1
|
Coke MC, Bell CA, Urwin PE. The Use of Caenorhabditis elegans as a Model for Plant-Parasitic Nematodes: What Have We Learned? ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:157-172. [PMID: 38848590 DOI: 10.1146/annurev-phyto-021622-113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Nematoda is a diverse phylum that is estimated to contain more than a million species. More than 4,100 of these species have the ability to parasitize plants and cause agricultural losses estimated at US $173 billion annually. This has led to considerable research into their biology to minimize crop losses via control methods. At the infancy of plant-parasitic nematode molecular biology, researchers compared nematode genomes, genes, and biological processes to the model nematode species Caenorhabditis elegans, which is a free-living bacterial feeder. This well-annotated and researched model nematode assisted the molecular biology research, e.g., with genome assemblies, of plant-parasitic nematodes. However, as research into these plant parasites progressed, the necessity of relying on the free-living relative as a reference has reduced. This is partly driven by revealing the considerable divergence between the two types of nematodes both genomically and anatomically, forcing comparisons to be redundant as well as the increased quality of molecular plant nematology proposing more suitable model organisms for this clade of nematode. The major irregularity between the two types of nematodes is the unique anatomical structure and effector repertoire that plant nematodes utilize to establish parasitism, which C. elegans lacks, therefore reducing its value as a heterologous system to investigate parasitic processes. Despite this, C. elegans remains useful for investigating conserved genes via its utility as an expression system because of the current inability to transform plant-parasitic nematodes. Unfortunately, owing to the expertise that this requires, it is not a common and/or accessible tool. Furthermore, we believe that the application of C. elegans as an expression system for plant nematodes will be redundant once tools are established for stable reverse-genetics in these plant parasites. This will remove the restraints on molecular plant nematology and allow it to excel on par with the capabilities of C. elegans research.
Collapse
Affiliation(s)
- Mirela C Coke
- School of Biology, University of Leeds, Leeds, United Kingdom;
| | | | - P E Urwin
- School of Biology, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
2
|
Pandey T, Kalluraya CA, Wang B, Xu T, Huang X, Guang S, Daugherty MD, Ma DK. Acquired stress resilience through bacteria-to-nematode interdomain horizontal gene transfer. EMBO J 2023; 42:e114835. [PMID: 37953666 PMCID: PMC10711659 DOI: 10.15252/embj.2023114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Natural selection drives the acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisitions in immunity, metabolic, and reproduction function via interdomain HGT (iHGT) from bacteria. Here, we report that the nematode gene rml-3 has been acquired by iHGT from bacteria and that it enables exoskeleton resilience and protection against environmental toxins in Caenorhabditis elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most similar to bacterial enzymes that biosynthesize L-rhamnose, a cell-wall polysaccharide component. C. elegans rml-3 is highly expressed during larval development and upregulated in developing seam cells upon heat stress and during the stress-resistant dauer stage. rml-3 deficiency impairs cuticle integrity, barrier functions, and nematode stress resilience, phenotypes that can be rescued by exogenous L-rhamnose. We propose that interdomain HGT of an ancient bacterial rml-3 homolog has enabled L-rhamnose biosynthesis in nematodes, facilitating cuticle integrity and organismal resilience to environmental stressors during evolution. These findings highlight a remarkable contribution of iHGT on metazoan evolution conferred by the domestication of a bacterial gene.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | | | - Bingying Wang
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Ting Xu
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xinya Huang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Shouhong Guang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | | | - Dengke K Ma
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| |
Collapse
|
3
|
Vila-Farré M, Rozanski A, Ivanković M, Cleland J, Brand JN, Thalen F, Grohme MA, von Kannen S, Grosbusch AL, Vu HTK, Prieto CE, Carbayo F, Egger B, Bleidorn C, Rasko JEJ, Rink JC. Evolutionary dynamics of whole-body regeneration across planarian flatworms. Nat Ecol Evol 2023; 7:2108-2124. [PMID: 37857891 PMCID: PMC10697840 DOI: 10.1038/s41559-023-02221-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Regenerative abilities vary dramatically across animals. Even amongst planarian flatworms, well-known for complete regeneration from tiny body fragments, some species have restricted regeneration abilities while others are almost entirely regeneration incompetent. Here, we assemble a diverse live collection of 40 planarian species to probe the evolution of head regeneration in the group. Combining quantification of species-specific head-regeneration abilities with a comprehensive transcriptome-based phylogeny reconstruction, we show multiple independent transitions between robust whole-body regeneration and restricted regeneration in freshwater species. RNA-mediated genetic interference inhibition of canonical Wnt signalling in RNA-mediated genetic interference-sensitive species bypassed all head-regeneration defects, suggesting that the Wnt pathway is linked to the emergence of planarian regeneration defects. Our finding that Wnt signalling has multiple roles in the reproductive system of the model species Schmidtea mediterranea raises the possibility that a trade-off between egg-laying, asexual reproduction by fission/regeneration and Wnt signalling drives regenerative trait evolution. Although quantitative comparisons of Wnt signalling levels, yolk content and reproductive strategy across our species collection remained inconclusive, they revealed divergent Wnt signalling roles in the reproductive system of planarians. Altogether, our study establishes planarians as a model taxon for comparative regeneration research and presents a framework for the mechanistic evolution of regenerative abilities.
