1
|
Yee DM. Neural and Computational Mechanisms of Motivation and Decision-making. J Cogn Neurosci 2024; 36:2822-2830. [PMID: 39378176 DOI: 10.1162/jocn_a_02258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Motivation is often thought to enhance adaptive decision-making by biasing actions toward rewards and away from punishment. Emerging evidence, however, points to a more nuanced view whereby motivation can both enhance and impair different aspects of decision-making. Model-based approaches have gained prominence over the past decade for developing more precise mechanistic explanations for how incentives impact goal-directed behavior. In this Special Focus, we highlight three studies that demonstrate how computational frameworks help decompose decision processes into constituent cognitive components, as well as formalize when and how motivational factors (e.g., monetary rewards) influence specific cognitive processes, decision-making strategies, and self-report measures. Finally, I conclude with a provocative suggestion based on recent advances in the field: that organisms do not merely seek to maximize the expected value of extrinsic incentives. Instead, they may be optimizing decision-making to achieve a desired internal state (e.g., homeostasis, effort, affect). Future investigation into such internal processes will be a fruitful endeavor for unlocking the cognitive, computational, and neural mechanisms of motivated decision-making.
Collapse
|
2
|
Falkenstein M, Simon MC, Mantri A, Weber B, Koban L, Plassmann H. Impact of the gut microbiome composition on social decision-making. PNAS NEXUS 2024; 3:pgae166. [PMID: 38745566 PMCID: PMC11093127 DOI: 10.1093/pnasnexus/pgae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
There is increasing evidence for the role of the gut microbiome in the regulation of socio-affective behavior in animals and clinical conditions. However, whether and how the composition of the gut microbiome may influence social decision-making in health remains unknown. Here, we tested the causal effects of a 7-week synbiotic (vs. placebo) dietary intervention on altruistic social punishment behavior in an ultimatum game. Results showed that the intervention increased participants' willingness to forgo a monetary payoff when treated unfairly. This change in social decision-making was related to changes in fasting-state serum levels of the dopamine-precursor tyrosine proposing a potential mechanistic link along the gut-microbiota-brain-behavior axis. These results improve our understanding of the bidirectional role body-brain interactions play in social decision-making and why humans at times act "irrationally" according to standard economic theory.
Collapse
Affiliation(s)
- Marie Falkenstein
- Control-Interoception-Attention Team, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
| | - Marie-Christine Simon
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of Bonn, Katzenburgweg 7, 53115 Bonn, Germany
| | - Aakash Mantri
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of Bonn, Katzenburgweg 7, 53115 Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, University of Bonn and University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University of Bonn and University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Leonie Koban
- Control-Interoception-Attention Team, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
- Marketing Area INSEAD, Boulevard de Constance, 77300 Fontainebleau, France
- Lyon Neuroscience Research Center, CNRS, INSERM, Claude Bernard University Lyon 1, CH Le Vinatier - Bâtiment 462 - Neurocampus, 95 Bd Pinel, 69500 Bron, France
| | - Hilke Plassmann
- Control-Interoception-Attention Team, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
- Marketing Area INSEAD, Boulevard de Constance, 77300 Fontainebleau, France
| |
Collapse
|
3
|
Colton E, Wilson KE, Chong TTJ, Verdejo-Garcia A. Dysfunctional decision-making in binge-eating disorder: A meta-analysis and systematic review. Neurosci Biobehav Rev 2023; 152:105250. [PMID: 37263530 DOI: 10.1016/j.neubiorev.2023.105250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
Binge-Eating Disorder (BED) involves anticipatory craving and urges, subjective loss-of-control during binge-eating episodes, and post-feeding psychological distress and guilt. Evidence indicates neurocognitive dysfunctions contribute to BED onset, maintenance, and treatment response. However, an integrated understanding of how cognitive processes underpin BED symptomology is lacking. We utilised a multi-stage decision-making model defining ten cognitive processes underpinning Preference Formation, Choice Implementation, Feedback Processing, and Flexibility/Shifting, to comprehensively review research published since 2013. We used preregistered PICOS criteria to assess 1966 articles identified from PubMed, PsycInfo, and Scopus database searches. This yielded 50 studies reporting behavioural cognitive tasks outcomes, comparing individuals with BED to controls with normal and higher weight. Meta-analyses revealed a unique profile of cognitive dysfunctions that spanned all decision-making stages. Significant deficits were evident in Uncertainty Evaluation, Attentional Inhibition, Choice Consistency, and Cognitive Flexibility/Set-shifting. We propose a novel model of dysfunctional decision-making processes in BED and describe their role in binge-eating behaviour. We further highlight the potential for cognitive interventions to target these processes and address the significant treatment gap in BED.
