1
|
Flores JA, O'Neill SE, Jarodsky JM, Reichow SL. Calcium induced N-terminal gating and pore collapse in connexin-46/50 gap junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637955. [PMID: 39990482 PMCID: PMC11844560 DOI: 10.1101/2025.02.12.637955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Gap junctions facilitate electrical and metabolic coupling essential for tissue function. Under ischemic conditions ( e.g., heart attack or stroke), elevated intracellular calcium (Ca 2+ ) levels uncouple these cell-to-cell communication pathways to protect healthy cells from cytotoxic signals. Using single-particle cryo-EM, we elucidate details of the Ca 2+ -induced gating mechanism of native connexin-46/50 (Cx46/50) gap junctions. The resolved structures reveal Ca 2+ binding sites within the channel pore that alter the chemical environment of the permeation pathway and induce diverse occluded and gated states through N-terminal domain remodeling. Moreover, subunit rearrangements lead to pore collapse, enabling steric blockade by the N-terminal domains, reminiscent of the "iris model" of gating proposed over four decades ago. These findings unify and expand key elements of previous gating models, providing mechanistic insights into how Ca 2+ signaling regulates gap junction uncoupling and broader implications for understanding cell stress responses and tissue protection.
Collapse
|
2
|
Jarodsky JM, Myers JB, Reichow SL. Reversible lipid mediated pH-gating of connexin-46/50 by cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637953. [PMID: 39990409 PMCID: PMC11844525 DOI: 10.1101/2025.02.12.637953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Gap junctions, formed by connexin proteins, establish direct electrical and metabolic coupling between cells, enabling coordinated tissue responses. These channels universally respond to intracellular pH changes, closing under acidic conditions to limit the spread of cytotoxic signals during cellular stress, such as ischemia. Using cryo-electron microscopy (cryo-EM), we uncover insights into the structural mechanism of pH-gating in native lens connexin-46/50 (Cx46/50) gap junctions. Mild acidification drives lipid infiltration into the channel pore, displacing the N-terminal (NT) domain and stabilizing pore closure. Lipid involvement is both essential and fully reversible, with structural transitions involving an ensemble of gated-states formed through non-cooperative NT domain movement as well as minor populations of a distinct destabilized open-state. These findings provide molecular insights into pH-gating dynamics, illustrating how structural changes may regulate gap junction function under cellular stress and linking Cx46/50 dysregulation to age-related cataract formation.
Collapse
Affiliation(s)
- Joshua M. Jarodsky
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Janette B. Myers
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Pacific Northwest Cryo-EM Center, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Steve L. Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Pacific Northwest Cryo-EM Center, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
3
|
Rodríguez-Candela Mateos M, Carpintero-Fernández P, Freijanes PS, Mosquera J, Nebril BA, Mayán MD. Insights into the role of connexins and specialized intercellular communication pathways in breast cancer: Mechanisms and applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189173. [PMID: 39154967 DOI: 10.1016/j.bbcan.2024.189173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Gap junctions, membrane-based channels comprised of connexin proteins (Cxs), facilitate direct communication among neighbouring cells and between cells and the extracellular space through their hemichannels. The normal human breast expresses various Cxs family proteins, such as Cx43, Cx30, Cx32, Cx46, and Cx26, crucial for proper tissue development and function. These proteins play a significant role in breast cancer development, progression, and therapy response. In primary tumours, there is often a reduction and cytoplasmic mislocalization of Cx43 and Cx26, while metastatic lesions show an upregulation of these and other Cxs. Although existing research predominantly supports the tumour-suppressing role of Cxs in primary carcinomas through channel-dependent and independent functions, controversies persist regarding their involvement in the metastatic process. This review aims to provide an updated perspective on Cxs in human breast cancer, with a specific focus on intrinsic subtypes due to the heterogeneous nature of this disease. Additionally, the manuscript will explore the role of Cxs in immune interactions and novel forms of intercellular communication, such as tunneling nanotubes and extracellular vesicles, within the breast tumour context and tumour microenvironment. Recent findings suggest that Cxs hold potential as therapeutic targets for mitigating metastasis and drug resistance. Furthermore, they may serve as novel biomarkers for cancer prognosis, offering promising avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Marina Rodríguez-Candela Mateos
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Paula Carpintero-Fernández
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain
| | - Paz Santiago Freijanes
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Anatomic Pathology Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Joaquin Mosquera
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Benigno Acea Nebril
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - María D Mayán
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain.
| |
Collapse
|
4
|
Fu YH, Hu YF, Lin T, Zhuang GW, Wang YL, Chen WX, Li ZT, Hou JL. Constructing artificial gap junctions to mediate intercellular signal and mass transport. Nat Chem 2024; 16:1418-1426. [PMID: 38658798 DOI: 10.1038/s41557-024-01519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Natural gap junctions are a type of channel protein responsible for intercellular signalling and mass communication. However, the scope of applications for these proteins is limited as they cannot be prepared at a large scale and are unable to spontaneously insert into cell membranes in vitro. The construction of artificial gap junctions may provide an alternative strategy for preparing analogues of the natural proteins and bottom-up building blocks necessary for the synthesis of artificial cells. Here we show the construction of artificial gap junction channels from unimolecular tubular molecules consisting of alternately arranged positively and negatively charged pillar[5]arene motifs. These molecules feature a hydrophobic-hydrophilic-hydrophobic triblock structure that allows them to efficiently insert into two adjacent plasma membranes and stretch across the gap between the two membranes to form gap junctions. Similar to natural gap junction channels, the synthetic channels could mediate intercellular signal coupling and reactive oxygen species transmission, leading to cellular activity.
