1
|
Qiao Y, Guo Y, Wang X, Zhang W, Guo W, Wang Z, Liu C. Multi-omics analysis reveals the enhancing effects of Glycyrrhiza polysaccharides on the respiratory health of broilers. Int J Biol Macromol 2024; 280:135953. [PMID: 39322162 DOI: 10.1016/j.ijbiomac.2024.135953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
This study investigated the impact of Glycyrrhiza polysaccharides (GPS) on the respiratory health of broilers. Specifically, 240 one-day-old male Arbor Acres (AA) broilers were randomly assigned to two groups: basal diet (CON) and GPS (supplemented with 150 mg/kg of Glycyrrhiza polysaccharides). When compared with the CON group, the GPS group significantly increased the broiler average daily gain, serum immunoglobulin A, immunoglobulin M, immunoglobulin G, antioxidant capacity, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and tracheal messenger RNA (mRNA) expression levels of SOD1, SOD2, and GSH-Px. The GPS group also had a reduced feed conversion ratio, reduced lung IL-1β and IL-6 levels, and upregulated tracheal mRNA expression of Occludin, Claudin1, and Mucin-2. Additionally, the GPS group had alterations in lung microbial diversity and composition. Transcriptomic and metabolomic analyses revealed the activation of the T cell receptor (TCR) signaling pathway and linoleic acid metabolic pathway in the GPS group. Correlation analysis demonstrated significant associations between differential bacteria, genes, serum metabolites, and phenotypic indicators. In conclusion, Glycyrrhiza polysaccharide supplementation positively influenced the respiratory health of broilers by modulating the lung microbiota, activating the TCR signaling pathway, and affecting the linoleic acid metabolism pathway.
Collapse
Affiliation(s)
- Yingying Qiao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinlei Wang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Weibing Guo
- Inner Mongolia Evergrand Pharmaceutical Co. LTD, Chifeng 025250, China
| | - Zhixiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Changzhong Liu
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
2
|
Su J, Xue J, Wang X, Zhang R, Zhang X, Yang Y, Chu X. Modulation of cyclophosphamide-induced immunosuppression and intestinal flora in broiler by deep eutectic solvent extracted polysaccharides of Acanthopanax senticosus. Front Vet Sci 2024; 11:1415716. [PMID: 38863455 PMCID: PMC11165361 DOI: 10.3389/fvets.2024.1415716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction The aim of this experiment was to investigate the modulation effect of Acanthopanax senticosus polysaccharide (ASPS-PD) extracted with deep eutectic solvent on cyclophosphamide-induced immunosuppression in broilers and its modulation of the gut microbiota of broilers. Methods The 108 one-day-old broilers were divided into six groups, including the control group, the Cyclophosphamide (CY) model group, the ASPS-PD control group, the ASPA-PD high and low dose groups and the Astragalus polysaccharide group. Body weight, feed intake, feed conversion ratio, and immune organ index of broilers at 7, 14, and 21 days were determined; IL-2, IFN-γ, and lgG1 levels were determined by enzyme-linked immunosorbent assay (ELISA); Broiler caeca feces were analyzed by amplification and 16S rRNA sequencing. Results The results showed that ASPS-PD can restore growth performance, increase immune organ index and improve serum cytokine levels of IL-2 and IFN-γ and immunoglobulin lgG1 levels in CY-treated broilers. The analysis of cecum flora showed that ASPS-PD can promote the proliferation of beneficial bacteria and reduce the number of harmful bacteria, regulating intestinal flora. Discussion Therefore, ASPA-PD may be a potential novel immunomodulator to ameliorate CY-induced immunosuppression and intestinal flora dysregulation in broiler.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuling Chu
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Zhao RH, Yang FX, Bai YC, Zhao JY, Hu M, Zhang XY, Dou TF, Jia JJ. Research progress on the mechanisms underlying poultry immune regulation by plant polysaccharides. Front Vet Sci 2023; 10:1175848. [PMID: 37138926 PMCID: PMC10149757 DOI: 10.3389/fvets.2023.1175848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
With the rapid development of poultry industry and the highly intensive production management, there are an increasing number of stress factors in poultry production. Excessive stress will affect their growth and development, immune function, and induce immunosuppression, susceptibility to a variety of diseases, and even death. In recent years, increasing interest has focused on natural components extracted from plants, among which plant polysaccharides have been highlighted because of their various biological activities. Plant polysaccharides are natural immunomodulators that can promote the growth of immune organs, activate immune cells and the complement system, and release cytokines. As a green feed additive, plant polysaccharides can not only relieve stress and enhance the immunity and disease resistance of poultry, but also regulate the balance of intestinal microorganisms and effectively alleviate all kinds of stress faced by poultry. This paper reviews the immunomodulatory effects and molecular mechanisms of different plant polysaccharides (Atractylodes macrocephala Koidz polysaccharide, Astragalus polysaccharides, Taishan Pinus massoniana pollen polysaccharide, and alfalfa polysaccharide) in poultry. Current research results reveal that plant polysaccharides have potential uses as therapeutic agents for poultry immune abnormalities and related diseases.
