1
|
Komaba K, Kimura S, Kumai R, Goto H. Optically Electroactive Polymer Synthesized in a Liquid Crystal with Cyclosporin A─Circularly Polarized Electron Spin Resonance. J Phys Chem B 2024; 128:2000-2009. [PMID: 38377516 DOI: 10.1021/acs.jpcb.3c07375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Cyclosporine A (CsA), a naturally derived biomaterial and physiologically active substance, is commonly used as an immunosuppressant. In this study, CsA was revealed to function as a chiral inducer of cholesteric liquid crystals (CLCs) with a high helical twisting power. CsA induced helical structures in 4-cyano-4'-pentylbiphenyl, a synthetic liquid crystal (LC) used for general purposes. Electrochemical polymerization in CLC with CsA was also performed. The polymer prepared in CLC showed electro-optical activity via chiral induction by CsA. Synchrotron X-ray diffraction measurements indicated that the polymer film prepared in the CLC formed in the manner of LC molecular arrangement through molecular form imprinting from the LC order, although the polymer exhibited no liquid crystallinity. The polymer showed structural color and laser light oscillation diffraction derived from its periodic structure. The anisotropy of the circularly polarized electron spin resonance signals for the resulting polymer with respect to the magnetic field was observed.
Collapse
Affiliation(s)
- Kyoka Komaba
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Shojiro Kimura
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 Japan
| | - Reiji Kumai
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Hiromasa Goto
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
2
|
Bezdicka M, Cinek O, Semjonov V, Polackova K, Sladkova E, Zieg J, Saleem MA, Soucek O. Nephrotic syndrome sera induce different transcriptomes in podocytes based on the steroid response. Physiol Rep 2024; 12:e15932. [PMID: 38307723 PMCID: PMC10837055 DOI: 10.14814/phy2.15932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 02/04/2024] Open
Abstract
As the molecular mechanism of nephrotic syndrome remains largely undiscovered, patients continue to be exposed to the pros and cons of uniform glucocorticoid treatment. We explored whether the exposure of in vitro-cultivated podocytes to sera from children with steroid-sensitive or steroid-resistant nephrotic syndrome induces differences in gene expression profiles, which could help to elucidate the pathogenesis of the steroid response. Human immortalized podocytes were cultivated with patient sera for 3 days. After cell lysis, RNA extraction, 3'-mRNA libraries were prepared and sequenced. There were 34 significantly upregulated and 14 downregulated genes (fold difference <0.5 and >2.0, respectively, and false discovery rate-corrected p < 0.05) and 22 significantly upregulated and 6 downregulated pathways (false discovery rate-corrected p < 0.01) in the steroid-sensitive (n = 9) versus steroid-resistant group (n = 4). The observed pathways included upregulated redox reactions, DNA repair, mitosis, protein translation and downregulated cholesterol biosynthesis. Sera from children with nephrotic syndrome induce disease subtype-specific transcriptome changes in human podocytes in vitro. However, further exploration of a larger cohort is needed to verify whether clinically distinct types of nephrotic syndrome or disease activity may be differentiated by specific transcriptomic profiles and whether this information may help to elucidate the pathogenesis of the steroid response.