Collapse
Affiliation(s)
- Yong-Hong Fu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Yi-Fei Hu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Tao Lin
- Department of Chemistry, Fudan University, Shanghai, China
| | - Guo-Wei Zhuang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Ying-Lan Wang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Wen-Xue Chen
- Department of Chemistry, Fudan University, Shanghai, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, Shanghai, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Jiao B, Zhang H, Jiang H, Liu S, Wang Y, Chen Y, Duan H, Niu Y, Shen M, Wang H, Dai Y. Granulysin-mediated reduction of PDZRN3 induces Cx43 gap junctions activity exacerbating skin damage in trichloroethylene hypersensitivity syndrome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116174. [PMID: 38471344 DOI: 10.1016/j.ecoenv.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Trichloroethylene (TCE)-induced hypersensitivity syndrome (THS) has been a concern for many researchers in the field of environmental and occupational health. Currently, there is no specific treatment for THS, leaving patients to contend with severe infections arising from extensive skin lesions, consequently leading to serious adverse effects. However, the pathogenesis of severe skin damage in THS remains unclear. This study aims to investigate the specific danger signals and mechanisms underlying skin damage in THS through in vivo and in vitro experiments. We identified that cell supernatant containing 15 kDa granulysin (GNLY), released from activated CD3-CD56+NK cells or CD3+CD56+NKT cells in PBMC induced by TCE or its metabolite, promoted apoptosis in HaCaT cells. The apoptosis level decreased upon neutralization of GNLY in the supernatant by a GNLY-neutralizing antibody in HaCaT cells. Subcutaneous injection of recombinant 15 kDa GNLY exacerbated skin damage in the THS mouse model and better mimicked patients' disease states. Recombinant 15 kDa GNLY could directly induce cellular communication disorders, inflammation, and apoptosis in HaCaT cells. In addition to its cytotoxic effects, GNLY released from TCE-activated NK cells and NKT cells or synthesized GNLY alone could induce aberrant expression of the E3 ubiquitin ligase PDZRN3, causing dysregulation of the ubiquitination of the cell itself. Consequently, this resulted in the persistent opening of gap junctions composed of connexin43, thereby intensifying cellular inflammation and apoptosis through the "bystander effect". This study provides experimental evidence elucidating the mechanisms of THS skin damage and offers a novel theoretical foundation for the development of effective therapies targeting severe dermatitis induced by chemicals or drugs.
Collapse
Affiliation(s)
- Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hua Zhang
- Department of Occupational disease, Qingdao Central Hospital, Shandong, China
| | - Haiqin Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences, National Center for STD and Leprosy Control, China CDC, Nanjing, China
| | - Shuai Liu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yican Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yong Niu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Meili Shen
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hongsheng Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences, National Center for STD and Leprosy Control, China CDC, Nanjing, China
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
6
|
da Fonseca IIM, Nagamine MK, Sato A, Rossatto-Jr CA, Yeh ES, Dagli MLZ. Inhibitory Effects of Alpha-Connexin Carboxyl-Terminal Peptide on Canine Mammary Epithelial Cells: A Study on Benign and Malignant Phenotypes. Cancers (Basel) 2024; 16:820. [PMID: 38398211 PMCID: PMC10887206 DOI: 10.3390/cancers16040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Mammary cancer is highly prevalent in non-castrated female dogs. Cell-to-cell communication is an important mechanism to maintain homeostasis, and connexins are proteins that assemble to form the communicating gap junctions. In many cancers, communication capacity is reduced; several approaches are being tested in order to increase the communication capacity in cancer cells and, therefore, alter their viability. This study analyzed the effects of the alpha-connexin carboxyl-terminal peptide (αCT1) on canine mammary non-neoplastic and neoplastic epithelial cells. Seven canine epithelial mammary cell lines were used. Among these, one was a normal canine epithelial mammary cell line (LOEC-NMG), two canine mammary adenomas (LOEC-MAd1 and LOEC-MAd2), and four canine mammary adenocarcinomas (LOEC-MCA1, LOEC-MCA2, LOEC-MCA3 and CF41). The αCT1 corresponds to a short Cx43 C-terminal sequence linked to an internalization sequence called the antennapedia. After 24 h of incubation, the medium containing different αCT1 peptide concentrations was added to the cells, and only the culture medium was used for control. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used to quantify cell viability before treatment and 48, 72, and 96 h after the treatment. Results showed that the normal mammary epithelial cell line (LOEC-NMG) was resistant to treatment with αCT1, which is consistent with a previous study on human mammary cell lines. One of the adenoma cell lines (LOEC-MAd2) was also resistant to treatment with αCT1, although the other (LOEC-MAd1) was susceptible to treatment, mostly at 72 h after treatment. Regarding the four canine adenocarcinoma cell lines, they differ regarding the susceptibility to the treatment with αCT1. Three cell lines, canine mixed adenocarcinoma (LOEC-MCA1), canine complex adenocarcinoma (LOEC-MCA2), and commercial canine mammary adenocarcinoma cell line CF41, were susceptible to treatment with αCT1, while one canine mammary adenocarcinoma cell line (LOEC-MCA3) was resistant to treatment. In most αCT1 treated cell lines, Cx43 was strongly detected in cell membranes by immunofluorescence. We propose that αCT1 restored the cell-to-cell communication capacity of neoplastic cells and induced inhibitory effects on cell viability.
Collapse
Affiliation(s)
- Ivone Izabel Mackowiak da Fonseca
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil; (I.I.M.d.F.); (M.K.N.); (A.S.); (C.A.R.-J.)
| | - Marcia Kazumi Nagamine
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil; (I.I.M.d.F.); (M.K.N.); (A.S.); (C.A.R.-J.)
| | - Ayami Sato
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil; (I.I.M.d.F.); (M.K.N.); (A.S.); (C.A.R.-J.)
