1
|
Li C, Fan A, Liu Z, Wang G, Zhou L, Zhang H, Huang L, Zhang J, Zhang Z, Zhang Y. Prevalence, Time of Infection, and Diversity of Porcine Reproductive and Respiratory Syndrome Virus in China. Viruses 2024; 16:774. [PMID: 38793655 PMCID: PMC11125865 DOI: 10.3390/v16050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRVS) is a major swine viral pathogen that affects the pig industry worldwide. Control of early PRRSV infection is essential, and different types of PRRSV-positive samples can reflect the time point of PRRSV infection. This study aims to investigate the epidemiological characteristics of PRRSV in China from Q4 2021 to Q4 2022, which will be beneficial for porcine reproductive and respiratory syndrome virus (PRRSV)control in the swine production industry in the future. A total of 7518 samples (of processing fluid, weaning serum, and oral fluid) were collected from 100 intensive pig farms in 21 provinces, which covered all five pig production regions in China, on a quarterly basis starting from the fourth quarter of 2021 and ending on the fourth quarter of 2022. Independent of sample type, 32.1% (2416/7518) of the total samples were PCR-positive for PRRSV, including 73.6% (1780/2416) samples that were positive for wild PRRSV, and the remaining were positive for PRRSV vaccine strains. On the basis of the time of infection, 58.9% suckling piglets (processing fluid) and 30.8% weaning piglets (weaning serum) showed PRRSV infection at an early stage (approximately 90% of the farms). The sequencing analysis results indicate a wide range of diverse PRRSV wild strains in China, with lineage 1 as the dominant strain. Our study clearly demonstrates the prevalence, infection stage, and diversity of PRRSV in China. This study provides useful data for the epidemiological understanding of PRRSV, which can contribute to the strategic and systematic prevention and control of PRRSV in China.
Collapse
Affiliation(s)
- Chaosi Li
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai 200040, China; (C.L.); (L.H.)
| | - Aihua Fan
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai 200040, China; (C.L.); (L.H.)
| | - Zhicheng Liu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Z.L.); (J.Z.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Gang Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China;
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China;
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China;
| | - Lv Huang
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd., Shanghai 200040, China; (C.L.); (L.H.)
| | - Jianfeng Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Z.L.); (J.Z.)
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212000, China;
| | - Yan Zhang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, China;
| |
Collapse
|
2
|
Wu Q, Han Y, Wu X, Wang Y, Su Q, Shen Y, Guan K, Michal JJ, Jiang Z, Liu B, Zhou X. Integrated time-series transcriptomic and metabolomic analyses reveal different inflammatory and adaptive immune responses contributing to host resistance to PRRSV. Front Immunol 2022; 13:960709. [PMID: 36341362 PMCID: PMC9631489 DOI: 10.3389/fimmu.2022.960709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious disease that affects the global pig industry. To understand mechanisms of susceptibility/resistance to PRRSV, this study profiled the time-serial white blood cells transcriptomic and serum metabolomic responses to PRRSV in piglets from a crossbred population of PRRSV-resistant Tongcheng pigs and PRRSV-susceptible Large White pigs. Gene set enrichment analysis (GSEA) illustrated that PRRSV infection up-regulated the expression levels of marker genes of dendritic cells, monocytes and neutrophils and inflammatory response, but down-regulated T cells, B cells and NK cells markers. CIBERSORT analysis confirmed the higher T cells proportion in resistant pigs during PRRSV infection. Resistant pigs showed a significantly higher level of T cell activation and lower expression levels of monocyte surface signatures post infection than susceptible pigs, corresponding to more severe suppression of T cell immunity and inflammatory response in susceptible pigs. Differentially expressed genes between resistant/susceptible pigs during the course of infection were significantly enriched in oxidative stress, innate immunity and humoral immunity, cell cycle, biotic stimulated cellular response, wounding response and behavior related pathways. Fourteen of these genes were distributed in 5 different QTL regions associated with PRRSV-related traits. Chemokine CXCL10 levels post PRRSV infection were differentially expressed between resistant pigs and susceptible pigs and can be a promising marker for susceptibility/resistance to PRRSV. Furthermore, the metabolomics dataset indicated differences in amino acid pathways and lipid metabolism between pre-infection/post-infection and resistant/susceptible pigs. The majority of metabolites levels were also down-regulated after PRRSV infection and were significantly positively correlated to the expression levels of marker genes in adaptive immune response. The integration of transcriptome and metabolome revealed concerted molecular events triggered by the infection, notably involving inflammatory response, adaptive immunity and G protein-coupled receptor downstream signaling. This study has increased our knowledge of the immune response differences induced by PRRSV infection and susceptibility differences at the transcriptomic and metabolomic levels, providing the basis for the PRRSV resistance mechanism and effective PRRS control.