Collapse
Affiliation(s)
- Miquel Vila-Farré
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Andrei Rozanski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mario Ivanković
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - James Cleland
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jeremias N Brand
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Felix Thalen
- Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen, Germany
- Cardio-CARE, Medizincampus Davos, Davos, Switzerland
| | - Markus A Grohme
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Hanh T-K Vu
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlos E Prieto
- Department of Zoology & Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando Carbayo
- Laboratório de Ecologia e Evolução. Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
| | - Bernhard Egger
- Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Christoph Bleidorn
- Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen, Germany
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
4
|
Pandey T, Kalluraya C, Wang B, Xu T, Huang X, Guang S, Daugherty MD, Ma DK. Acquired stress resilience through bacteria-to-nematode horizontal gene transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554039. [PMID: 37662235 PMCID: PMC10473587 DOI: 10.1101/2023.08.20.554039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Natural selection drives acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisition of functions in immunity, metabolism, and reproduction via interdomain HGT (iHGT) from bacteria. We report that the nematode gene rml-3, which was acquired by iHGT from bacteria, enables exoskeleton resilience and protection against environmental toxins in C. elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most highly similar to bacterial enzymes that biosynthesize L-rhamnose to build cell wall polysaccharides. C. elegans rml-3 is regulated in developing seam cells by heat stress and stress-resistant dauer stage. Importantly, rml-3 deficiency impairs cuticle integrity, barrier functions and organismal stress resilience, phenotypes that are rescued by exogenous L-rhamnose. We propose that iHGT of an ancient bacterial rml-3 homolog enables L-rhamnose biosynthesis in nematodes that facilitates cuticle integrity and organismal resilience in adaptation to environmental stresses during evolution. These findings highlight the remarkable contribution of iHGT on metazoan evolution that is conferred by the domestication of bacterial genes.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Chinmay Kalluraya
- Department of Molecular Biology, University of California, San Diego, San Diego, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Ting Xu
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinya Huang
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Shouhong Guang
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Matthew D. Daugherty
- Department of Molecular Biology, University of California, San Diego, San Diego, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
- Innovative Genomics Institute, University of California, Berkeley, USA
| |
Collapse
|
5
|
Streit A. Opinion: What do rescue experiments with heterologous proteins tell us and what not? Parasitol Res 2022; 121:1131-1135. [PMID: 34351494 PMCID: PMC8986660 DOI: 10.1007/s00436-021-07247-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022]
Abstract
The recent progress in sequencing technology allowed the compilation of gene lists for a large number of organisms, though many of these organisms are hardly experimentally tractable when compared with well-established model organisms. One popular approach to further characterize genes identified in a poorly tractable organism is to express these genes in a model organism, and then ask what the protein does in this system or if the gene is capable of replacing the homologous endogenous one when the latter is mutated. While this is a valid approach for certain questions, I argue that the results of such experiments are frequently wrongly interpreted. If, for example, a gene from a parasitic nematode is capable of replacing its homologous gene in the model nematode Caenorhabditis elegans, it is often concluded that the gene is most likely involved in the same biological process in its own organism as the C. elegans gene is in C. elegans. This conclusion is not valid. All this experiment tells us is that the chemical properties of the parasite protein are similar enough to the ones of the C. elegans protein that it can perform the function of the C. elegans protein in C. elegans. Here I discuss this misconception and illustrate it using the analog of similar electric switches (components) controlling various devices (processes).