- Institute of Life Innovation Studies, Toyo University, Tokyo 374-0193, Japan
| | - Carlos Alberto Rossatto-Jr
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil; (I.I.M.d.F.); (M.K.N.); (A.S.); (C.A.R.-J.)
| | - Elizabeth Shinmay Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Maria Lucia Zaidan Dagli
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil; (I.I.M.d.F.); (M.K.N.); (A.S.); (C.A.R.-J.)
| |
Collapse
|
7
|
Baker KM, Abt M, Doud EH, Oblak AL, Yeh ES. Mapping the Anti-Cancer Activity of α-Connexin Carboxyl-Terminal (aCT1) Peptide in Resistant HER2+ Breast Cancer. Cancers (Basel) 2024; 16:423. [PMID: 38275864 PMCID: PMC10814893 DOI: 10.3390/cancers16020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Connexin 43 (Cx43) is a protein encoded by the GJA1 gene and is a component of cell membrane structures called gap junctions, which facilitate intercellular communication. Prior evidence indicates that elevated GJA1 expression in the HER2-positive (HER2+) subtype of breast cancer is associated with poor prognosis. Prior evidence also suggests that HER2+ breast cancers that have become refractory to HER2-targeted agents have a loss of Cx43 gap junction intercellular communication (GJIC). In this study, a Cx43-targeted agent called alpha-connexin carboxyl-terminal peptide (aCT1) is examined to determine whether GJIC can be rescued in refractory HER2+ breast cancer cells. A proposed mechanism of action for aCT1 is binding to the tight junction protein Zonal Occludens-1 (ZO-1). However, the true scope of activity for aCT1 has not been explored. In this study, mass spectrometry proteomic analysis is used to determine the breadth of aCT1-interacting proteins. The NanoString nCounter Breast Cancer 360 panel is also used to examine the effect of aCT1 on cancer signaling in HER2+ breast cancer cells. Findings from this study show a dynamic range of binding partners for aCT1, many of which regulate gene expression and RNA biology. nCounter analysis shows that a number of pathways are significantly impacted by aCT1, including upregulation of apoptotic factors, leading to the prediction and demonstration that aCT1 can boost the cell death effects of cisplatin and lapatinib in HER2+ breast cancer cells that have become resistant to HER2-targeted agents.
Collapse
Affiliation(s)
- Kimberly M. Baker
- Department of Biology, University of Indianapolis, Indianapolis, IN 46227, USA;
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa Abt
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adrian L. Oblak
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elizabeth S. Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
8
|
Yan Q, Feng Z, Jiang B, Yao J. Biological functions of connexins in the development of inflammatory bowel disease. Scand J Gastroenterol 2024; 59:142-149. [PMID: 37837320 DOI: 10.1080/00365521.2023.2267713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic intestinal inflammatory diseases with unknown etiology. Gap junctions composed of connexins (Cxs) have been recently validated as an important factor in the development of IBD. Under IBD-induced inflammatory response in the gut, gap junctions connect multiple signaling pathways involved in the interaction between inflammatory cells with other intestinal cells, which altogether mediate the development of IBD. This paper is a narrative review aiming to comprehensively elucidate the biological function of connexins, especially the ubiquitously and predominantly expressed Cx43, in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Qiaojing Yan
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Traditional Chinese Medicine Innovation Center for Anorectal Disease, Nanjing, China
| | - Zhiling Feng
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Bin Jiang
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Traditional Chinese Medicine Innovation Center for Anorectal Disease, Nanjing, China
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
9
|
Kwek MSY, Thangaveloo M, Madden LE, Phillips ARJ, Becker DL. Targeting Cx43 to Reduce the Severity of Pressure Ulcer Progression. Cells 2023; 12:2856. [PMID: 38132176 PMCID: PMC10741864 DOI: 10.3390/cells12242856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
In the skin, repeated incidents of ischemia followed by reperfusion can result in the breakdown of the skin and the formation of a pressure ulcer. Here we gently applied paired magnets to the backs of mice to cause ischemia for 1.5 h and then removed them to allow reperfusion. The sterile inflammatory response generated within 4 h causes a stage 1 pressure ulcer with an elevation of the gap junction protein Cx43 in the epidermis. If this process is repeated the insult will result in a more severe stage 2 pressure ulcer with a breakdown of the epidermis 2-3 days later. After a single pinch, the elevation of Cx43 in the epidermis is associated with the inflammatory response with an increased number of neutrophils, HMGB1 (marker of necrosis) and RIP3 (responsible for necroptosis). Delivering Cx43 specific antisense oligonucleotides sub-dermally after a single insult, was able to significantly reduce the elevation of epidermal Cx43 protein expression and reduce the number of neutrophils and prevent the elevation of HMGB1 and RIP3. In a double pinch model, the Cx43 antisense treatment was able to reduce the level of inflammation, necroptosis, and the extent of tissue damage and progression to an open wound. This approach may be useful in reducing the progression of stage 1 pressure ulcers to stage 2.
Collapse
Affiliation(s)
- Milton Sheng Yi Kwek
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore (M.T.); (L.E.M.)
- Skin Research Institute Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore
| | - Moogaambikai Thangaveloo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore (M.T.); (L.E.M.)
- Skin Research Institute Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore
| | - Leigh E. Madden
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore (M.T.); (L.E.M.)
- Skin Research Institute Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore
| | | | - David L. Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore (M.T.); (L.E.M.)
