1
|
Andersa KN, Tamiru M, Teka TA, Ali IM, Chane KT, Regasa TK, Ahmed EH. Proximate composition, some phytochemical constituents, potential uses, and safety of neem leaf flour: A review. Food Sci Nutr 2024; 12:6929-6937. [PMID: 39479641 PMCID: PMC11521714 DOI: 10.1002/fsn3.4336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 11/02/2024] Open
Abstract
Globally, there is a growing concern about avoiding using artificial compounds in food ingredients, food preservation, and packaging. Among the parts of the neem tree, leaf flour is one of the most commonly used parts in some countries for food and medicinal purposes and is known for containing several nutrients and phytochemicals. In this review, the proximate composition, phytochemical constituents, potential uses, and safety issues of neem leaf flour are discussed. Neem leaf flour contains high levels of crude protein, total carbohydrate, crude fat, and fiber and moderate amounts of crude fat and ash. In addition, it contains numerous health-promoting phytochemical constituents. Some phytochemicals, such as ascorbic acid, saponin, total alkaloids, carotenoids, total phenols, total flavonoids, and the total antioxidant capacity of neem leaf flour, have been critically discussed. Neem leaf flour has various potential applications in food science, such as preserving foods and preparing food packaging materials. However, researchers' perspectives on its safety are not yet in agreement. In general, the proximate compositions, phytochemical constituents, potential uses, and safety issues of neem leaf flour were compiled and critically reviewed. In addition, research is needed to identify all the toxic substances found in neem leaves and develop methods to eliminate them that hinder their use for various purposes in food. Further research is needed to develop food products from neem leaf flour and evaluate its nutritional value and phytochemical constituents.
Collapse
Affiliation(s)
- Kumsa Negasa Andersa
- Department of Post‐Harvest Management, College of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Metekia Tamiru
- Department of Animal Science, College of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Tilahun A. Teka
- Department of Post‐Harvest Management, College of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Ibrahim Mohammed Ali
- Department of Plant Science, College of Dryland AgricultureSamara UniversitySamaraEthiopia
| | - Kasech Tibebu Chane
- Department of Post‐Harvest Management, College of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Tolina Kebede Regasa
- Department of Agro Food ProcessingHoleta Polytechnic College, Holeta CollegeHoletaEthiopia
| | - Endris Hussen Ahmed
- Department of Plant Science, College of Dryland AgricultureSamara UniversitySamaraEthiopia
| |
Collapse
|
2
|
Mahmoud GAE, Rashed NM, El-Ganainy SM, Salem SH. Unveiling the Neem ( Azadirachta indica) Effects on Biofilm Formation of Food-Borne Bacteria and the Potential Mechanism Using a Molecular Docking Approach. PLANTS (BASEL, SWITZERLAND) 2024; 13:2669. [PMID: 39339644 PMCID: PMC11434743 DOI: 10.3390/plants13182669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Biofilms currently represent the most prevalent bacterial lifestyle, enabling them to resist environmental stress and antibacterial drugs. Natural antibacterial agents could be a safe solution for controlling bacterial biofilms in food industries without affecting human health and environmental safety. A methanolic extract of Azadirachta indica (neem) leaves was prepared and analyzed using gas chromatography-mass spectrometry for the identification of its phytochemical constituents. Four food-borne bacterial pathogens (Bacillus cereus, Novosphingobium aromaticivorans, Klebsiella pneumoniae, and Serratia marcescens) were tested for biofilm formation qualitatively and quantitatively. The antibacterial and antibiofilm properties of the extract were estimated using liquid cultures and a microtiter plate assay. The biofilm inhibition mechanisms were investigated using a light microscope and molecular docking technique. The methanolic extract contained 45 identified compounds, including fatty acids, ester, phenols, flavonoids, terpenes, steroids, and antioxidants with antimicrobial, anticancer, and anti-inflammatory properties. Substantial antibacterial activity in relation to the extract was recorded, especially at 100 μg/mL against K. pneumoniae and S. marcescens. The extract inhibited biofilm formation at 100 μg/mL by 83.83% (S. marcescens), 73.12% (K. pneumoniae), and 54.4% (N. aromaticivorans). The results indicate efficient biofilm formation by the Gram-negative bacteria S. marcescens, K. pneumoniae, and N. aromaticivorans, giving 0.74, 0.292, and 0.219 OD at 595 nm, respectively, while B. cereus was found to have a low biofilm formation potential, i.e., 0.14 OD at 595 nm. The light microscope technique shows the antibiofilm activities with the biofilm almost disappearing at 75 μg/mL and 100 μg/mL concentrations. This antibiofilm property was attributed to DNA gyrase inhibition as illustrated by the molecular docking approach.
