li F, An Y, Xue J, Fu H, Wang H, Cao P, Zhang M, Fei P, Liu M, Zhao F. Cellulose Acetate Membranes: Antibacterial Strategy and Application-A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409728. [PMID: 39679825 DOI: 10.1002/smll.202409728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/30/2024] [Indexed: 12/17/2024]
Abstract
Developing antibacterial and biodegradable cellulose acetate (CA) membrane materials is one of the main challenges in multiple application fields. CA membrane materials are widely used in gas purification, water purification, and biomedical fields due to their environmental friendliness, high chemical and mechanical stability, excellent processability, and low cost. However, antibacterial modification of CA membrane materials to enhance their utilization value in the application process has always been the direction of researchers' efforts. This review focuses on the preparation and application of antibacterial CA and its derivatives membranes, especially the types and introduction methods of antibacterial agents. First, a brief introduction of CA-based polymer membranes is presented, followed by an overview of the antibacterial agent types and their introduction methods, and antibacterial mechanisms. After that, various membranes prepared using CA-based polymers as the main matrix or as additives are discussed. Then, specific applications of antibacterial CA-based membrane materials in water purification, gas purification, biomedical, food packaging, and other fields are outlined.
Collapse
Affiliation(s)
- Fu Li
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Yaxin An
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Jinhong Xue
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Hui Fu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Hongbo Wang
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Puzhi Cao
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Man Zhang
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Pengfei Fei
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Mei Liu
- College of Textiles and Apparel, Quanzhou Normal University, No. 398 Donghai, Quanzhou City, Fujian, 362000, P. R. China
| | - Fulai Zhao
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| |
Collapse
|
2
|
Vo DK, Trinh KTL. Advances in Wearable Biosensors for Healthcare: Current Trends, Applications, and Future Perspectives. BIOSENSORS 2024; 14:560. [PMID: 39590019 PMCID: PMC11592256 DOI: 10.3390/bios14110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
Wearable biosensors are a fast-evolving topic at the intersection of healthcare, technology, and personalized medicine. These sensors, which are frequently integrated into clothes and accessories or directly applied to the skin, provide continuous, real-time monitoring of physiological and biochemical parameters such as heart rate, glucose levels, and hydration status. Recent breakthroughs in downsizing, materials science, and wireless communication have greatly improved the functionality, comfort, and accessibility of wearable biosensors. This review examines the present status of wearable biosensor technology, with an emphasis on advances in sensor design, fabrication techniques, and data analysis algorithms. We analyze diverse applications in clinical diagnostics, chronic illness management, and fitness tracking, emphasizing their capacity to transform health monitoring and facilitate early disease diagnosis. Additionally, this review seeks to shed light on the future of wearable biosensors in healthcare and wellness by summarizing existing trends and new advancements.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea;
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
3
|
Vitazkova D, Foltan E, Kosnacova H, Micjan M, Donoval M, Kuzma A, Kopani M, Vavrinsky E. Advances in Respiratory Monitoring: A Comprehensive Review of Wearable and Remote Technologies. BIOSENSORS 2024; 14:90. [PMID: 38392009 PMCID: PMC10886711 DOI: 10.3390/bios14020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
This article explores the importance of wearable and remote technologies in healthcare. The focus highlights its potential in continuous monitoring, examines the specificity of the issue, and offers a view of proactive healthcare. Our research describes a wide range of device types and scientific methodologies, starting from traditional chest belts to their modern alternatives and cutting-edge bioamplifiers that distinguish breathing from chest impedance variations. We also investigated innovative technologies such as the monitoring of thorax micromovements based on the principles of seismocardiography, ballistocardiography, remote camera recordings, deployment of integrated optical fibers, or extraction of respiration from cardiovascular variables. Our review is extended to include acoustic methods and breath and blood gas analysis, providing a comprehensive overview of different approaches to respiratory monitoring. The topic of monitoring respiration with wearable and remote electronics is currently the center of attention of researchers, which is also reflected by the growing number of publications. In our manuscript, we offer an overview of the most interesting ones.
Collapse
Affiliation(s)
- Diana Vitazkova
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Erik Foltan
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Helena Kosnacova
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia
| | - Michal Micjan
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Martin Donoval
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Anton Kuzma
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Martin Kopani
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia;
| | - Erik Vavrinsky
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia;
| |
Collapse
|
4
|
Zhou Y, Wang S, Yin J, Wang J, Manshaii F, Xiao X, Zhang T, Bao H, Jiang S, Chen J. Flexible Metasurfaces for Multifunctional Interfaces. ACS NANO 2024; 18:2685-2707. [PMID: 38241491 DOI: 10.1021/acsnano.3c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.
Collapse
Affiliation(s)
- Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Shaolei Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Junyi Yin
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jianjun Wang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Hong Bao
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Li J, Che Z, Wan X, Manshaii F, Xu J, Chen J. Biomaterials and bioelectronics for self-powered neurostimulation. Biomaterials 2024; 304:122421. [PMID: 38065037 DOI: 10.1016/j.biomaterials.2023.122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Self-powered neurostimulation via biomaterials and bioelectronics innovation has emerged as a compelling approach to explore, repair, and modulate neural systems. This review examines the application of self-powered bioelectronics for electrical stimulation of both the central and peripheral nervous systems, as well as isolated neurons. Contemporary research has adeptly harnessed biomechanical and biochemical energy from the human body, through various mechanisms such as triboelectricity, piezoelectricity, magnetoelasticity, and biofuel cells, to power these advanced bioelectronics. Notably, these self-powered bioelectronics hold substantial potential for delivering neural stimulations that are customized for the treatment of neurological diseases, facilitation of neural regeneration, and the development of neuroprosthetics. Looking ahead, we expect that the ongoing advancements in biomaterials and bioelectronics will drive the field of self-powered neurostimulation toward the realization of more advanced, closed-loop therapeutic solutions, paving the way for personalized and adaptable neurostimulators in the coming decades.