- Skin Research Institute Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
10
|
Moloudi K, Sarbadhikary P, Abrahamse H, George BP. Understanding the Photodynamic Therapy Induced Bystander and Abscopal Effects: A Review. Antioxidants (Basel) 2023; 12:1434. [PMID: 37507972 PMCID: PMC10376621 DOI: 10.3390/antiox12071434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved minimally/non-invasive treatment modality that has been used to treat various conditions, including cancer. The bystander and abscopal effects are two well-documented significant reactions involved in imparting long-term systemic effects in the field of radiobiology. The PDT-induced generation of reactive oxygen and nitrogen species and immune responses is majorly involved in eliciting the bystander and abscopal effects. However, the results in this regard are unsatisfactory and unpredictable due to several poorly elucidated underlying mechanisms and other factors such as the type of cancer being treated, the irradiation dose applied, the treatment regimen employed, and many others. Therefore, in this review, we attempted to summarize the current knowledge regarding the non-targeted effects of PDT. The review is based on research published in the Web of Science, PubMed, Wiley Online Library, and Google Scholar databases up to June 2023. We have highlighted the current challenges and prospects in relation to obtaining clinically relevant robust, reproducible, and long-lasting antitumor effects, which may offer a clinically viable treatment against tumor recurrence and metastasis. The effectiveness of both targeted and untargeted PDT responses and their outcomes in clinics could be improved with more research in this area.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
11
|
Pecoraro M, Marzocco S, Belvedere R, Petrella A, Franceschelli S, Popolo A. Simvastatin Reduces Doxorubicin-Induced Cardiotoxicity: Effects beyond Its Antioxidant Activity. Int J Mol Sci 2023; 24:ijms24087573. [PMID: 37108737 PMCID: PMC10141713 DOI: 10.3390/ijms24087573] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to evaluate if Simvastatin can reduce, and/or prevent, Doxorubicin (Doxo)-induced cardiotoxicity. H9c2 cells were treated with Simvastatin (10 µM) for 4 h and then Doxo (1 µM) was added, and the effects on oxidative stress, calcium homeostasis, and apoptosis were evaluated after 20 h. Furthermore, we evaluated the effects of Simvastatin and Doxo co-treatment on Connexin 43 (Cx43) expression and localization, since this transmembrane protein forming gap junctions is widely involved in cardioprotection. Cytofluorimetric analysis showed that Simvastatin co-treatment significantly reduced Doxo-induced cytosolic and mitochondrial ROS overproduction, apoptosis, and cytochrome c release. Spectrofluorimetric analysis performed by means of Fura2 showed that Simvastatin co-treatment reduced calcium levels stored in mitochondria and restored cytosolic calcium storage. Western blot, immunofluorescence, and cytofluorimetric analyses showed that Simvastatin co-treatment significantly reduced Doxo-induced mitochondrial Cx43 over-expression and significantly increased the membrane levels of Cx43 phosphorylated on Ser368. We hypothesized that the reduced expression of mitochondrial Cx43 could justify the reduced levels of calcium stored in mitochondria and the consequent induction of apoptosis observed in Simvastatin co-treated cells. Moreover, the increased membrane levels of Cx43 phosphorylated on Ser368, which is responsible for the closed conformational state of the gap junction, let us to hypothesize that Simvastatin leads to cell-to-cell communication interruption to block the propagation of Doxo-induced harmful stimuli. Based on these results, we can conclude that Simvastatin could be a good adjuvant in Doxo anticancer therapy. Indeed, we confirmed its antioxidant and antiapoptotic activity, and, above all, we highlighted that Simvastatin interferes with expression and cellular localization of Cx43 that is widely involved in cardioprotection.
Collapse
Affiliation(s)
- Michela Pecoraro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | | | - Antonello Petrella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | | | - Ada Popolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| |
Collapse
|
12
|
Fabbri R, Spennato D, Conte G, Konstantoulaki A, Lazzarini C, Saracino E, Nicchia GP, Frigeri A, Zamboni R, Spray DC, Benfenati V. The emerging science of Glioception: Contribution of glia in sensing, transduction, circuit integration of interoception. Pharmacol Ther 2023; 245:108403. [PMID: 37024060 DOI: 10.1016/j.pharmthera.2023.108403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Interoception is the process by which the nervous system regulates internal functions to achieve homeostasis. The role of neurons in interoception has received considerable recent attention, but glial cells also contribute. Glial cells can sense and transduce signals including osmotic, chemical, and mechanical status of extracellular milieu. Their ability to dynamically communicate "listening" and "talking" to neurons is necessary to monitor and regulate homeostasis and information integration in the nervous system. This review introduces the concept of "Glioception" and focuses on the process by which glial cells sense, interpret and integrate information about the inner state of the organism. Glial cells are ideally positioned to act as sensors and integrators of diverse interoceptive signals and can trigger regulatory responses via modulation of the activity of neuronal networks, both in physiological and pathological conditions. We believe that understanding and manipulating glioceptive processes and underlying molecular mechanisms provide a key path to develop new therapies for the prevention and alleviation of devastating interoceptive dysfunctions, among which pain is emphasized here with more focused details.
Collapse
Affiliation(s)
- Roberta Fabbri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, viale del Risorgimento 2, 40136 Bologna, Italy.
| | - Diletta Spennato
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Giorgia Conte
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Aikaterini Konstantoulaki
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126 Bologna, BO, Italy
| | - Chiara Lazzarini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Grazia Paola Nicchia
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, BA, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Antonio Frigeri
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Roberto Zamboni
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| |
Collapse
|
13
|
Georgieva M, Vassileva V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int J Mol Sci 2023; 24:ijms24065105. [PMID: 36982199 PMCID: PMC10049000 DOI: 10.3390/ijms24065105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.