Collapse
Affiliation(s)
- Adrian Streit
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076, Tübingen, Germany.
| |
Collapse
|
6
|
Ewe CK, Torres Cleuren YN, Rothman JH. Evolution and Developmental System Drift in the Endoderm Gene Regulatory Network of Caenorhabditis and Other Nematodes. Front Cell Dev Biol 2020; 8:170. [PMID: 32258041 PMCID: PMC7093329 DOI: 10.3389/fcell.2020.00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 01/17/2023] Open
Abstract
Developmental gene regulatory networks (GRNs) underpin metazoan embryogenesis and have undergone substantial modification to generate the tremendous variety of animal forms present on Earth today. The nematode Caenorhabditis elegans has been a central model for advancing many important discoveries in fundamental mechanistic biology and, more recently, has provided a strong base from which to explore the evolutionary diversification of GRN architecture and developmental processes in other species. In this short review, we will focus on evolutionary diversification of the GRN for the most ancient of the embryonic germ layers, the endoderm. Early embryogenesis diverges considerably across the phylum Nematoda. Notably, while some species deploy regulative development, more derived species, such as C. elegans, exhibit largely mosaic modes of embryogenesis. Despite the relatively similar morphology of the nematode gut across species, widespread variation has been observed in the signaling inputs that initiate the endoderm GRN, an exemplar of developmental system drift (DSD). We will explore how genetic variation in the endoderm GRN helps to drive DSD at both inter- and intraspecies levels, thereby resulting in a robust developmental system. Comparative studies using divergent nematodes promise to unveil the genetic mechanisms controlling developmental plasticity and provide a paradigm for the principles governing evolutionary modification of an embryonic GRN.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | | | - Joel H. Rothman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
7
|
Khadka B, Chatterjee T, Gupta BP, Gupta RS. Genomic Analyses Identify Novel Molecular Signatures Specific for the Caenorhabditis and other Nematode Taxa Providing Novel Means for Genetic and Biochemical Studies. Genes (Basel) 2019; 10:E739. [PMID: 31554175 PMCID: PMC6826867 DOI: 10.3390/genes10100739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022] Open
Abstract
The phylum Nematoda encompasses numerous free-living as well as parasitic members, including the widely used animal model Caenorhabditis elegans, with significant impact on human health, agriculture, and environment. In view of the importance of nematodes, it is of much interest to identify novel molecular characteristics that are distinctive features of this phylum, or specific taxonomic groups/clades within it, thereby providing innovative means for diagnostics as well as genetic and biochemical studies. Using genome sequences for 52 available nematodes, a robust phylogenetic tree was constructed based on concatenated sequences of 17 conserved proteins. The branching of species in this tree provides important insights into the evolutionary relationships among the studied nematode species. In parallel, detailed comparative analyses on protein sequences from nematodes (Caenorhabditis) species reported here have identified 52 novel molecular signatures (or synapomorphies) consisting of conserved signature indels (CSIs) in different proteins, which are uniquely shared by the homologs from either all genome-sequenced Caenorhabditis species or a number of higher taxonomic clades of nematodes encompassing this genus. Of these molecular signatures, 39 CSIs in proteins involved in diverse functions are uniquely present in all Caenorhabditis species providing reliable means for distinguishing this group of nematodes in molecular terms. The remainder of the CSIs are specific for a number of higher clades of nematodes and offer important insights into the evolutionary relationships among these species. The structural locations of some of the nematodes-specific CSIs were also mapped in the structural models of the corresponding proteins. All of the studied CSIs are localized within the surface-exposed loops of the proteins suggesting that they may potentially be involved in mediating novel protein-protein or protein-ligand interactions, which are specific for these groups of nematodes. The identified CSIs, due to their exclusivity for the indicated groups, provide reliable means for the identification of species within these nematodes groups in molecular terms. Further, due to the predicted roles of these CSIs in cellular functions, they provide important tools for genetic and biochemical studies in Caenorhabditis and other nematodes.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L9H 6K5, Canada.
| | - Tonuka Chatterjee
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L9H 6K5, Canada.
| | - Bhagwati P Gupta
- Department of Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L9H 6K5, Canada.