Collapse
Affiliation(s)
| | - Nahed M Rashed
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Horticulture Department, Faculty of Agriculture, Damietta University, Damietta 34519, Egypt
| | - Sherif M El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Shimaa H Salem
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
3
|
Sindhusha VB, Rajasekar A. Formulation of Neem and Echinacea Gel for Oral Health Along With the Evaluation of Antimicrobial, Cytotoxic, Anti-inflammatory, and Free Radical Scavenging Activity: An In Vitro Study. Cureus 2024; 16:e63631. [PMID: 39092399 PMCID: PMC11291991 DOI: 10.7759/cureus.63631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Background Herbs have been used in medical practice for centuries and continue to play a significant role in modern complementary and alternative medicine. Phytochemicals in these herbs possess strong antioxidant and anti-inflammatory properties, which are beneficial in targeting oral health issues, such as dental plaque, gingivitis, and oral microbial infections. As research progresses, the challenge remains to translate these natural compounds into safe, effective, and accessible treatments for a wide range of diseases. Aim The aim of this research was to formulate the neem and echinacea gel along with the evaluation of antimicrobial, anti-inflammatory, free-radical scavenging activity, and cytotoxic potential. Materials and methods The neem and echinacea gel was prepared using a concentrated powdered mixture of neem and echinacea (5 grams each) to which 100 ml of distilled water was added, and the mixture was boiled for 30 minutes at 60°C. The 10 ml concentrate was mixed with 20 ml of a carbopol and carboxymethyl cellulose (CMC) mixture and mixed thoroughly, which resulted in neem and echinacea gel. Then, the antimicrobial, anti-inflammatory, cytotoxic potential, and free-radical scavenging activity of the gel were evaluated. The data obtained were statistically analyzed with the help of a paired t-test, where a p-value of less than 0.05 was considered statistically significant. Results The antimicrobial assay showed that neem and echinacea gel at the concentration of 100 micrograms showed a greater zone of inhibition against Staphylococcus aureus (3.15 ± 0.26), Streptococcus mutans (2.48 ± 0.45), Enterococcus faecalis (2.89 ± 0.15), and Candida albicans (4.28 ± 0.87). The cytotoxic test revealed that even at an 80 µg concentration of the extract, more than 70% of the nauplii were vital, which indicated that the gel was not cytotoxic. The highest anti-inflammatory activity (78.39 ± 1.82) of the gel was seen at 50 micrograms when compared with diclofenac sodium (73.16 ± 1.80). The free radical scavenging activity showed that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) absorbance of the neem and echinacea extract was highest at 50 micrograms. Conclusion The combination of neem and echinacea extract-based gel possessed high antimicrobial and anti-inflammatory activity when compared with standard drugs, such as amoxicillin and diclofenac sodium. The antioxidant activity of the gel was equal to butylated hydroxytoluene (BHT), and also the gel has a low cytotoxic potential even at its higher concentrations. Hence, the gel can be used as a natural remedy with minimal side effects, making it a valuable alternative to chemical agents.
Collapse
Affiliation(s)
- Vyshnavi B Sindhusha
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Arvina Rajasekar
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
4
|
Kordi M, Talkhounche PG, Vahedi H, Farrokhi N, Tabarzad M. Heterologous Production of Antimicrobial Peptides: Notes to Consider. Protein J 2024; 43:129-158. [PMID: 38180586 DOI: 10.1007/s10930-023-10174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called "superbugs", the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.