Collapse
|
14
|
Zhang NN, Zhang Y, Wang ZZ, Chen NH. Connexin 43: insights into candidate pathological mechanisms of depression and its implications in antidepressant therapy. Acta Pharmacol Sin 2022; 43:2448-2461. [PMID: 35145238 PMCID: PMC9525669 DOI: 10.1038/s41401-022-00861-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/06/2022] [Indexed: 11/09/2022]
Abstract
Major depressive disorder (MDD), a chronic and recurrent disease characterized by anhedonia, pessimism or even suicidal thought, remains a major chronic mental concern worldwide. Connexin 43 (Cx43) is the most abundant connexin expressed in astrocytes and forms the gap junction channels (GJCs) between astrocytes, the most abundant and functional glial cells in the brain. Astrocytes regulate neurons' synaptic strength and function by expressing receptors and regulating various neurotransmitters. Astrocyte dysfunction causes synaptic abnormalities, which are related to various mood disorders, e.g., depression. Increasing evidence suggests a crucial role of Cx43 in the pathogenesis of depression. Depression down-regulates Cx43 expression in humans and rats, and dysfunction of Cx43 also induces depressive behaviors in rats and mice. Recently Cx43 has received considerable critical attention and is highly implicated in the onset of depression. However, the pathological mechanisms of depression-like behavior associated with Cx43 still remain ambiguous. In this review we summarize the recent progress regarding the underlying mechanisms of Cx43 in the etiology of depression-like behaviors including gliotransmission, metabolic disorders, and neuroinflammation. We also discuss the effects of antidepressants (monoamine antidepressants and ketamine) on Cx43. The clarity of the candidate pathological mechanisms of depression-like behaviors associated with Cx43 and its potential pharmacological roles for antidepressants will benefit the exploration of a novel antidepressant target.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
15
|
Connexins Signatures of the Neurovascular Unit and Their Physio-Pathological Functions. Int J Mol Sci 2022; 23:ijms23179510. [PMID: 36076908 PMCID: PMC9455936 DOI: 10.3390/ijms23179510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Central nervous system (CNS) homeostasis is closely linked to the delicate balance of the microenvironment in which different cellular components of the neurovascular unit (NVU) coexist. Intercellular communication plays a pivotal role in exchanges of signaling molecules and mediators essential for survival functions, as well as in the removal of disturbing elements that can lead to related pathologies. The specific signatures of connexins (Cxs), proteins which form either gap junctions (GJs) or hemichannels (HCs), represent the biological substrate of the pathophysiological balance. Connexin 43 (Cx43) is undoubtedly one of the most important factors in glia–neuro–vascular crosstalk. Herein, Cxs signatures of every NVU component are highlighted and their critical influence on functional processes in healthy and pathological conditions of nervous microenvironment is reviewed.
Collapse
|
16
|
Zhao YX, Tang YX, Sun XH, Zhu SY, Dai XY, Li XN, Li JL. Gap Junction Protein Connexin 43 as a Target Is Internalized in Astrocyte Neurotoxicity Caused by Di-(2-ethylhexyl) Phthalate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5921-5931. [PMID: 35446567 DOI: 10.1021/acs.jafc.2c01635] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in plastic products, consumer products, and packaging materials. It is of great health concern in both animals and humans as it released into the environment and entered into the body from plastic products over time, thereby resulting in neurotoxicity. As a pivotal regulator of the central nervous system (CNS), astrocytes, are crucial for maintaining brain homeostasis. Nevertheless, the underlying reason for astrocyte neurotoxicity due to DEHP exposure remains incompletely understood. Here, using an in vivo model of neurotoxicity in quail, this study summarizes that Cx43 is internalized by phosphorylation and translocated to the nucleus as a consequence of DEHP exposure in astrocytes. This study further demonstrated that astrocytes transformed to pro-inflammatory status and induced the formation of autophagosomes. Of note, integrated immunofluorescent codetection approaches revealed an overexpression of the glial fibrillary acidic protein (GFAP) and down-expression of Cx43 in astrocytes. Therefore, in terms of neurotoxicity, this experiment in vivo models directly linked Cx43 internalization to autophagy and neuroinflammation and ultimately locked these changes to the astrocytes of the brain. These findings unveil a potential approach targeting Cx43 internalization for the treatment of neurodegeneration caused by DEHP exposure in astrocytes.
Collapse
Affiliation(s)
- Ying-Xin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yi-Xi Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiao-Han Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
17
|
McCutcheon S, Spray DC. Glioblastoma-Astrocyte Connexin 43 Gap Junctions Promote Tumor Invasion. Mol Cancer Res 2022; 20:319-331. [PMID: 34654721 PMCID: PMC8816813 DOI: 10.1158/1541-7786.mcr-21-0199] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM), classified as World Health Organization grade IV astrocytoma, is the deadliest adult cancer of the central nervous system. An important contributing factor to poor survival rates in GBM is extensive invasion, which decreases the efficacy of resection and subsequent adjuvant therapies. These treatments could be markedly improved with increased resolution of the genetic and molecular initiators and effectors of invasion. Connexin 43 (Cx43) is the principal astrocytic gap junction (GJ) protein. Despite the heterogeneity of GBM, a subpopulation of cells in almost all GBM tumors express Cx43. Functional GJs between GBM cells and astrocytes at the tumor edge are of critical interest for understanding invasion. In this study, we find that both in vitro and in ex vivo slice cultures, GBM is substantially less invasive when placed in a Cx43-deficient astrocyte environment. Furthermore, when Cx43 is deleted in GBM, the invasive phenotype is recovered. These data strongly suggest that there are opposing roles for Cx43 in GBM migration. We find that Cx43 is localized to the tumor edge in our ex vivo model, suggesting that GBM-astrocyte GJ communication at the tumor border is a driving force for invasion. Finally, we find that by a Cx43-dependent mechanism, but likely not direct channel-mediated diffusion, miRNAs associated with cell-matrix adhesion are transferred from GBM to astrocytes and miR-19b promotes invasion, revealing a role for post-transcriptional manipulation of astrocytes in fostering an invasion-permissive peritumoral niche. IMPLICATIONS: Cx43-mediated communication, specifically miRNA transfer, profoundly impacts glioblastoma invasion and may enable further therapeutic insight.
Collapse
Affiliation(s)
- Sean McCutcheon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York.
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
18
|
Sahni M, Bhandari V. Patho-mechanisms of the origins of bronchopulmonary dysplasia. Mol Cell Pediatr 2021; 8:21. [PMID: 34894313 PMCID: PMC8665964 DOI: 10.1186/s40348-021-00129-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of prematurity, despite significant advancement in neonatology over the last couple of decades. The new BPD is characterized histopathologically by impaired lung alveolarization and dysregulated vascularization. With the increased survival of extremely preterm infants, the risk for the development of BPD remains high, emphasizing the continued need to understand the patho-mechanisms that play a role in the development of this disease. This brief review summarizes recent advances in our understanding of the maldevelopment of the premature lung, highlighting recent research in pathways of oxidative stress-related lung injury, the role of placental insufficiency, growth factor signaling, the extracellular matrix, and microRNAs.