| |
Collapse
|
8
|
Studies on reproductive stress caused by candidate Gram positive and Gram negative bacteria using model organism, Caenorhabditis elegans. Gene 2018; 649:113-126. [DOI: 10.1016/j.gene.2018.01.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/09/2018] [Accepted: 01/26/2018] [Indexed: 02/03/2023]
|
9
|
Besnard F, Koutsovoulos G, Dieudonné S, Blaxter M, Félix MA. Toward Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius tipulae To Identify Mutations Affecting Vulva Development. Genetics 2017; 206:1747-1761. [PMID: 28630114 PMCID: PMC5560785 DOI: 10.1534/genetics.117.203521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species. Here, we show that a fragmented draft assembly is sufficient to perform mapping-by-sequencing in nonmodel species. We generated a draft assembly and annotation of the genome of the free-living nematode Oscheius tipulae, a distant relative of the model Caenorhabditis elegans We used this draft to identify the likely causative mutations at the O. tipulae cov-3 locus, which affect vulval development. The cov-3 locus encodes the O. tipulae ortholog of C. elegans mig-13, and we further show that Cel-mig-13 mutants also have an unsuspected vulval-development phenotype. In a virtuous circle, we were able to use the linkage information collected during mutant mapping to improve the genome assembly. These results showcase the promise of genome-enabled forward genetics in nonmodel species.
Collapse
Affiliation(s)
- Fabrice Besnard
- École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, 75005, France
| | | | - Sana Dieudonné
- École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, 75005, France
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, EH8 9YL, United Kingdom
| | - Marie-Anne Félix
- École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, 75005, France
| |
Collapse
|
10
|
Viney M. How Can We Understand the Genomic Basis of Nematode Parasitism? Trends Parasitol 2017; 33:444-452. [PMID: 28274802 PMCID: PMC5449551 DOI: 10.1016/j.pt.2017.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 11/02/2022]
Abstract
Nematodes are very common animals and they have repeatedly evolved parasitic lifestyles during their evolutionary history. Recently, the genomes of many nematodes, especially parasitic species, have been determined, potentially giving an insight into the genetic and genomic basis of nematodes' parasitism. But, to achieve this, phylogenetically appropriate comparisons of genomes of free-living and parasitic species are needed. Achieving this has often been hampered by the relative lack of information about key free-living species. While such comparative approaches will eventually succeed, I suggest that a synthetic biology approach - moving free-living nematodes towards a parasitic lifestyle - will be our ultimate test of truly understanding the genetic and genomic basis of nematode parasitism.
Collapse
Affiliation(s)
- Mark Viney
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
11
|
Dawes AT, Wu D, Mahalak KK, Zitnik EM, Kravtsova N, Su H, Chamberlin HM. A computational model predicts genetic nodes that allow switching between species-specific responses in a conserved signaling network. Integr Biol (Camb) 2017; 9:156-166. [DOI: 10.1039/c6ib00238b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alterations to only specific parameters in a model including EGF, Wnt and Notch lead to cell behavior differences.
Collapse
Affiliation(s)
- Adriana T. Dawes
- Department of Mathematics
- Ohio State University
- Columbus
- USA
- Department of Molecular Genetics
| | - David Wu
- Department of Mathematics
- Ohio State University
- Columbus
- USA
| | - Karley K. Mahalak
- Department of Molecular Genetics
- Ohio State University
- Columbus
- USA
- Graduate Program in Molecular
| | - Edward M. Zitnik
- Department of Molecular Genetics
- Ohio State University
- Columbus
- USA
| | - Natalia Kravtsova
- Department of Mathematics
- Ohio State University
- Columbus
- USA
- Department of Statistics
| | - Haiwei Su
- Department of Mathematics
- Ohio State University
- Columbus
- USA
| | | |
Collapse
|
12
|
Kulkarni A, Lightfoot JW, Streit A. Germline organization in Strongyloides nematodes reveals alternative differentiation and regulation mechanisms. Chromosoma 2016; 125:725-45. [PMID: 26661737 PMCID: PMC5023735 DOI: 10.1007/s00412-015-0562-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/15/2015] [Accepted: 11/16/2015] [Indexed: 11/14/2022]
Abstract
Nematodes of the genus Strongyloides are important parasites of vertebrates including man. Currently, little is known about their germline organization or reproductive biology and how this influences their parasitic life strategies. Here, we analyze the structure of the germline in several Strongyloides and closely related species and uncover striking differences in the development, germline organization, and fluid dynamics compared to the model organism Caenorhabditis elegans. With a focus on Strongyloides ratti, we reveal that the proliferation of germ cells is restricted to early and mid-larval development, thus limiting the number of progeny. In order to understand key germline events (specifically germ cell progression and the transcriptional status of the germline), we monitored conserved histone modifications, in particular H3Pser10 and H3K4me3. The evolutionary significance of these events is subsequently highlighted through comparisons with six other nematode species, revealing underlying complexities and variations in the development of the germline among nematodes.