Collapse
Affiliation(s)
- Masoumeh Kordi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Helia Vahedi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Quddus F, Shah A, Nisar J, Zia MA, Munir S. Neem plant extract-assisted synthesis of CeO 2 nanoparticles for photocatalytic degradation of piroxicam and naproxen. RSC Adv 2023; 13:28121-28130. [PMID: 37746332 PMCID: PMC10517110 DOI: 10.1039/d3ra04185a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Piroxicam and naproxen are well-known non-steroidal anti-inflammatory drugs that are frequently detected in aquatic environments due to their widespread usage and improper disposal practices. This research investigates the photocatalytic degradation of these drugs by using CeO2 nanoparticles. The nanoparticles were synthesized by using Azadirachta indica plant extract and were characterized through various characterization techniques such as UV-visible spectroscopy, FTIR spectroscopy, SEM, EDX, and XRD. The photocatalytic degradation of piroxicam and naproxen using CeO2 nanoparticles led to the efficient removal of these pharmaceutical drugs in a short time duration with photodegradation efficiencies of 89% and 97% for naproxen and piroxicam, respectively. The photodegradation reaction was found to follow pseudo-order first-order kinetics. The recyclability of the catalyst was also studied for up to six cycles where the degradation efficiency was maintained at 100% till the 2nd cycle and was decreased by 11 and 13% for piroxicam and naproxen respectively after the 6th cycle. The current work focused on the achievement of sustainable development goals (SDGs) for water purification via environmentally benign nanoparticles to remedy water pollution as it is the most prevalent issue in developed and underdeveloped countries throughout the world.
Collapse
Affiliation(s)
- Farah Quddus
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Jan Nisar
- National Centre of Excellence in Physical Chemistry, University of Peshawar Peshawar 25120 Pakistan
| | | | - Shamsa Munir
- School of Applied Sciences and Humanities, National University of Technology Islamabad 44000 Pakistan
| |
Collapse
|
6
|
Manzoor MA, Shah IH, Ali Sabir I, Ahmad A, Albasher G, Dar AA, Altaf MA, Shakoor A. Environmental sustainable: Biogenic copper oxide nanoparticles as nano-pesticides for investigating bioactivities against phytopathogens. ENVIRONMENTAL RESEARCH 2023; 231:115941. [PMID: 37100366 DOI: 10.1016/j.envres.2023.115941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are of interest in human physiopathology and have been extensively studied for their effects on the endocrine system. Research also focuses on the environmental impact of EDCs, including pesticides and engineered nanoparticles, and their toxicity to organisms. Green nanofabrication has surfaced as an environmentally conscious and sustainable approach to manufacture antimicrobial agents that can effectively manage phytopathogens. In this study, we examined the current understanding of the pathogenic activities of Azadirachta indica aqueous formulated green synthesized copper oxide nanoparticles (CuONPs) against phytopathogens. The CuONPs were analyzed and studied using a range of analytical and microscopic techniques, such as UV-visible spectrophotometer, Transmission electron microscope (TEM), Scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FTIR). The XRD spectral results revealed that the particles had a high crystal size, with an average size ranging from 40 to 100 nm. TEM and SEM images were utilized to verify the size and shape of the CuONPs, revealing that they varied between 20 and 80 nm. The existence of potential functional molecules involved in the reduction of the nanoparticles was confirmed by FTIR spectra and UV analysis. Biogenically synthesized CuONPs revealed significantly enhanced antimicrobial activities at 100 mg/L concentration in vitro by the biological method. The synthesized CuONPs at 500 μg/ml had a strong antioxidant activity which was examined through the free radicle scavenging method. Overall results of the green synthesized CuONPs have demonstrated significant synergetic effects in biological activities which can play a crucial impact in plant pathology against numerous phytopathogens.
