Li Y, Xiao S, Zhang Q, Wang N, Yang Q, Hao J. Development and standardization of spectrophotometric assay for quantification of thermal hydrolysis-origin melanoidins and its implication in antioxidant activity evaluation.
JOURNAL OF HAZARDOUS MATERIALS 2024;
476:135021. [PMID:
38944987 DOI:
10.1016/j.jhazmat.2024.135021]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Melanoidins are brown recalcitrant polymers originating from the thermal hydrolysis pretreatment (THP) of organic solid waste (OSW). Owing to their various formation pathways and complex structures, there is currently no reliable method to quantify melanoidins. In this study, a spectrophotometric method was developed to determine melanoidins concentration in different OSW. Three typical model Maillard reaction systems (glucose-glycine, glucose/fructose-20 amino acids, and dextran-bovine serum albumin) were used to acquire the characteristic peaks and establish standard curves. The results showed that a standard curve using glucose/fructose-20 amino acids model melanoidins at 280 nm was the optimal quantification method, because it had the best correlation with the physicochemical indicators of melanoidins and semi-quantification results calculated by excitation-emission matrix fluorescence. In addition, the applicability of the proposed method was evaluated using multiple real melanoidins samples extracted from thermally pretreated OSW under different THP conditions and food-derived melanoidins as well, demonstrating its validity and advantages. This study is the first to provide a simple, effective, and accurate method for quantifying THP-origin melanoidins from different sources. Remarkably, as a specific and important application scenario, the proposed quantification method was employed to investigate the concentration dependence of melanoidins antioxidation in thermally pretreated OSW.
Collapse