Collapse
Affiliation(s)
- Emily Colton
- Turner Institute of Brain and Mental Health, Monash University, Clayton, VIC 3800, Australia.
| | - Kira-Elise Wilson
- Turner Institute of Brain and Mental Health, Monash University, Clayton, VIC 3800, Australia
| | - Trevor T-J Chong
- Turner Institute of Brain and Mental Health, Monash University, Clayton, VIC 3800, Australia
| | - Antonio Verdejo-Garcia
- Turner Institute of Brain and Mental Health, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
4
|
Koban L, Wager TD, Kober H. A neuromarker for drug and food craving distinguishes drug users from non-users. Nat Neurosci 2023; 26:316-325. [PMID: 36536243 DOI: 10.1038/s41593-022-01228-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
Craving is a core feature of substance use disorders. It is a strong predictor of substance use and relapse and is linked to overeating, gambling, and other maladaptive behaviors. Craving is measured via self-report, which is limited by introspective access and sociocultural contexts. Neurobiological markers of craving are both needed and lacking, and it remains unclear whether craving for drugs and food involve similar mechanisms. Across three functional magnetic resonance imaging studies (n = 99), we used machine learning to identify a cross-validated neuromarker that predicts self-reported intensity of cue-induced drug and food craving (P < 0.0002). This pattern, which we term the Neurobiological Craving Signature (NCS), includes ventromedial prefrontal and cingulate cortices, ventral striatum, temporal/parietal association areas, mediodorsal thalamus and cerebellum. Importantly, NCS responses to drug versus food cues discriminate drug users versus non-users with 82% accuracy. The NCS is also modulated by a self-regulation strategy. Transfer between separate neuromarkers for drug and food craving suggests shared neurobiological mechanisms. Future studies can assess the discriminant and convergent validity of the NCS and test whether it responds to clinical interventions and predicts long-term clinical outcomes.
Collapse
Affiliation(s)
- Leonie Koban
- Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, Paris, France.
- Centre de Recherche en Neurosciences de Lyon (CRNL), CNRS, INSERM, Université Claude Bernard Lyon 1, Bron, France.
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| | - Hedy Kober
- Department of Psychiatry and Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Banu A, Gowda SBM, Salim S, Mohammad F. Serotonergic control of feeding microstructure in Drosophila. Front Behav Neurosci 2023; 16:1105579. [PMID: 36733453 PMCID: PMC9887136 DOI: 10.3389/fnbeh.2022.1105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
To survive, animals maintain energy homeostasis by seeking out food. Compared to freely feeding animals, food-deprived animals may choose different strategies to balance both energy and nutrition demands, per the metabolic state of the animal. Serotonin mediates internal states, modifies existing neural circuits, and regulates animal feeding behavior, including in humans and fruit flies. However, an in-depth study on the neuromodulatory effects of serotonin on feeding microstructure has been held back for several technical reasons. Firstly, most feeding assays lack the precision of manipulating neuronal activity only when animals start feeding, which does not separate neuronal effects on feeding from foraging and locomotion. Secondly, despite the availability of optogenetic tools, feeding in adult fruit flies has primarily been studied using thermogenetic systems, which are confounded with heat. Thirdly, most feeding assays have used food intake as a measurement, which has a low temporal resolution to dissect feeding at the microstructure level. To circumvent these problems, we utilized OptoPAD assay, which provides the precision of optogenetics to control neural activity contingent on the ongoing feeding behavior. We show that manipulating the serotonin circuit optogenetically affects multiple feeding parameters state-dependently. Food-deprived flies with optogenetically activated and suppressed serotonin systems feed with shorter and longer sip durations and longer and shorter inter-sip intervals, respectively. We further show that serotonin suppresses and enhances feeding via 5-HT1B and 5-HT7 receptors, respectively.
Collapse
|
6
|
Nutrient Intake and Gut Microbial Genera Changes after a 4-Week Placebo Controlled Galacto-Oligosaccharides Intervention in Young Females. Nutrients 2021; 13:nu13124384. [PMID: 34959936 PMCID: PMC8705328 DOI: 10.3390/nu13124384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Recent interest in the gut-brain-axis has highlighted the potential of prebiotics to impact wellbeing, and to affect behavioral change in humans. In this clinical trial, we examined the impact of four-weeks daily supplementation of galacto-oligosaccharides (GOS) on self-reported nutrient intake and relationships on gut microbiota in a four-week two-armed parallel double-blind placebo controlled GOS supplement trial in young adult females. Food diaries and stool samples were collected prior to and following 28 days of supplement consumption. It was found that four weeks of GOS supplementation influenced macronutrient intake, as evident by reduced carbohydrate and sugars and increased fats intake. Further analysis showed that the reduction in carbohydrates was predicted by increasing abundances of Bifidobacterium in the GOS group in comparison to the placebo group. This suggests that Bifidobacterium increase via GOS supplementation may help improve the gut microbiota composition by altering the desire for specific types of carbohydrates and boosting Bifidobacterium availability when fiber intake is below recommended levels, without compromising appetite for fiber from food.
Collapse
|