Collapse
Affiliation(s)
- Martin Bezdicka
- Vera Vavrova Lab/VIAL, Department of Pediatrics, Second Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Ondrej Cinek
- Department of Pediatrics, Second Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Valerij Semjonov
- Department of Pediatrics, Second Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Katerina Polackova
- Vera Vavrova Lab/VIAL, Department of Pediatrics, Second Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Eva Sladkova
- Children's Clinic, Faculty of Medicine in PilsenUniversity Hospital in Pilsen, Charles UniversityPilsenCzech Republic
| | - Jakub Zieg
- Department of Pediatrics, Second Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Moin A. Saleem
- Bristol Renal and Bristol Royal Hospital for ChildrenUniversity of Bristol Medical SchoolBristolUK
| | - Ondrej Soucek
- Vera Vavrova Lab/VIAL, Department of Pediatrics, Second Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| |
Collapse
|
3
|
Brown C, Mitsch M, Blankenship K, Campbell C, Pelanne M, Sears J, Bell A, Olivier AK, Ross MK, Archer T, Kaplan BLF. Canine immune cells express high levels of CB 1 and CB 2 cannabinoid receptors and cannabinoid-mediated alteration of canine cytokine production is vehicle-dependent. Vet Immunol Immunopathol 2023; 265:110667. [PMID: 37931433 PMCID: PMC11798033 DOI: 10.1016/j.vetimm.2023.110667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
With the increased popularity and societal acceptance of marijuana and cannabidiol (CBD) use in humans, there is an interest in using cannabinoids in veterinary medicine. There have been a few placebo-controlled clinical trials in dogs suggesting that cannabis-containing extracts are beneficial for dogs with inflammatory diseases such as osteoarthritis, and there is growing interest in their immunosuppressive potential for the treatment of immune-mediated diseases. Since cannabinoids exhibit anti-inflammatory and immunosuppressive effects in many species, the purpose of these studies was to examine whether the plant-derived cannabinoids, CBD and Δ9-tetrahydrocannabinol (THC), would also suppress immune function in canine peripheral blood mononuclear cells (PBMCs). Another goal was to characterize expression of the cannabinoid receptors, CB1 and CB2, in canine immune cells. We hypothesized that CBD and THC would suppress stimulated cytokine expression and that both cannabinoid receptors would be expressed in canine immune cells. Surprisingly, cannabinoid suppressive effects in canine PMBCs were quite modest, with the most robust effect occurring at early stimulation times and predominantly by THC. We further showed that cannabinoid-mediated suppression was dog- and vehicle-dependent with CBD and THC delivered in dimethyl sulfoxide (DMSO) producing more immune suppressive effects as compared to ethanol (ETOH). PCR, flow cytometry, and immunohistochemical staining demonstrated that both CB1 and CB2 are expressed in canine immune cells. Together these data show that canine immune cells are sensitive to suppression by cannabinoids, but more detailed studies are needed to further understand the mechanisms and broad effects of these compounds in the dog.
Collapse
Affiliation(s)
- Clare Brown
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Matthew Mitsch
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Karis Blankenship
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Carly Campbell
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Mimi Pelanne
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Jaylan Sears
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Abigail Bell
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Alicia K Olivier
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Todd Archer
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA.
| |
Collapse
|
4
|
Chauhan A, Midha S, Kumar R, Meena R, Singh P, Jha SK, Kuanr BK. Rapid tumor inhibition via magnetic hyperthermia regulated by caspase 3 with time-dependent clearance of iron oxide nanoparticles. Biomater Sci 2021; 9:2972-2990. [PMID: 33635305 DOI: 10.1039/d0bm01705a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among conventional cancer therapies, radio-frequency magnetic hyperthermia (MHT) has widely been investigated for use with magnetic nanoparticles (MNPs). However, the majority of in vivo biodistribution studies have tested very low MNP dosages (equivalent to magnetic resonance imaging (MRI) applications) to check for clearance rate; which is far below the clinical dose of MHT. Due to this poor validation in preclinical scenarios, quite a few MNPs already in clinical use were later discontinued, on grounds of unexpected clinical outcomes in terms of inflammation, and prolonged clearance in vivo. By exploiting an economical method of synthesis, we have developed chitosan-coated Fe3O4 nanoparticles with high heating efficiency performance. Their anti-tumor response was evaluated in an ectopic tumor model of C6 glioblastoma by MHT. The intratumoral injection of MNPs on days 1 and 7 resulted in rapid tumor inhibition rate of 69.4% within 8 days, with complete inhibition within 32 days, and no recurrence recorded over a 5-month follow-up. Notably, the MNP-mediated MHT therapy achieved the highest degree of therapeutic efficacy required for complete tumor ablation by combining controlled temperature range (<44 °C), reduced MNP dosage; much lower than in most reported studies, and AMF parameters (time of exposure and frequency) within the clinical safety limit. Periodic body weight measurements confirmed negligible adverse side effects in rats. The anti-tumor activity was validated by severe apoptosis (TUNEL, cleaved Caspase-3), reduced proliferation (Ki 67) and disrupted vasculature (CD 31) in the Fe3O4-MHT-treated group. Real-time gene expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1α, IL-1β) confirmed the intratumoral activation of IL-6, suggesting the role of immunomodulation in triggering the adaptive immune response for faster tumor regression in the treated group. In addition, the biodistribution and clearance rate of MNPs monitored using ICP-OES confirmed their time-dependent biodegradation via excretion (urine, feces), phagocytosis (liver) and circulatory system (blood), with negligible deposition in other major organs (kidney, heart, lungs). Although we could not show complete clearance of our MNPs within the time frame tested, future studies should focus on combining MHT with immunotherapy, and target tumors at a much-reduced iron dose, consequently improving in vivo clearance rate, and hence overcoming the limitations of MHT in clinical therapy.