Collapse
Affiliation(s)
- Qingqing Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yu Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xianmeng Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qiuju Su
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yang Shen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kaifeng Guan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jennifer J. Michal
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiang Zhou, ; Bang Liu,
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiang Zhou, ; Bang Liu,
| |
Collapse
|
3
|
The efficacy of a modified live virus vaccine Fostera® PRRS against heterologous strains of porcine reproductive and respiratory syndrome virus: A meta-analysis. Res Vet Sci 2022; 150:170-178. [DOI: 10.1016/j.rvsc.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022]
|
4
|
Fleming DS, Miller LC, Li J, Van Geelen A, Sang Y. Transcriptomic Analysis of Liver Indicates Novel Vaccine to Porcine Reproductive and Respiratory Virus Promotes Homeostasis in T-Cell and Inflammatory Immune Responses Compared to a Commercial Vaccine in Pigs. Front Vet Sci 2022; 9:791034. [PMID: 35400088 PMCID: PMC8987227 DOI: 10.3389/fvets.2022.791034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/14/2022] [Indexed: 12/01/2022] Open
Abstract
One of the largest impediments for commercial swine production is the presence of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), a devastating RNA viral infection that is responsible for over $1 billion in loss in the U.S. annually. The challenge with combating PRRSV is a combination of the effect of an extraordinary rate of mutation, the ability to infect macrophages, and subversion of host immune response through a series of actions leading to both immunomodulation and immune evasion. Currently there are a handful of commercial vaccines on the market that have been shown to be effective against homologous infections, but struggle against heterologous or mixed strain infections. However, vaccination is the current best strategy for combating PRRSV, making research into new vaccine technology key. To address these issues with PRRSV and host antiviral functions a novel modified-live vaccine (MLV) able to stimulate known antiviral interferons was created and examined for its ability to potentiate effective immunity and better protection. Here, we examine gene expression in the liver of pigs vaccinated with our novel vaccine, given the liver's large role in antiviral responses and vaccine metabolism. Our study indicated that pigs administered the novel vaccine experience homeostatic gene expression consistent with less inflammation and T-cell depletion risk than pigs administered the commercial vaccine.
Collapse
Affiliation(s)
- Damarius S. Fleming
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Disease Laboratory, Beltsville, MD, United States
| | - Laura C. Miller
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| | - Jiuyi Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Albert Van Geelen
- USDA, National Animal Disease Center, Center for Veterinary Biologics: Policy, Evaluation and Licensing, Ames, IA, United States
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
5
|
Li C, Liu Z, Chen K, Qian J, Hu Y, Fang S, Sun Z, Zhang C, Huang L, Zhang J, Huang N. Efficacy of the Synergy Between Live-Attenuated and Inactivated PRRSV Vaccines Against a NADC30-Like Strain of Porcine Reproductive and Respiratory Syndrome Virus in 4-Week Piglets. Front Vet Sci 2022; 9:812040. [PMID: 35187144 PMCID: PMC8847452 DOI: 10.3389/fvets.2022.812040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
The NADC30-like strain of porcine reproductive and respiratory syndrome virus (PRRSV) is a novel strain responsible for substantial economic losses to swine production in China. This study evaluated the cross-protective efficacy of the synergy between live-attenuated and inactivated PRRSV vaccines compared with a single vaccination with PRRS modified-live virus (MLV) vaccine against challenge with NADC30-like strain, v2016/ZJ/09-03. A total of 45 PRRSV free pigs were randomly divided into five groups: (1) strict control (SC); (2) positive control (PC); (3) single MLV dose (M1); (4) primed intramuscularly with MLV and boosted with killed vaccine 3 weeks later (MK1); and (5) intramuscular prime MLV boosted subcutaneously with killed vaccine B 3 weeks later (MK2). Serological tests in MK groups revealed no differences in both anti-N and anti-GP protein antibodies compared with M1 group, and failed to provide further protection against clinical signs, virus shedding, and gross lesions. However, the viremic titer, gross lung lesions, and average daily weight gain were significantly improved in the MLV vaccinated groups, suggesting that MLV provides substantial cross-protection against the NADC30-like virus. Thus, as a booster, the killed vaccine confers minimal additional protection in NADC30-like infected piglets.
