1
|
Di Renzo L, De Angelis ME, Torresi M, Mariani G, Pizzurro F, Mincarelli LF, Esposito E, Oliviero M, Iaccarino D, Di Nocera F, Paduano G, Lucifora G, Cammà C, Ferri N, Pomilio F. Genomic Characterization of Listeria monocytogenes and Other Listeria Species Isolated from Sea Turtles. Microorganisms 2024; 12:817. [PMID: 38674761 PMCID: PMC11052188 DOI: 10.3390/microorganisms12040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous pathogen found both in the environment and food. It can cause listeriosis in a wide range of animals as well as in humans. Investigations on presence, spread and virulence are still limited to terrestrial and human environments. Embracing the One Health Approach, investigating the presence and spread of L. monocytogenes in marine ecosystems and among wildlife, would provide us with useful information for human health. This study investigated the presence of L. monocytogenes and Listeria spp. in two species of sea turtles common in the Mediterranean Sea (Caretta caretta and Chelonia mydas). A total of one hundred and sixty-four carcasses of sea turtles (C. caretta n = 161 and C. mydas n = 3) stranded along the Abruzzo, Molise, Campania, and Calabria coasts, were collected. Brain and fecal samples were taken, enriched, and cultured for the detection of Listeria spp. From the specimens collected, strains of L. monocytogenes (brain n = 1, brain and feces n = 1, multiorgan n = 1 and feces n = 1), L. innocua (feces n = 1 and brain n = 1), and L. ivanovii (brain n = 1) were isolated. Typical colonies were isolated for Whole Genome Sequencing (WGS). Virulence genes, disinfectants/metal resistance, and antimicrobial resistance were also investigated. L. monocytogenes, L. innocua, and L. ivanovii were detected in C. caretta, whilst only L. monocytogenes and L. innocua in C. mydas. Notable among the results is the lack of significant differences in gene distribution between human and sea turtle strains. Furthermore, potentially pathogenic strains of L. monocytogenes were found in sea turtles.
Collapse
Affiliation(s)
- Ludovica Di Renzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
- Centro Studi Cetacei, 65125 Pescara, Italy
| | - Maria Elisabetta De Angelis
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Giulia Mariani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| | - Federica Pizzurro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Luana Fiorella Mincarelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Emanuele Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | - Maria Oliviero
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | - Doriana Iaccarino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | | | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Nicola Ferri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| |
Collapse
|
2
|
Pino-Vera R, Abreu-Acosta N, Foronda P. Study of Zoonotic Pathogens in Alien Population of Veiled Chameleons ( Chamaeleo calyptratus) in the Canary Islands (Spain). Animals (Basel) 2023; 13:2288. [PMID: 37508064 PMCID: PMC10376624 DOI: 10.3390/ani13142288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Veiled chameleons (Chamaeleo calyptratus) are native to the Arabian Peninsula that have been introduced as pets in many regions around the world, such as the Canary Islands (Spain). In this work, the gastrointestinal content from veiled chameleons of Gran Canaria island (Canary Islands) has been analyzed to determine the presence of zoonotic bacteria. Forty animals were analyzed using different selective culture media and PCR. The most isolated bacteria were Yersinia enterocolitica (52.4%), followed by Salmonella spp. (40.0%), with positive isolates for Salmonella Tyhpi and Salmonella Typhimurium. Pseudomonas spp. was found in 32.5% of the chameleons. More than half were positive for Pseudomonas aeruginosa. Antibiotic-resistant Staphylococcus spp. was detected in six animals plus one isolate of non-resistant Staphylococcus hominis. Multiple mycobacteria species belonging to both tuberculous and non-tuberculous complexes were identified as well as Escherichia coli carrying the stx1 and eae virulence genes with 12.5% and 7.5% prevalence, respectively. Listeria monocytogenes, Campylobacter spp., and Vibrio spp. were found in lower proportion (<5%). The results obtained indicate that veiled chameleons in Gran Canaria could be playing a role in the maintenance and dissemination of the pathogens detected, harming public health and biodiversity.