Collapse
Affiliation(s)
- Anjali Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Swati Midha
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ravindra Meena
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Pooja Singh
- National Institute of Plant Genome research, New Delhi-110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Bijoy K Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
5
|
Galimberti F, McBride J, Cronin M, Li Y, Fox J, Abrouk M, Herbst A, Kirsner RS. Evidence-based best practice advice for patients treated with systemic immunosuppressants in relation to COVID-19. Clin Dermatol 2020; 38:775-780. [PMID: 32419721 PMCID: PMC7224642 DOI: 10.1016/j.clindermatol.2020.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The emergence of the COVID-19 pandemic has led to significant uncertainty among physicians and patients about the safety of immunosuppressive medications used for the management of dermatologic conditions. We review available data on commonly used immunosuppressants and their effect on viral infections beyond COVID-19. Notably, the effect of some immunosuppressants on viruses related to SARS-CoV2, including SARS and MERS, has been previously investigated. In the absence of data on the effect of immunosuppressants on COVID-19, these data could be used to make clinical decisions on initiation and continuation of immunosuppressive medications during this pandemic. In summary, we recommend considering the discontinuation of oral Janus kinase (JAK) inhibitors and prednisone; considering the delay of rituximab infusion; and suggesting the careful continuation of cyclosporine, mycophenolate, azathioprine, methotrexate, and biologics in patients currently benefitting from such treatments.
Collapse
Affiliation(s)
- Fabrizio Galimberti
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeffrey McBride
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Megan Cronin
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yumeng Li
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joshua Fox
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Michael Abrouk
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alexander Herbst
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Robert S Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
6
|
Narayanan L, Mulligan C, Durso L, Thames B, Thomason J, Fellman C, Mackin A, Wills R, Archer T. Recovery of T-cell function in healthy dogs following cessation of oral cyclosporine administration. Vet Med Sci 2020; 6:277-282. [PMID: 31914237 PMCID: PMC7397919 DOI: 10.1002/vms3.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/30/2019] [Accepted: 12/08/2019] [Indexed: 11/30/2022] Open
Abstract
Cyclosporine is a potent immunosuppressive agent used to treat immune‐mediated disorders in dogs. Secondary infections sometimes necessitate withdrawal of cyclosporine, but it is not known how long it takes for the immune system to recover after cessation of cyclosporine. Our goal was to utilize a validated RT‐qPCR assay in dogs to assess recovery time of the T‐cell cytokines IL‐2 and IFN‐γ after discontinuation of cyclosporine. Six healthy dogs were given oral cyclosporine (10 mg/kg every 12 hr) for 1 week, with samples collected for measurement of cytokine gene expression prior to treatment, and on the last day of therapy. Cyclosporine was then discontinued, and samples were collected daily for an additional 7 days. Results revealed that there was a significant difference in cytokine expression when comparing pre‐treatment and immediate post‐treatment values, corresponding to marked suppression of T‐cell function. There was no significant difference between pre‐treatment values for either cytokine when compared with any day during the recovery period. Cytokine expression, evaluated as a percentage of pre‐treatment baseline samples, demonstrated progressing return of T‐cell function after drug cessation, with full recovery seen in all dogs by Day 4 of the recovery period.
Collapse
Affiliation(s)
- Lakshmi Narayanan
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Charlee Mulligan
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Lisa Durso
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Brittany Thames
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - John Thomason
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Claire Fellman
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Andrew Mackin
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Robert Wills
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Todd Archer
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| |
Collapse
|