Collapse
Affiliation(s)
- Ruo-Han Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fang-Xiao Yang
- College of Animal Science and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| | - Yi-Cheng Bai
- Kunming CHIA TAI Co., Ltd., Kunming, Yunnan, China
| | - Jing-Ying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Mei Hu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xin-Yan Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Teng-Fei Dou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Teng-Fei Dou
| | - Jun-Jing Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- *Correspondence: Jun-Jing Jia
| |
Collapse
|
4
|
Wassie T, Cheng B, Zhou T, Gao L, Lu Z, Wang J, Mulu B, Taye M, Wu X. Enteromorpha polysaccharide and yeast glycoprotein mixture improves growth, antioxidant activity, serum lipid profile and regulates lipid metabolism in broiler chickens. Poult Sci 2022; 101:102064. [PMID: 36055019 PMCID: PMC9445391 DOI: 10.1016/j.psj.2022.102064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to analyze the growth performance, antioxidant activity, serum lipid profile, meat quality, and lipid metabolism of broiler chickens fed mixtures containing Enteromorpha polysaccharide (EP) and yeast glycoprotein (YG). A total of 400 one-day-old broiler chickens were randomly divided into 4 treatment groups of 10 replicates with 10 birds each replicate. The dietary treatments consisted of the control group (fed basal diet), and diets supplemented with Enteromorpha polysaccharide (EP; 400 mg/kg), yeast glycoprotein (YG;400 mg/kg), and EP+YG (200 mg/kg EP + 200 mg/kg YG). Compared with the control group, EP+YG supplementation enhanced growth performance and significantly reduced (P < 0.05) serum total triglyceride (TG), cholesterol (CHOL), and low-density lipoprotein LDL levels, and increased high-density lipoprotein (HDL) levels. Besides, birds fed EP+YG supplemented diet exhibited higher (P < 0.05) serum catalase (CAT), total antioxidant capacity, superoxide dismutase (SOD), and lower malonaldehyde (MDA) activities, and upregulated expressions of related genes, such as nuclear factor-erythroid factor 2-related factor 2 (NRF2), SOD1, and glutathione peroxidase 4 (GPX4) in the liver and intestinal tissues than the control group. Interestingly, higher (P < 0.05) serum SOD and lower MDA contents were observed in the EP+YG group than in either EP or YG group, suggesting a synergetic effect. Breast meat from EP+YG supplemented group had significantly higher redness value (a*), and lower pH24, total saturated fatty acid profiles, C14:0, C16:0, C18:0 fatty acid, atherogenic index, and thrombogenicity index than meat from the control group (P < 0.05). Furthermore, the mRNA expressions of fatty acid synthesis genes were downregulated (P < 0.05), whereas lipid β-oxidation-related genes were upregulated (P < 0.05) in the liver of the EP+YG supplemented group than in the control group. Overall, our data suggest that dietary EP+YG inclusion may have a synergistic effect, and therefore improve growth performance, regulate serum biochemical indexes, enhance antioxidant activity, and modulate lipid metabolism in broilers, indicating that it is a potential feed additive for chickens.