Collapse
Affiliation(s)
- Román Pino-Vera
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Department Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Programa de Doctorado Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna, Avda. Astrofísico F. Sánchez, s/n, 38203 San Cristóbal de La Laguna, Spain
| | - Néstor Abreu-Acosta
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Nertalab S.L.U., 38001 Santa Cruz de Tenerife, Spain
| | - Pilar Foronda
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Department Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
3
|
Wiktorczyk-Kapischke N, Skowron K, Wałecka-Zacharska E. Genomic and pathogenicity islands of Listeria monocytogenes-overview of selected aspects. Front Mol Biosci 2023; 10:1161486. [PMID: 37388250 PMCID: PMC10300472 DOI: 10.3389/fmolb.2023.1161486] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Listeria monocytogenes causes listeriosis, a disease characterized by a high mortality rate (up to 30%). Since the pathogen is highly tolerant to changing conditions (high and low temperature, wide pH range, low availability of nutrients), it is widespread in the environment, e.g., water, soil, or food. L. monocytogenes possess a number of genes that determine its high virulence potential, i.e., genes involved in the intracellular cycle (e.g., prfA, hly, plcA, plcB, inlA, inlB), response to stress conditions (e.g., sigB, gadA, caspD, clpB, lmo1138), biofilm formation (e.g., agr, luxS), or resistance to disinfectants (e.g., emrELm, bcrABC, mdrL). Some genes are organized into genomic and pathogenicity islands. The islands LIPI-1 and LIPI-3 contain genes related to the infectious life cycle and survival in the food processing environment, while LGI-1 and LGI-2 potentially ensure survival and durability in the production environment. Researchers constantly have been searching for new genes determining the virulence of L. monocytogenes. Understanding the virulence potential of L. monocytogenes is an important element of public health protection, as highly pathogenic strains may be associated with outbreaks and the severity of listeriosis. This review summarizes the selected aspects of L. monocytogenes genomic and pathogenicity islands, and the importance of whole genome sequencing for epidemiological purposes.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
4
|
Rubini S, Baruffaldi M, Taddei R, D'Annunzio G, Scaltriti E, Tambassi M, Menozzi I, Bondesan G, Mazzariol S, Centelleghe C, Corazzola G, Savini F, Indio V, Serraino A, Giacometti F. Loggerhead Sea Turtle as Possible Source of Transmission for Zoonotic Listeriosis in the Marine Environment. Vet Sci 2023; 10:vetsci10050344. [PMID: 37235427 DOI: 10.3390/vetsci10050344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Listeria monocytogenes is an ubiquitous pathogen isolated from different host species including fish, crustaceans, and molluscs, but it is rarely a pathogenic microorganism to marine reptiles. In particular, only two cases of fatal disseminated listeriosis have been described in the loggerhead sea turtle (Caretta caretta). In this study, we describe a lethal case of L. monocytogenes infection in a loggerhead sea turtle. The turtle was found alive, stranded on a beach in North-eastern Italy, but perished soon after being rescued. The autoptic examination revealed that heart, lung, liver, spleen, and urinary bladder were disseminated with multiple, firm, 0.1-0.5 mm sized, nodular, white-green lesions. Microscopically, these lesions corresponded with heterophilic granulomas with Gram+ bacteria within the necrotic center. Furthermore, the Ziehl-Neelsen stain was negative for acid-fast organisms. Colonies isolated from heart and liver were tested through MALDI-TOF for species identification, revealing the presence of L. monocytogenes. Whole Genome Sequencing on L. monocytogenes isolates was performed and the subsequent in silico genotyping revealed the belonging to Sequence Type 6 (ST 6); the virulence profile was evaluated, showing the presence of pathogenicity islands commonly observed in ST 6. Our results further confirm that L. monocytogenes should be posed in differential diagnosis in case of nodular lesions of loggerhead sea turtles; thus, given the zoonotic potential of the microorganism, animals should be treated with particular caution. In addition, wildlife animals can play an active role as carriers of possibly pathogenetic and virulent strains and contribute to the distribution of L. monocytogenes in the environment.
