1
|
Wang Y, Wang Z, Liu W, Xie S, Ren X, Yan L, Liang D, Gao T, Fu T, Zhang Z, Huang H. Genetic Background of Blood β-Hydroxybutyrate Acid Concentrations in Early-Lactating Holstein Dairy Cows Based on Genome-Wide Association Analyses. Genes (Basel) 2024; 15:412. [PMID: 38674346 PMCID: PMC11049649 DOI: 10.3390/genes15040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Ketosis is a common metabolic disorder in the early lactation of dairy cows. It is typically diagnosed by measuring the concentration of β-hydroxybutyrate (BHB) in the blood. This study aimed to estimate the genetic parameters of blood BHB and conducted a genome-wide association study (GWAS) based on the estimated breeding value. Phenotypic data were collected from December 2019 to August 2023, comprising blood BHB concentrations in 45,617 Holstein cows during the three weeks post-calving across seven dairy farms. Genotypic data were obtained using the Neogen Geneseek Genomic Profiler (GGP) Bovine 100 K SNP Chip and GGP Bovine SNP50 v3 (Illumina Inc., San Diego, CA, USA) for genotyping. The estimated heritability and repeatability values for blood BHB levels were 0.167 and 0.175, respectively. The GWAS result detected a total of ten genome-wide significant associations with blood BHB. Significant SNPs were distributed in Bos taurus autosomes (BTA) 2, 6, 9, 11, 13, and 23, with 48 annotated candidate genes. These potential genes included those associated with insulin regulation, such as INSIG2, and those linked to fatty acid metabolism, such as HADHB, HADHA, and PANK2. Enrichment analysis of the candidate genes for blood BHB revealed the molecular functions and biological processes involved in fatty acid and lipid metabolism in dairy cattle. The identification of novel genomic regions in this study contributes to the characterization of key genes and pathways that elucidate susceptibility to ketosis in dairy cattle.
Collapse
Affiliation(s)
- Yueqiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.W.); (W.L.); (S.X.); (Y.W.); (D.L.); (T.G.); (T.F.)
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, Zhengzhou 450046, China
| | - Zhenyu Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.W.); (W.L.); (S.X.); (Y.W.); (D.L.); (T.G.); (T.F.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, Zhengzhou 450046, China
| | - Wenhui Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.W.); (W.L.); (S.X.); (Y.W.); (D.L.); (T.G.); (T.F.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, Zhengzhou 450046, China
| | - Shuoqi Xie
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.W.); (W.L.); (S.X.); (Y.W.); (D.L.); (T.G.); (T.F.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, Zhengzhou 450046, China
| | - Xiaoli Ren
- Henan Dairy Herd Improvement Center, Zhengzhou 450046, China; (X.R.); (L.Y.)
| | - Lei Yan
- Henan Dairy Herd Improvement Center, Zhengzhou 450046, China; (X.R.); (L.Y.)
| | - Dong Liang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.W.); (W.L.); (S.X.); (Y.W.); (D.L.); (T.G.); (T.F.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, Zhengzhou 450046, China
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.W.); (W.L.); (S.X.); (Y.W.); (D.L.); (T.G.); (T.F.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, Zhengzhou 450046, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.W.); (W.L.); (S.X.); (Y.W.); (D.L.); (T.G.); (T.F.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, Zhengzhou 450046, China
| | - Zhen Zhang
- Henan Dairy Herd Improvement Center, Zhengzhou 450046, China; (X.R.); (L.Y.)
| | - Hetian Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.W.); (W.L.); (S.X.); (Y.W.); (D.L.); (T.G.); (T.F.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, Zhengzhou 450046, China
| |
Collapse
|
2
|
Zhang D, Ding H, Liu C, Huang Y, Tai W, Feng S, Wang X, Zhao C, Li Y. Circulating exosome-mediated AMPKα-SIRT1 pathway regulates lipid metabolism disorders in calf hepatocytes. Res Vet Sci 2024; 169:105177. [PMID: 38350170 DOI: 10.1016/j.rvsc.2024.105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Subclinical ketosis (SCK) in dairy cows is often misdiagnosed because it lacks clinical signs and detection indicators. However, it is highly prevalent and may transform into clinical ketosis if not treated promptly. Due to the negative energy balance, a large amount of fat is mobilized, producing NEFA that exceeds the upper limit of liver processing, which in turn leads to the disturbance of liver lipid metabolism. The silent information regulator 1 (SIRT1) is closely related to hepatic lipid metabolism disorders. Exosomes as signal transmitters, also play a role in the circulatory system. We hypothesize that the circulating exosome-mediated adenosine 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα)-SIRT1 pathway regulates lipid metabolism disorders in SCK cows. We extracted the exosomes required for the experiment from the peripheral circulating blood of non-ketotic (NK) and SCK cows. We investigated the effect of circulating exosomes on the expression levels of mRNA and protein of the AMPKα-SIRT1 pathway in non-esterified fatty acid (NEFA)-induced dairy cow primary hepatocytes using in vitro cell experiments. The results showed that circulating exosomes increased the expression levels of Lipolysis-related genes and proteins (AMPKα, SIRT1, and PGC-1α) in hepatocytes treated with 1.2 mM NEFA, and inhibited the expression of lipid synthesis-related genes and protein (SREBP-1C). The regulation of exosomes on lipid metabolism disorders caused by 1.2 mM NEFA treatment showed the same trend as for SIRT1-overexpressing adenovirus. The added exosomes could regulate NEFA-induced lipid metabolism in hepatocytes by mediating the AMPKα-SIRT1 pathway, consistent with the effect of transfected SIRT1 adenovirus.