Collapse
Affiliation(s)
- Teketay Wassie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Bei Cheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Tiantian Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Lumin Gao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Zhuang Lu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Jianlin Wang
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, Yichang, 443003, China
| | - Bekalu Mulu
- Animal Production and Technology Department, College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mengistie Taye
- Animal Production and Technology Department, College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
5
|
Zhang B, Liu N, Hao M, Zhou J, Xie Y, He Z. Plant-Derived Polysaccharides Regulated Immune Status, Gut Health and Microbiota of Broilers: A Review. Front Vet Sci 2022; 8:791371. [PMID: 35155646 PMCID: PMC8831899 DOI: 10.3389/fvets.2021.791371] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
In modern intensive breeding system, broilers are exposed to various challenges, such as diet changes and pathological environment, which may cause the increase in the incidence rate and even death. It is necessary to take measures to prevent diseases and maintain optimal health and productivity of broilers. With the forbidden use of antibiotics in animal feed, polysaccharides from plants have attracted much attention owing to their lower toxicity, lower drug resistance, fewer side effects, and broad-spectrum antibacterial activity. It had been demonstrated that polysaccharides derived from plant exerted various functions, such as growth promotion, anti-inflammation, maintaining the integrity of intestinal mucosa, and regulation of intestinal microbiota. Therefore, the current review aimed to provide an overview of the recent advances in the impacts of plant-derived polysaccharides on anti-inflammation, gut health, and intestinal microbiota community of broilers in order to provide a reference for further study on maintaining the integrity of intestinal structure and function, and the related mechanism involved in the polysaccharide administration intervention.
Collapse
|
6
|
Wassie T, Lu Z, Duan X, Xie C, Gebeyew K, Yumei Z, Yin Y, Wu X. Dietary Enteromorpha Polysaccharide Enhances Intestinal Immune Response, Integrity, and Caecal Microbial Activity of Broiler Chickens. Front Nutr 2021; 8:783819. [PMID: 34912840 PMCID: PMC8667661 DOI: 10.3389/fnut.2021.783819] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Marine algae polysaccharides have been shown to regulate various biological activities, such as immune modulation, antioxidant, antidiabetic, and hypolipidemic. However, litter is known about the interaction of these polysaccharides with the gut microbiota. This study aimed to evaluate the effects of marine algae Enteromorpha (Ulva) prolifera polysaccharide (EP) supplementation on growth performance, immune response, and caecal microbiota of broiler chickens. A total of 200 1-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with ten replications of ten chickens in each replication. The dietary treatments consisted of the control group (fed basal diet), and EP group (received diet supplemented with 400 mg EP/kg diet). Results showed that chickens fed EP exhibited significantly higher (P < 0.05) body weight and average daily gain than the chicken-fed basal diet. In addition, significantly longer villus height, shorter crypt depth, and higher villus height to crypt depth ratio were observed in the jejunal and ileal tissues of chickens fed EP. EP supplementation upregulated the mRNA expression of NF-κB, TLR4, MyD88, IL-2, IFN-α, and IL-1β in the ileal and jejunal tissues (P < 0.05). Besides, we observed significantly higher (P < 0.05) short-chain volatile fatty acids (SCFAs) levels in the caecal contents of the EP group than in the control group. Furthermore, 16S-rRNA analysis revealed that EP supplementation altered gut microbiota and caused an abundance shift at the phylum and genus level in broiler chicken. Interestingly, we observed an association between microbiota and SCFAs production. Overall, this study demonstrated that supplementation of diet with EP promotes growth performance, improves intestinal immune response and integrity, and modulates the caecal microbiota of broiler chickens. This study highlighted the application of marine algae polysaccharides as an antibiotic alternative for chickens. Furthermore, it provides insight to develop marine algae polysaccharide-based functional food and therapeutic agent.
Collapse
Affiliation(s)
- Teketay Wassie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhuang Lu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xinyi Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Chunyan Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Kefyalew Gebeyew
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhang Yumei
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|