Collapse
Affiliation(s)
- Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Irfan Ali Sabir
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Awais Shakoor
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
7
|
Rajasekharan R, Bahuleyan AK, Madhavan A, Philip E, Sindhu R, Binod P, Kumar Awasthi M, Pandey A. Neem extract-blended nanocellulose derived from jackfruit peel for antibacterial packagings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8977-8986. [PMID: 35507222 DOI: 10.1007/s11356-022-20382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
The use of jackfruit peel as a source for natural and fully biodegradable "nanocellulose" (NC) for the production of bioplastics with Azadirachta indica (A. indica) extracts and polyethylene glycol (PEG) for the antibacterial properties is investigated. The characterization of the biocomposite using FT-IR and WXRD was reported. The physicochemical properties including thickness, moisture content, water holding capacity, swelling, porosity, and biodegradability in soil were investigated. The incorporation of A. indica extract revealed an increased shelf life due to the strong antibacterial activity, and these biocomposites were degraded in soil within 60 days after the end use without any harm to the environment. Jackfruit-derived nanocellulose film blended with A. indica extract exhibited strong antibacterial activity against gram-positive and gram-negative food spoilage bacteria. Disc diffusion assay, live/dead assay, and CFU analysis confirmed the antibacterial property of the synthesized film. Moreover, the films clearly prevented the biofilm formation in bacteria. Thus, the developed bioplastics can be utilized as appropriate substitutes to food packaging materials and also for biomedical applications such as wound dressings.
Collapse
Affiliation(s)
- Reshmy Rajasekharan
- Department of Science and Humanities, Providence College of Engineering, Chengannur, 689 122, Kerala, India.
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India.
| | | | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, 695 014, Kerala, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712 100, Shaanxi, China
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Uttar Pradesh, Lucknow, 226 029, India
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226 001, India
| |
Collapse
|
8
|
Sanjeev NO, Vallabha MS, Valsan AE. Adsorptive removal of pharmaceutically active compounds from multicomponent system using Azadirachta indica induced zinc oxide nanoparticles: analysis of competitive and cooperative adsorption. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:284-303. [PMID: 36640038 DOI: 10.2166/wst.2022.428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this research, zinc oxide (ZnO) nanoparticles synthesized using neem leaf (Azadirachta indica) extract were used as an adsorbent for removing two widely used pharmaceutical compounds acetaminophen (AMP) and sulfadiazine (SDZ). The synthesized ZnO nanoparticles were characterized using SEM-EDS, FTIR, TEM, BET, and XRD analysis. The synthesized ZnO nanoparticles were found to be in the size range of 10 nm with a surface area of 48.551 m2/g. The adsorptive performance of ZnO nanoparticles in both mono-component (MoS) and multi-component system (MuS) was investigated under various operational parameters viz. contact time, temperature, pH, concentration of pharmaceutical compound and ZnO nanoparticles dose. It was observed that the maximum adsorption capacity of ZnO nanoparticles was 7.87 mg/g and 7.77 mg/g for AMP and SDZ, respectively, under the optimum conditions of 7 pH and 2 g/L adsorbent dosage. The experimental data best-fitted with the pseudo-second-order model and Langmuir model, indicating monolayer chemisorption. Further investigation on removal of AMP and SDZ from multicomponent system was modelled using a Langmuir competitive model. The desorption study has shown 25.28% and 22.4% removal of AMP and SDZ from the surface of ZnO nanoparticles. In general, green synthesized ZnO nanoparticles can be utilized effectively as adsorbent for removal of pharmaceutically active compounds from wastewater.