Collapse
Affiliation(s)
- Arpita Kulkarni
- Department Evolutionary Biology, Max Planck Institute for Developmental Biology, D-72076, Tübingen, Germany
| | - James W Lightfoot
- Department Evolutionary Biology, Max Planck Institute for Developmental Biology, D-72076, Tübingen, Germany
| | - Adrian Streit
- Department Evolutionary Biology, Max Planck Institute for Developmental Biology, D-72076, Tübingen, Germany.
| |
Collapse
|
13
|
Calderón-Urrea A, Vanholme B, Vangestel S, Kane SM, Bahaji A, Pha K, Garcia M, Snider A, Gheysen G. Early development of the root-knot nematode Meloidogyne incognita. BMC DEVELOPMENTAL BIOLOGY 2016; 16:10. [PMID: 27122249 PMCID: PMC4848817 DOI: 10.1186/s12861-016-0109-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/15/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Detailed descriptions of the early development of parasitic nematodes are seldom available. The embryonic development of the plant-parasitic nematode Meloidogyne incognita was studied, focusing on the early events. RESULTS A fixed pattern of repeated cell cleavages was observed, resulting in the appearance of the six founder cells 3 days after the first cell division. Gastrulation, characterized by the translocation of cells from the ventral side to the center of the embryo, was seen 1 day later. Approximately 10 days after the first cell division a rapidly elongating two-fold stage was reached. The fully developed second stage juvenile hatched approximately 21 days after the first cell division. CONCLUSIONS When compared to the development of the free-living nematode Caenorhabditis elegans, the development of M. incognita occurs approximately 35 times more slowly. Furthermore, M. incognita differs from C. elegans in the order of cell divisions, and the early cleavage patterns of the germ line cells. However, cytoplasmic ruffling and nuclear migration prior to the first cell division as well as the localization of microtubules are similar between C. elegans and M. incognita.
Collapse
Affiliation(s)
- Alejandro Calderón-Urrea
- />Department of Biology, College of Science and Mathematics, California State University, 2555 East San Ramon Avenue, Fresno, CA 93740 USA
| | - Bartel Vanholme
- />Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium
- />Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Sandra Vangestel
- />Faculty of Sciences, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Saben M. Kane
- />Department of Biology, College of Science and Mathematics, California State University, 2555 East San Ramon Avenue, Fresno, CA 93740 USA
| | - Abdellatif Bahaji
- />Instituto de Agrobiotecnologia (CSIC/UPNA/Gobierno de Navarra), Ctra. de mutilva baja, s/n 31192, Mutilva Baja, Navarra Spain
| | - Khavong Pha
- />Biochemistry, Molecular, Cell, and Developmental Biology Graduate Group, Department of Microbiology and Molecular Genetics, University of California, 1 Shields Avenue, Davis, CA 95616 USA
| | - Miguel Garcia
- />Department of Biology, James H. Clark Center, Stanford University, 318 Campus Drive, W200, Stanford, CA 94305 USA
| | - Alyssa Snider
- />IVIGEN Los Angeles, 406 Amapola Ave. Suite 215, Torrance, CA 90501 USA
| | - Godelieve Gheysen
- />Faculty of Bioscience Engineering, Department of Molecular Biotechnology, BW14, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| |
Collapse
|
14
|
Differential chromatin amplification and chromosome complements in the germline of Strongyloididae (Nematoda). Chromosoma 2015. [PMID: 26205504 DOI: 10.1007/s00412-015-0532-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nematodes of the genus Strongyloides are intestinal parasites of vertebrates including man. Currently, Strongyloides and its sister genus Parastrongyloides are being developed as models for translational and basic biological research. Strongyloides spp. alternate between parthenogenetic parasitic and single free-living sexual generations, with the latter giving rise to all female parasitic progeny. Parastrongyloides trichosuri always reproduces sexually and may form many consecutive free-living generations. Although the free-living adults of both these species share a superficial similarity in overall appearance when compared to Caenorhabditis elegans, there are dramatic differences between them, in particular with respect to the organization of the germline. Here we address two such differences, which have puzzled investigators for several generations. First, we characterize a population of non-dividing giant nuclei in the distal gonad, the region that in C. elegans is populated by mitotically dividing germline stem cells and early meiotic cells. We show that in these nuclei, autosomes are present in higher copy numbers than X chromosomes. Consistently, autosomal genes are expressed at higher levels than X chromosomal ones, suggesting that these worms use differential chromatin amplification for controlling gene expression. Second, we address the lack of males in the progeny of free-living Strongyloides spp. We find that male-determining (nullo-X) sperm are present in P. trichosuri, a species known to produce male progeny, and absent in Strongyloides papillosus, which is consistent for a species that does not. Surprisingly, nullo-X sperm appears to be present in Strongyloides ratti, even though this species does not produce male progeny. This suggests that different species of Strongyloides employ various strategies to prevent the formation of males in the all-parasitic progeny of the free-living generation.