Collapse
Affiliation(s)
- Jinlong Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ziyuan Che
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Wan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jing Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
彭 仲, 崔 兴, 张 政, 俞 梦. [Wearable devices: Perspectives on assessing and monitoring human physiological status]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:1045-1052. [PMID: 38151926 PMCID: PMC10753302 DOI: 10.7507/1001-5515.202303043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/28/2023] [Indexed: 12/29/2023]
Abstract
This review article aims to explore the major challenges that the healthcare system is currently facing and propose a new paradigm shift that harnesses the potential of wearable devices and novel theoretical frameworks on health and disease. Lifestyle-induced diseases currently account for a significant portion of all healthcare spending, with this proportion projected to increase with population aging. Wearable devices have emerged as a key technology for implementing large-scale healthcare systems focused on disease prevention and management. Advancements in miniaturized sensors, system integration, the Internet of Things, artificial intelligence, 5G, and other technologies have enabled wearable devices to perform high-quality measurements comparable to medical devices. Through various physical, chemical, and biological sensors, wearable devices can continuously monitor physiological status information in a non-invasive or minimally invasive way, including electrocardiography, electroencephalography, respiration, blood oxygen, blood pressure, blood glucose, activity, and more. Furthermore, by combining concepts and methods from complex systems and nonlinear dynamics, we developed a novel theory of continuous dynamic physiological signal analysis-dynamical complexity. The results of dynamic signal analyses can provide crucial information for disease prevention, diagnosis, treatment, and management. Wearable devices can also serve as an important bridge connecting doctors and patients by tracking, storing, and sharing patient data with medical institutions, enabling remote or real-time health assessments of patients, and providing a basis for precision medicine and personalized treatment. Wearable devices have a promising future in the healthcare field and will be an important driving force for the transformation of the healthcare system, while also improving the health experience for individuals.
Collapse
Affiliation(s)
- 仲康 彭
- 东南大学 生物科学与医学工程学院(南京 210096)School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- 东南大学 非线性动态医学研究中心(南京 210096)Center for Nonlinear Dynamics in Medicine, Southeast University, Nanjing 210096, P. R. China
- 哈佛大学 医学院/贝斯以色列女执事医疗中心(美国 波士顿 02215)Beth Israel Deaconess Medical Center / Harvard Medical School, Boston 02215, USA
| | - 兴然 崔
- 东南大学 生物科学与医学工程学院(南京 210096)School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- 东南大学 非线性动态医学研究中心(南京 210096)Center for Nonlinear Dynamics in Medicine, Southeast University, Nanjing 210096, P. R. China
| | - 政波 张
- 东南大学 生物科学与医学工程学院(南京 210096)School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - 梦孙 俞
- 东南大学 生物科学与医学工程学院(南京 210096)School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
7
|
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. SMALL METHODS 2023; 7:e2301049. [PMID: 37817364 DOI: 10.1002/smtd.202301049] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
8
|
Cao J, Xiao Y, Zhang M, Huang L, Wang Y, Liu W, Wang X, Wu J, Huang Y, Wang R, Zhou L, Li L, Zhang Y, Ren L, Qian K, Wang J. Deep Learning of Dual Plasma Fingerprints for High-Performance Infection Classification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206349. [PMID: 36470664 DOI: 10.1002/smll.202206349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Infection classification is the key for choosing the proper treatment plans. Early determination of the causative agents is critical for disease control. Host responses analysis can detect variform and sensitive host inflammatory responses to ascertain the presence and type of the infection. However, traditional host-derived inflammatory indicators are insufficient for clinical infection classification. Fingerprints-based omic analysis has attracted increasing attention globally for analyzing the complex host systemic immune response. A single type of fingerprints is not applicable for infection classification (area under curve (AUC) of 0.550-0.617). Herein, an infection classification platform based on deep learning of dual plasma fingerprints (DPFs-DL) is developed. The DPFs with high reproducibility (coefficient of variation <15%) are obtained at low sample consumption (550 nL native plasma) using inorganic nanoparticle and organic matrix assisted laser desorption/ionization mass spectrometry. A classifier (DPFs-DL) for viral versus bacterial infection discrimination (AUC of 0.775) and coronavirus disease 2019 (COVID-2019) diagnosis (AUC of 0.917) is also built. Furthermore, a metabolic biomarker panel of two differentially regulated metabolites, which may serve as potential biomarkers for COVID-19 management (AUC of 0.677-0.883), is constructed. This study will contribute to the development of precision clinical care for infectious diseases.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yan Xiao
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Mengji Zhang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Lin Huang
- Country Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Ying Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Wanshan Liu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Xinming Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Jiao Wu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Yida Huang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Ruimin Wang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Li Zhou
- Beijing health biotech co. Ltd, Beijing, 100193, P. R. China
| | - Lin Li
- Beijing health biotech co. Ltd, Beijing, 100193, P. R. China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| |
Collapse
|