Collapse
Affiliation(s)
- Nayanathara O Sanjeev
- Department of Civil Engineering, National Institute of Technology, Calicut, Kerala, India E-mail:
| | | | - Aswathy E Valsan
- Department of Civil Engineering, National Institute of Technology, Calicut, Kerala, India E-mail:
| |
Collapse
|
9
|
Altayb HN, Yassin NF, Hosawi S, Kazmi I. In-vitro and in-silico antibacterial activity of Azadirachta indica (Neem), methanolic extract, and identification of Beta.d-Mannofuranoside as a promising antibacterial agent. BMC PLANT BIOLOGY 2022; 22:262. [PMID: 35610569 PMCID: PMC9131563 DOI: 10.1186/s12870-022-03650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Antimicrobial resistance became the leading cause of death globally, resulting in an urgent need for the discovery of new, safe, and efficient antibacterial agents. Compounds derived from plants can provide an essential source of new types of antibiotics. A. indica (neem) plant is rich in antimicrobial phytoconstituents. Here, we used the sensitive and reliable gas chromatography-mass spectrometry (GC-MS) approach, for the quantitative and quantitative determination of bioactive constituents in methanolic extract of neem leaves grown in Sudan. Subsequently, antibacterial activity, pharmacokinetic and toxicological properties were utilized using in silico tools. RESULTS The methanolic extract of neem leaves was found to have antibacterial activity against all pathogenic and reference strains. The lowest concentration reported with bacterial activity was 3.125%, which showed zones of inhibition of more than 10 mm on P. aeruginosa, K. pneumoniae, Citrobacter spp., and E. coli, and 8 mm on Proteus spp., E. faecalis, S. epidermidis, and the pathogenic S. aureus. GC-MS analysis revealed the presence of 30 chemical compounds, including fatty acids (11), hydrocarbons (9), pyridine derivatives (2), aldehydes (2), phenol group (1), aromatic substances (1), coumarins (1), and monoterpenes (1). In silico and in vitro tools revealed that.beta.d-Mannofuranoside, O-geranyl was the most active compound on different bacterial proteins. It showed the best docking energy (-8 kcal/mol) and best stability with different bacterial essential proteins during molecular dynamic (MD) simulation. It also had a good minimum inhibitory concentration (MIC) (32 μg/ml and 64 μg/ml) against S. aureus (ATCC 25,923) and E. coli (ATCC 25,922) respectively. CONCLUSION The methanolic extract of A. indica leaves possessed strong antibacterial activity against different types of bacteria. Beta.d-Mannofuranoside, O-geranyl was the most active compound and it passed 5 rules of drug-likeness properties. It could therefore be further processed for animal testing and clinical trials for its possible use as an antibacterial agent with commercial values.
Collapse
Affiliation(s)
- Hisham N Altayb
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Nijood F Yassin
- Department Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Salman Hosawi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Imran Kazmi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Liu ZG, Dong JJ, Ke XL, Yi MM, Cao JM, Gao FY, Wang M, Ye X, Lu MX. Isolation, identification, and pathogenic characteristics of Nocardia seriolae in largemouth bass Micropterus salmoides. DISEASES OF AQUATIC ORGANISMS 2022; 149:33-45. [PMID: 35510819 DOI: 10.3354/dao03659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The largemouth bass Micropterus salmoides is an important freshwater aquaculture fish in China. Recently, largemouth bass at a fish farm in Guangdong province experienced an outbreak of a serious ulcer disease. As part of the investigations conducted to identify the aetiology and identify potentially effective control measures, we isolated a pathogenic bacterium (NK-1 strain) from the diseased fish. It was identified as Nocardia seriolae through morphological observation, physiological and biochemical analysis, and molecular identification, and its pathogenicity was verified by experimental infection. Pathological changes in the diseased fish included granulomatous lesions in the liver and spleen, destruction of renal tubules, necrosis of intestinal epithelial cells, infiltration of inflammatory cells in the brain, vacuolation of cells, and swelling and cracking of the mitochondria and endoplasmic reticulum. Bacterial detection using qPCR showed that the spleen and intestine were the main organs targeted by N. seriolae. The mortality of largemouth bass experimentally infected with N. seriolae at 21°C was significantly lower than that in fish infected at higher temperatures between 24 and 33°C; there were no significant differences in the levels of mortality at these higher temperatures. The level of mortality of largemouth bass infected with N. seriolae was lowest at a neutral water pH of 7 but increased significantly at higher and lower pH. Of the tested Chinese herbal medicines, Chinese sumac Galla chinensis and Chinese skullcap Scutellaria baicalensis exhibited the best antibacterial effects. This study lays a foundation for the clinical diagnosis and scientific control of ulcer disease in largemouth bass.