Collapse
Affiliation(s)
- Mitali Sahni
- Pediatrix Medical Group, Sunrise Children's Hospital, Las Vegas, NV, USA.,University of Nevada, Las Vegas, NV, USA
| | - Vineet Bhandari
- Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
19
|
Endothelial Dysfunction through Oxidatively Generated Epigenetic Mark in Respiratory Viral Infections. Cells 2021; 10:cells10113067. [PMID: 34831290 PMCID: PMC8623825 DOI: 10.3390/cells10113067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
The bronchial vascular endothelial network plays important roles in pulmonary pathology during respiratory viral infections, including respiratory syncytial virus (RSV), influenza A(H1N1) and importantly SARS-Cov-2. All of these infections can be severe and even lethal in patients with underlying risk factors.A major obstacle in disease prevention is the lack of appropriate efficacious vaccine(s) due to continuous changes in the encoding capacity of the viral genome, exuberant responsiveness of the host immune system and lack of effective antiviral drugs. Current management of these severe respiratory viral infections is limited to supportive clinical care. The primary cause of morbidity and mortality is respiratory failure, partially due to endothelial pulmonary complications, including edema. The latter is induced by the loss of alveolar epithelium integrity and by pathological changes in the endothelial vascular network that regulates blood flow, blood fluidity, exchange of fluids, electrolytes, various macromolecules and responses to signals triggered by oxygenation, and controls trafficking of leukocyte immune cells. This overview outlines the latest understanding of the implications of pulmonary vascular endothelium involvement in respiratory distress syndrome secondary to viral infections. In addition, the roles of infection-induced cytokines, growth factors, and epigenetic reprogramming in endothelial permeability, as well as emerging treatment options to decrease disease burden, are discussed.
Collapse
|
20
|
Perez-Gelvez YNC, Camus AC, Bridger R, Wells L, Rhodes OE, Bergmann CW. Effects of chronic exposure to low levels of IR on Medaka ( Oryzias latipes): a proteomic and bioinformatic approach. Int J Radiat Biol 2021; 97:1485-1501. [PMID: 34355643 DOI: 10.1080/09553002.2021.1962570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Chronic exposure to ionizing radiation (IR) at low doses (<100 mGy) has been insufficiently studied to understand fully the risk to health. Relatively little knowledge exists regarding how species and healthy tissues respond at the protein level to chronic exposure to low doses of IR, and mass spectrometric-based profiling of protein expression is a powerful tool for studying changes in protein abundance. MATERIALS AND METHODS SDS gel electrophoresis, LC-MS/MS mass spectrometry-based approaches and bioinformatic data analytics were used to detect proteomic changes following chronic exposure to moderate/low doses of radiation in adults and normally developed Medaka fish (Oryzias latipes). RESULTS Significant variations in the abundance of proteins involved in thyroid hormone signaling and lipid metabolism were detected, which could be related to the gonadal regression phenotype observed after 21.04 mGy and 204.3 mGy/day exposure. The global proteomic change was towards overexpression of proteins in muscle and skin, while the opposite effect was observed in internal organs. CONCLUSION The present study provides information on the impacts of biologically relevant low doses of IR, which will be useful in future research for the identification of potential biomarkers of IR exposure and allow for a better assessment of radiation biosafety regulations.
Collapse
Affiliation(s)
- Yeni Natalia C Perez-Gelvez
- Carbohydrate Complex Research Center, Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Alvin C Camus
- College of Veterinary Medicine, Department of Pathology, The University of Georgia, Athens, GA, USA
| | - Robert Bridger
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Lance Wells
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Olin E Rhodes
- Savannah River Ecology Laboratory, Odum School of Ecology, The University of Georgia, Athens, GA, USA
| | - Carl W Bergmann
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| |
Collapse
|
21
|
Qing C, Xinyi Z, Xuefei Y, Xindong X, Jianhua F. The Specific Connexin 43-Inhibiting Peptide Gap26 Improved Alveolar Development of Neonatal Rats With Hyperoxia Exposure. Front Pharmacol 2021; 12:587267. [PMID: 34290603 PMCID: PMC8287833 DOI: 10.3389/fphar.2021.587267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common devastating pulmonary complication in preterm infants. Alveolar maldevelopment is the crucial pathological change of BPD highly associated with oxidative stress–mediated excessive apoptosis. Cellular injury can be propagated and amplified by gap junction (GJ)–mediated intercellular communication. Connexin 43 (Cx43) is the most ubiquitous and critical GJ protein. Gap26 is a specific Cx43 mimic peptide, playing as a Cx43-GJ inhibitor. We hypothesized that Cx43-GJ was involved in alveolar maldevelopment of BPD via amplifying oxidative stress signaling and inducing excessive apoptosis. Neonatal Sprague Dawley rats were kept in either normoxia (21% O2) or hyperoxia (85% O2) continuously from postnatal day (PN) 1 to 14 in the presence or absence of Gap26. Moreover, RLE-6TN cells (type II alveolar epithelial cells of rats) were cultured in vitro under normoxia (21% O2) or hyperoxia (85% O2). RLE-6TN cells were treated by N-acetyl cysteine (NAC) (a kind of reactive oxygen species (ROS) scavenger) or Gap26. Morphological properties of lung tissue are detected. Markers associated with Cx43 expression, ROS production, the activity of the ASK1-JNK/p38 signaling pathway, and apoptotic level are detected in vivo and in vitro, respectively. In vitro, the ability of GJ-mediated intercellular communication was examined by dye-coupling assay. In vitro, our results demonstrated ROS increased Cx43 expression and GJ-mediated intercellular communication and Gap26 treatment decreased ROS production, inhibited ASK1-JNK/p38 signaling, and decreased apoptosis. In vivo, we found that hyperoxia exposure resulted in increased ROS production and Cx43 expression, activated ASK1-JNK/p38 signaling, and induced excessive apoptosis. However, Gap26 treatment reversed these changes, thus improving alveolar development in neonatal rats with hyperoxia exposure. In summary, oxidative stress increased Cx43 expression and Cx43-GJ–mediated intercellular communication. And Cx43-GJ–mediated intercellular communication amplified oxidative stress signaling, inducing excessive apoptosis via the ASK1-JNK/p38 signaling pathway. The specific connexin 43–inhibiting peptide Gap26 was a novel therapeutic strategy to improve the alveolar development of BPD.