Collapse
Affiliation(s)
- Silva Rubini
- Laboratory of Ichthyopathology and Marine Biotoxins, Zooprophylactic Institute of Lombardia and Emilia Romagna Regions (IZSLER), 44124 Ferrara, Italy
| | - Matilde Baruffaldi
- Laboratory of Ichthyopathology and Marine Biotoxins, Zooprophylactic Institute of Lombardia and Emilia Romagna Regions (IZSLER), 44124 Ferrara, Italy
| | - Roberta Taddei
- Laboratory of Ichthyopathology and Marine Biotoxins, Zooprophylactic Institute of Lombardia and Emilia Romagna Regions (IZSLER), 44124 Ferrara, Italy
| | - Giulia D'Annunzio
- Laboratory of Ichthyopathology and Marine Biotoxins, Zooprophylactic Institute of Lombardia and Emilia Romagna Regions (IZSLER), 44124 Ferrara, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Zooprophylactic Institute of Lombardia and Emilia Romagna Regions (IZSLER), 43126 Parma, Italy
| | - Martina Tambassi
- Risk Analysis and Genomic Epidemiology Unit, Zooprophylactic Institute of Lombardia and Emilia Romagna Regions (IZSLER), 43126 Parma, Italy
| | - Ilaria Menozzi
- Risk Analysis and Genomic Epidemiology Unit, Zooprophylactic Institute of Lombardia and Emilia Romagna Regions (IZSLER), 43126 Parma, Italy
| | - Giulia Bondesan
- Independent Contractor Veterinary and Delta Rescue President, 44020 Ferrara, Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science-BCA, University of Padua-Agripolis, 35020 Padua, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science-BCA, University of Padua-Agripolis, 35020 Padua, Italy
| | - Giorgia Corazzola
- Department of Comparative Biomedicine and Food Science-BCA, University of Padua-Agripolis, 35020 Padua, Italy
| | - Federica Savini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| |
Collapse
|
5
|
Domínguez AV, Ledesma MC, Domínguez CI, Cisneros JM, Lepe JA, Smani Y. In Vitro and In Vivo Virulence Study of Listeria monocytogenes Isolated from the Andalusian Outbreak in 2019. Trop Med Infect Dis 2023; 8:tropicalmed8010058. [PMID: 36668965 PMCID: PMC9861481 DOI: 10.3390/tropicalmed8010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
In 2019, the biggest listeriosis outbreak by Listeria monocytogenes (Lm) in the South of Spain was reported, resulting in the death of three patients from 207 confirmed cases. One strain, belonging to clonal complex 388 (Lm CC388), has been isolated. We aimed to determine the Lm CC388 virulence in comparison with other highly virulent clones such as Lm CC1 and Lm CC4, in vitro and in vivo. Four L. monocytogenes strains (Lm CC388, Lm CC1, Lm CC4 and ATCC 19115) were used. Attachment to human lung epithelial cells (A549 cells) by these strains was characterized by adherence and invasion assays. Their cytotoxicities to A549 cells were evaluated by determining the cells viability. Their hemolysis activity was determined also. A murine intravenous infection model using these was performed to determine the concentration of bacteria in tissues and blood. Lm CC388 interaction with A549 cells is non-significantly higher than that of ATCC 19115 and Lm CC1, and lower than that of Lm CC4. Lm CC388 cytotoxicity is higher than that of ATCC 19115 and Lm CC1, and lower than that of Lm CC4. Moreover, Lm CC388 hemolysis activity is lower than that of the Lm CC4 strain, and higher than that of Lm CC1. Finally, in the murine intravenous infection model by Lm CC388, higher bacterial loads in tissues and at similar levels of Lm CC4 were observed. Although a lower rate of mortality of patients during the listeriosis outbreak in Spain in 2019 has been reported, the Lm CC388 strain has shown a greater or similar pathogenicity level in vitro and in an animal model, like Lm CC1 and Lm CC4.
Collapse
Affiliation(s)
- Andrea Vila Domínguez
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
| | - Marta Carretero Ledesma
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
| | - Carmen Infante Domínguez
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
| | - José Miguel Cisneros
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Jose A. Lepe
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222 Madrid, Spain
- Correspondence: ; Tel.: +34-955923100
| | - Younes Smani
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28222 Madrid, Spain
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, University of Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
6
|
Schoder D, Guldimann C, Märtlbauer E. Asymptomatic Carriage of Listeria monocytogenes by Animals and Humans and Its Impact on the Food Chain. Foods 2022; 11:3472. [PMID: 36360084 PMCID: PMC9654558 DOI: 10.3390/foods11213472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Humans and animals can become asymptomatic carriers of Listeria monocytogenes and introduce the pathogen into their environment with their feces. In turn, this environmental contamination can become the source of food- and feed-borne illnesses in humans and animals, with the food production chain representing a continuum between the farm environment and human populations that are susceptible to listeriosis. Here, we update a review from 2012 and summarize the current knowledge on the asymptomatic carrier statuses in humans and animals. The data on fecal shedding by species with an impact on the food chain are summarized, and the ways by which asymptomatic carriers contribute to the risk of listeriosis in humans and animals are reviewed.
Collapse
Affiliation(s)
- Dagmar Schoder
- Department of Veterinary Public Health and Food Science, Institute of Food Safety, University of Veterinary Medicine, 1210 Vienna, Austria
- Veterinarians without Borders Austria, 1210 Vienna, Austria
| | - Claudia Guldimann
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute of Food Safety and Analytics, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute of Milk Hygiene, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| |
Collapse
|