Collapse
Affiliation(s)
- Zhi-Gang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abdalhamed AM, Ghazy AA, Ibrahim ES, Arafa AA, Zeedan GSG. Therapeutic effect of biosynthetic gold nanoparticles on multidrug-resistant Escherichia coli and Salmonella species isolated from ruminants. Vet World 2021; 14:3200-3210. [PMID: 35153413 PMCID: PMC8829404 DOI: 10.14202/vetworld.2021.3200-3210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Background and Aim: Multidrug-resistant (MDR) pathogenic microorganisms have become a global problem in ruminants as a result of the intensive use of antibiotics, causing the development of resistance among gut microbiota. The antibiotic-resistant microorganisms can be transferred from diseased animals to humans. This study aimed to determine the prevalence of MDR Escherichia coli and Salmonella spp. isolated from cattle, buffaloes, sheep, and goats suffering from respiratory signs, diarrhea, and mastitis and to screen the antibiotic sensitivity of selected isolated bacteria. It also detected antibiotic-resistance genes by polymerase chain reaction (PCR), produced green gold nanoparticles (AuNPs) using plant extracts (Artemisia herba-alba and Morus alba), and evaluated the antimicrobial activities of these biosynthesized nanoparticles on selected pathogens (E. coli and Salmonella spp.). Materials and Methods: MDR E. coli and Salmonella spp. were investigated using fecal samples (n=408), nasal swabs (n=358), and milk samples (n=227) of cattle, buffaloes, sheep, and goats with or without clinical signs, including respiratory manifestations, pneumonia, diarrhea, and mastitis, from different governorates in Egypt. E. coli and Salmonella spp. were isolated and identified on selective media, which were confirmed by biochemical reactions and PCR. Antimicrobial susceptibility testing against 10 commonly used antibiotics was performed using the Kirby-Bauer disk diffusion method. Antibiotic resistance genes blaTEM, blaSHV, blaOXA, and blaCTX−M were detected by PCR. The antibacterial effect of the biosynthesized AuNPs was evaluated by MIC and well diffusion assay. The biosynthesized AuNPs were also characterized by ultraviolet-visible spectrophotometry and transmission electron microscopy (TEM). Results: Among all fecal samples, the prevalence of E. coli was 18.4% (183/993) and that of Salmonella spp. was 16.7% (66/408), as determined by cultural and molecular tests. All isolates of E. coli and Salmonella spp. were 100% resistant to ampicillin (AM) and amoxicillin and highly resistant to cefoxitin and AM-sulbactam. The total rate of resistance genes in E. coli was 61.2% (112/183), while that in Salmonella was 63.6% (42/66) for pathogens isolated from ruminants with respiratory manifestations, pneumonia, diarrhea, and mastitis. Among the resistance genes, blaTEM had the highest prevalence rate in E. coli (25.9%, 21/81) while blaSHV had the lowest (9.8%, 8/81) in fecal swabs. AuNPs were successfully synthesized using aqueous leaf extract of A. herba-alba and M. alba as bioreducing agents. TEM analysis showed particle size of 10-42 nm for A. herba-alba and M. alba AuNPs. The biosynthesized AuNPs showed antibacterial activity against MDR E. coli and Salmonella spp. Conclusion: Rapid and accurate diagnostic methods are the cornerstone for effective treatment to reduce the risk of antimicrobial-resistant pathogenic microorganisms. This is particularly important for overcoming the increasing rate of MDR in ruminants with respiratory manifestations, pneumonia, diarrhea, and mastitis. This can be complemented by the development of AuNPs synthesized in an environmentally friendly manner AuNPs using natural plant extracts for the treatment of antibiotic-resistant microorganisms.
Collapse
Affiliation(s)
- Abeer M. Abdalhamed
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Egypt
| | - Alaa A. Ghazy
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Egypt
| | - Eman S. Ibrahim
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Amany A. Arafa
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Gamil S. G. Zeedan
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Egypt
| |
Collapse
|