Collapse
Affiliation(s)
- Cai Qing
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhao Xinyi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Xuefei
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Xindong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fu Jianhua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Kumar S, Ramakrishnan H, Viswanathan S, Akopian A, Bloomfield SA. Neuroprotection of the Inner Retina Also Prevents Secondary Outer Retinal Pathology in a Mouse Model of Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:35. [PMID: 34297802 PMCID: PMC8300060 DOI: 10.1167/iovs.62.9.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose We examined structural and functional changes in the outer retina of a mouse model of glaucoma. We examined whether these changes are a secondary consequence of damage in the inner retina and whether neuroprotection of the inner retina also prevents outer retinal changes. Methods We used an established microbead occlusion model of glaucoma whereby intraocular pressure (IOP) was elevated. Specific antibodies were used to label rod and cone bipolar cells (BCs), horizontal cells (HCs), and retinal ganglion cells (RGCs), as well as synaptic components in control and glaucomatous eyes, to assess structural damage and cell loss. ERG recordings were made to assess outer retina function. Results We found structural and functional damage of BCs, including significant cell loss and dendritic/axonal remodeling of HCs, following IOP elevation. The first significant loss of both BCs occurred at 4 to 5 weeks after microbead injection. However, early changes in the dendritic structure of RGCs were observed at 3 weeks, but significant changes in the rod BC axon terminal structure were not seen until 4 weeks. We found that protection of inner retinal neurons in glaucomatous eyes by pharmacological blockade of gap junctions or genetic ablation of connexin 36 largely prevented outer retinal damage. Conclusions Together, our results indicate that outer retinal impairments in glaucoma are a secondary sequalae of primary damage in the inner retina. The finding that neuroprotection of the inner retina can also prevent outer retinal damage has important implications with regard to the targets for effective neuroprotective therapy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Hariharasubramanian Ramakrishnan
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Suresh Viswanathan
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Abram Akopian
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Stewart A. Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| |
Collapse
|
23
|
Zeni O, Romeo S, Sannino A, Palumbo R, Scarfì MR. Evidence of bystander effect induced by radiofrequency radiation in a human neuroblastoma cell line. ENVIRONMENTAL RESEARCH 2021; 196:110935. [PMID: 33647301 DOI: 10.1016/j.envres.2021.110935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
In previous studies we demonstrated that radiofrequency (RF) electromagnetic fields (EMF) is able to reduce DNA damage induced by a subsequent treatment with genotoxic agents, resembling the adaptive response, a phenomenon well known in radiobiology. In this study we report on the capability of the culture medium from SH-SY5Y neuroblastoma cells exposed to 1950 MHz to elicit, in recipient non-exposed cells, a reduction of menadione-induced DNA damage (P < 0.05; comet assay), indicating the capability of non-ionizing radiation to elicit a bystander effect. A comparable reduction was also detected in cultures directly exposed to the same EMF conditions (P < 0.05), confirming the adaptive response. In the same exposure conditions, we also evidenced an increase of heat shock protein 70 (hsp70) in culture medium of cells exposed to RF with respect to sham exposed ones (P < 0.05; western blot analysis), while no differences were detected in the intracellular content of hsp70. On the whole, our results evidence a protective effect of RF against menadione-induced DNA damage in directly and non-directly exposed cells, and suggest hsp70 pathway to be investigated as one of the potential candidate underpinning the interaction between RF exposure and biological systems.
Collapse
Affiliation(s)
- Olga Zeni
- CNR-Institute for the Electromagnetic Sensing of the Environment, Via Diocleziano 328, 80124, Naples, Italy.
| | - Stefania Romeo
- CNR-Institute for the Electromagnetic Sensing of the Environment, Via Diocleziano 328, 80124, Naples, Italy.
| | - Anna Sannino
- CNR-Institute for the Electromagnetic Sensing of the Environment, Via Diocleziano 328, 80124, Naples, Italy.
| | - Rosanna Palumbo
- CNR-Institute for Biostructures and Bioimaging, Via Mezzocannone, 16, 80134, Naples, Italy.
| | - Maria Rosaria Scarfì
- CNR-Institute for the Electromagnetic Sensing of the Environment, Via Diocleziano 328, 80124, Naples, Italy.