Collapse
Affiliation(s)
- Daoliang Zhang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Hongyan Ding
- Research Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui Province 230031, China
| | - Chang Liu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Yingying Huang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Wenjun Tai
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China.
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China.
| |
Collapse
|
3
|
Urbutis M, Malašauskienė D, Televičius M, Juozaitienė V, Baumgartner W, Antanaitis R. Evaluation of the Metabolic Relationship between Cows and Calves by Monitoring Calf Health and Cow Automatic Milking System and Metabolic Parameters. Animals (Basel) 2023; 13:2576. [PMID: 37627367 PMCID: PMC10451765 DOI: 10.3390/ani13162576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
With this study, we investigated the relationship between a cow's and calf's metabolic state, and its effect on health status. To achieve this, 20 calves of primiparous and 20 calves of multiparous cows were selected. The calves were monitored for 30 days and scored for signs of disease, as described in McQuirk (2008); according to score, they were divided into healthier calves; the Low calf score group (LCS, 5-8), Medium calf score group (MCS, 9-12) and High calf score group (HCS, 14-17); or calves most prone to disease. Their mothers were monitored for the same period with a Lely Astronaut 3 herd management system (Lely, Maassluis, The Netherlands) for rumination time, milk yield, milk fat, protein, lactose concentrations and milk fat to protein ratio. Both cows and calves were sampled for blood, and concentrations of glucose with β-hydroxybutyrate were registered. The results indicate that primiparous cows had a 16% higher blood glucose concentration (3.03 mmol/L SE = 0.093) compared with multiparous cows (2.61 mmol/L, SE = 0.102) (p < 0.01), but no difference in calf glucose was recorded. Β-hydroxybutyrate levels did not differ significantly between cows and calves by parity group. Rumination time was longest in the HCS group at 550.79 min/d. and was 16% longer compared with the LCS group (461.94 min/d.; p < 0.001) and 8% longer compared with the MCS group (505.56 min/d.; p < 0.001). The MCS group rumination time mean was statistically significantly higher compared with the LCS group by 8% (p < 0.001). Milk yield was also highest in the HCS group (44.8 kg/d.): 19% higher compared with the MCS group (36.31 kg/d., p < 0.001) and 13% higher than the LCS group (38.83 kg/d., p < 0.001). There was also a significant difference between the MCS and LCS groups of 6% (p < 0.001). The HCS group had the highest milk fat concentration (4.47%): it was 4% higher compared with the LCS group (4.28%, p < 0.001) and 5% higher than the MCS group (4.25%, p < 0.001). Milk fat to protein ratio was highest in the HCS group (1.21) and was 7% higher than in the MCS group (1.12, p < 0.001) and 8% higher than in the LCS group (1.11, p < 0.001). The LCS group was determined to have the highest concentration of milk lactose (4.66%). It was 1% higher compared with the MCS group (4.62%, p < 0.001) and 1.07% higher than the HCS group (4.61%, p < 0.001). We can conclude that parity did not affect calf health status and that cows of the HCS group showed symptoms of negative energy balance expressed through higher milk yield, higher milk fat concentration and higher milk fat to protein ratio, with lower milk lactose concentration. Further and more thorough research is needed to evaluate the relationship between pregnant cows and calves.
Collapse
Affiliation(s)
- Mingaudas Urbutis
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (D.M.); (M.T.); (R.A.)
| | - Dovilė Malašauskienė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (D.M.); (M.T.); (R.A.)
| | - Mindaugas Televičius
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (D.M.); (M.T.); (R.A.)
| | - Vida Juozaitienė
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, LT-44248 Kaunas, Lithuania
| | - Walter Baumgartner
- University Clinic for Ruminants, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Ramūnas Antanaitis
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (D.M.); (M.T.); (R.A.)
| |
Collapse
|