Collapse
|
15
|
Schiffer PH, Nsah NA, Grotehusmann H, Kroiher M, Loer C, Schierenberg E. Developmental variations among Panagrolaimid nematodes indicate developmental system drift within a small taxonomic unit. Dev Genes Evol 2014; 224:183-8. [PMID: 24849338 DOI: 10.1007/s00427-014-0471-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/29/2014] [Indexed: 01/26/2023]
Abstract
Comparative studies of nematode embryogenesis among different clades revealed considerable variations. However, to what extent developmental differences exist between closely related species has mostly remained nebulous. Here, we explore the correlation between phylogenetic neighborhood and developmental variation in a restricted and morphologically particularly uniform taxonomic group (Panagrolaimidae) to determine to what extent (1) morphological and developmental characters go along with molecular data and thus can serve as diagnostic tools for the definition of kinship and (2) developmental system drift (DSD; modifications of developmental patterns without corresponding morphological changes) can be found within a small taxonomic unit. Our molecular approaches firmly support subdivision of Panagrolaimid nematodes into two monophyletic groups. These can be discriminated by distinct peculiarities in early embryonic cell lineages and a mirror-image expression pattern of the gene skn-1. This suggests major changes in the logic of cell specification and the action of DSD in the studied representatives of the two neighboring nematode taxa.
Collapse
Affiliation(s)
- Philipp H Schiffer
- Zoological Institute, Cologne Biocenter, University of Cologne, Cologne, Germany,
| | | | | | | | | | | |
Collapse
|
16
|
Minasaki R, Rudel D, Eckmann CR. Increased sensitivity and accuracy of a single-stranded DNA splint-mediated ligation assay (sPAT) reveals poly(A) tail length dynamics of developmentally regulated mRNAs. RNA Biol 2014; 11:111-23. [PMID: 24526206 DOI: 10.4161/rna.27992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poly(A) tail length is a readout of an mRNA's translatability and stability, especially in developmental systems. PolyAdenylation Test (PAT) assays attempt to quickly measure the average poly(A) tail length of RNAs of experimental interest. Here we present sPAT, splint-mediated PAT, a procedure that uses a DNA splint to aid in the ligation of an RNA-tag to the poly(A) tail of an mRNA. In comparison to other PAT methodologies, including ePAT, sPAT is highly sensitive to low-abundance mRNAs, gives a more accurate profile of the poly(A) tail distribution, and requires little starting material. To demonstrate its strength, we calibrated sPAT on defined poly(A) tails of synthetic mRNAs, reassessed developmentally regulated poly(A) tail-length changes of known mRNAs from established model organisms, and extended it to the emerging evolutionary developmental nematode model Pristionchus pacificus. Lastly, we used sPAT to analyze the contribution of the two cytoplasmic poly(A) polymerases GLD-2 and GLD-4, and the deadenylase CCR-4, onto Caenorhabditis elegans gld-1 mRNA that encodes a translationally controlled tumor suppressor whose poly(A) tail length measurement proved elusive.
Collapse
Affiliation(s)
- Ryuji Minasaki
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Pfotenhauerstrasse 108; 01307 Dresden, Germany
| | - David Rudel
- Department of Biology; East Carolina University; Greenville, NC USA
| | - Christian R Eckmann
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Pfotenhauerstrasse 108; 01307 Dresden, Germany
| |
Collapse
|