Collapse
Affiliation(s)
- Chaosi Li
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Zhicheng Liu
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kai Chen
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Jie Qian
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Yulong Hu
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Shuhe Fang
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Zhi Sun
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Shanghai, China
| | - Chunhong Zhang
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lv Huang
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Jianfeng Zhang
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nian Huang
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| |
Collapse
|
6
|
Martínez-Lobo FJ, Díez-Fuertes F, Simarro I, Castro JM, Prieto C. The Ability of Porcine Reproductive and Respiratory Syndrome Virus Isolates to Induce Broadly Reactive Neutralizing Antibodies Correlates With In Vivo Protection. Front Immunol 2021; 12:691145. [PMID: 34381448 PMCID: PMC8350477 DOI: 10.3389/fimmu.2021.691145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 12/02/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is considered one of the most relevant diseases of swine. The condition is caused by PRRS virus (PRRSV), an extremely variable virus of the Arteriviridae family. Its heterogeneity can be responsible, at least partially, of the poor cross-protection observed between PRRSV isolates. Neutralizing antibodies (NAs), known to play a role in protection, usually poorly recognize heterologous PRRSV isolates, indicating that most NAs are strain-specific. However, some pigs develop broadly reactive NAs able to recognize a wide range of heterologous isolates. The aim of this study was to determine whether PRRSV isolates that induce broadly reactive NAs as determined in vitro are able to confer a better protection in vivo. For this purpose two in vivo experiments were performed. Initially, 40 pigs were immunized with a PRRSV-1 isolate known to induce broadly reactive NAs and 24 additional pigs were used as controls. On day 70 after immunization, the pigs were divided into eight groups composed by five immunized and three control pigs and exposed to one of the eight different heterologous PRRSV isolates used for the challenge. In the second experiment, the same experimental design was followed but the pigs were immunized with a PRRSV-1 isolate, which is known to generate mostly strain-specific NAs. Virological parameters, specifically viremia and the presence of challenge virus in tonsils, were used to determine protection. In the first experiment, sterilizing immunity was obtained in three groups, prevention of viremia was observed in two additional groups, although the challenge virus was detected occasionally in the tonsils of immunized pigs, and partial protection, understood as a reduction in the frequency of viremia compared with controls, was recorded in the remaining three groups. On the contrary, only partial protection was observed in all groups in the second experiment. The results obtained in this study confirm that PRRSV-1 isolates differ in their ability to induce cross-reactive NAs and, although other components of the immune response might have contributed to protection, pigs with cross-reactive NAs at the time of challenge exhibited better protection, indicating that broadly reactive NAs might play a role in protection against heterologous reinfections.
Collapse
Affiliation(s)
- Francisco Javier Martínez-Lobo
- Animal Science Department, School of Agrifood and Forestry Science and Engineering, University of Lleida, Lleida, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Díez-Fuertes
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain.,AIDS Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Isabel Simarro
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José M Castro
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cinta Prieto
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Oh T, Park S, Cho H, Yang S, Ham HJ, Chae C. Comparative evaluation of 4 commercial modified-live porcine reproductive and respiratory syndrome virus (PRRSV) vaccines against heterologous dual Korean PRRSV-1 and PRRSV-2 challenge. Vet Med Sci 2020; 6:846-853. [PMID: 32437071 PMCID: PMC7738743 DOI: 10.1002/vms3.282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Four commercial porcine reproductive and respiratory syndrome virus (PRRSV) modified-live vaccines (MLV) was compared to protect growing pigs against dual challenge of PRRSV-1 and PRRSV-2. METHODS Two of the vaccines were based on PRRSV-1, and two on PRRSV-2. A total of 72 PRRSV-naïve pigs were divided into six groups (12 pigs/group). RESULTS Two PRRSV-1 MLV-vaccinated and two PRRSV-2 MLV-vaccinated groups reduced significantly (p < .05) genomic copies of PRRSV-1 in their sera compared to the unvaccinated challenged group. Two PRRSV-2 MLV-vaccinated groups reduced significantly (p < .05) fewer genomic copies of PRRSV-2 in their sera whereas two PRRSV-1 MLV-vaccinated groups were unable to reduce genomic copies of PRRSV-2 compared to unvaccinated challenged groups. Two PRRSV-1 MLV-vaccinated groups induced a stronger PRRSV-1 specific IFN-γ-SC response, while two PRRSV-2 MLV-vaccinated groups induced a stronger PRRSV-2 specific IFN-γ-SC response. Two PRRSV-2 MLV-vaccinated groups showed significantly (p < .05) lower mean macroscopic and microscopic lung lesion scores compared to two PRRSV-1 MLV-vaccinated groups. CONCLUSIONS These data demonstrated that two PRRSV-2 vaccines were efficacious and exhibited similar protection while, two PRRSV-1 vaccines were largely ineffective against the dual challenge.
Collapse
Affiliation(s)
- Taehwan Oh
- College of Veterinary MedicineDepartment of Veterinary PathologySeoul National UniversityGwanak‐guSeoulRepublic of Korea
| | - Su‐Jin Park
- College of Veterinary MedicineDepartment of Veterinary PathologySeoul National UniversityGwanak‐guSeoulRepublic of Korea
| | - Hyejean Cho
- College of Veterinary MedicineDepartment of Veterinary PathologySeoul National UniversityGwanak‐guSeoulRepublic of Korea
| | - Siyeon Yang
- College of Veterinary MedicineDepartment of Veterinary PathologySeoul National UniversityGwanak‐guSeoulRepublic of Korea
| | - Hee Jin Ham
- College of Liberal ArtsAnyang UniversityAnyang‐siRepublic of Korea
| | - Chanhee Chae
- College of Veterinary MedicineDepartment of Veterinary PathologySeoul National UniversityGwanak‐guSeoulRepublic of Korea
| |
Collapse
|