| |
Collapse
|
24
|
Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial Cells in Emerging Viral Infections. Front Cardiovasc Med 2021; 8:619690. [PMID: 33718448 PMCID: PMC7943456 DOI: 10.3389/fcvm.2021.619690] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
There are several reasons to consider the role of endothelial cells in COVID-19 and other emerging viral infections. First, severe cases of COVID-19 show a common breakdown of central vascular functions. Second, SARS-CoV-2 replicates in endothelial cells. Third, prior deterioration of vascular function exacerbates disease, as the most common comorbidities of COVID-19 (obesity, hypertension, and diabetes) are all associated with endothelial dysfunction. Importantly, SARS-CoV-2's ability to infect endothelium is shared by many emerging viruses, including henipaviruses, hantavirus, and highly pathogenic avian influenza virus, all specifically targeting endothelial cells. The ability to infect endothelium appears to support generalised dissemination of infection and facilitate the access to certain tissues. The disturbed vascular function observed in severe COVID-19 is also a prominent feature of many other life-threatening viral diseases, underscoring the need to understand how viruses modulate endothelial function. We here review the role of vascular endothelial cells in emerging viral infections, starting with a summary of endothelial cells as key mediators and regulators of vascular and immune responses in health and infection. Next, we discuss endotheliotropism as a possible virulence factor and detail features that regulate viruses' ability to attach to and enter endothelial cells. We move on to review how endothelial cells detect invading viruses and respond to infection, with particular focus on pathways that may influence vascular function and the host immune system. Finally, we discuss how endothelial cell function can be dysregulated in viral disease, either by viral components or as bystander victims of overshooting or detrimental inflammatory and immune responses. Many aspects of how viruses interact with the endothelium remain poorly understood. Considering the diversity of such mechanisms among different emerging viruses allows us to highlight common features that may be of general validity and point out important challenges.
Collapse
Affiliation(s)
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Oslo, Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway.,AquaMed Consulting AS, Oslo, Norway
| | - Reidunn Edelmann
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| |
Collapse
|
25
|
Tirosh A, Tuncman G, Calay ES, Rathaus M, Ron I, Tirosh A, Yalcin A, Lee YG, Livne R, Ron S, Minsky N, Arruda AP, Hotamisligil GS. Intercellular Transmission of Hepatic ER Stress in Obesity Disrupts Systemic Metabolism. Cell Metab 2021; 33:319-333.e6. [PMID: 33340456 PMCID: PMC7858244 DOI: 10.1016/j.cmet.2020.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/30/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum stress (ERS) has a pathophysiological role in obesity-associated insulin resistance. Yet, the coordinated tissue response to ERS remains unclear. Increased connexin 43 (Cx43)-mediated intercellular communication has been implicated in tissue-adaptive and -maladaptive response to various chronic stresses. Here, we demonstrate that in hepatocytes, ERS results in increased Cx43 expression and cell-cell coupling. Co-culture of ER-stressed "donor" cells resulted in intercellular transmission of ERS and dysfunction to ERS-naive "recipient" cells ("bystander response"), which could be prevented by genetic or pharmacologic suppression of Cx43. Hepatocytes from obese mice were able to transmit ERS to hepatocytes from lean mice, and mice lacking liver Cx43 were protected from diet-induced ERS, insulin resistance, and hepatosteatosis. Taken together, our results indicate that in obesity, the increased Cx43-mediated cell-cell coupling allows intercellular propagation of ERS. This novel maladaptive response to over-nutrition exacerbates the tissue ERS burden, promoting hepatosteatosis and impairing whole-body glucose metabolism.
Collapse
Affiliation(s)
- Amir Tirosh
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Harvard Medical School, Boston, MA 02115, USA.
| | - Gurol Tuncman
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ediz S Calay
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Moran Rathaus
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idit Ron
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amit Tirosh
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abdullah Yalcin
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Adnan Menderes Üniversitesi Medical School, Department of Medical Biology, 09100 Aydin, Turkey
| | - Yankun G Lee
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Rinat Livne
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Ron
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neri Minsky
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Paula Arruda
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
26
|
Tishchenko A, Azorín DD, Vidal-Brime L, Muñoz MJ, Arenas PJ, Pearce C, Girao H, Ramón y Cajal S, Aasen T. Cx43 and Associated Cell Signaling Pathways Regulate Tunneling Nanotubes in Breast Cancer Cells. Cancers (Basel) 2020; 12:E2798. [PMID: 33003486 PMCID: PMC7601615 DOI: 10.3390/cancers12102798] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Connexin 43 (Cx43) forms gap junctions that mediate the direct intercellular diffusion of ions and small molecules between adjacent cells. Cx43 displays both pro- and anti-tumorigenic properties, but the mechanisms underlying these characteristics are not fully understood. Tunneling nanotubes (TNTs) are long and thin membrane projections that connect cells, facilitating the exchange of not only small molecules, but also larger proteins, organelles, bacteria, and viruses. Typically, TNTs exhibit increased formation under conditions of cellular stress and are more prominent in cancer cells, where they are generally thought to be pro-metastatic and to provide growth and survival advantages. Cx43 has been described in TNTs, where it is thought to regulate small molecule diffusion through gap junctions. Here, we developed a high-fidelity CRISPR/Cas9 system to knockout (KO) Cx43. We found that the loss of Cx43 expression was associated with significantly reduced TNT length and number in breast cancer cell lines. Notably, secreted factors present in conditioned medium stimulated TNTs more potently when derived from Cx43-expressing cells than from KO cells. Moreover, TNT formation was significantly induced by the inhibition of several key cancer signaling pathways that both regulate Cx43 and are regulated by Cx43, including RhoA kinase (ROCK), protein kinase A (PKA), focal adhesion kinase (FAK), and p38. Intriguingly, the drug-induced stimulation of TNTs was more potent in Cx43 KO cells than in wild-type (WT) cells. In conclusion, this work describes a novel non-canonical role for Cx43 in regulating TNTs, identifies key cancer signaling pathways that regulate TNTs in this setting, and provides mechanistic insight into a pro-tumorigenic role of Cx43 in cancer.
Collapse
Affiliation(s)
- Alexander Tishchenko
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Daniel D. Azorín
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Laia Vidal-Brime
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - María José Muñoz
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Pol Jiménez Arenas
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Christopher Pearce
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Henrique Girao
- Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, CACC, 3000-548 Coimbra, Portugal
| | - Santiago Ramón y Cajal
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
- Anatomía Patológica, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
27
|
Liang Z, Wang X, Hao Y, Qiu L, Lou Y, Zhang Y, Ma D, Feng J. The Multifaceted Role of Astrocyte Connexin 43 in Ischemic Stroke Through Forming Hemichannels and Gap Junctions. Front Neurol 2020; 11:703. [PMID: 32849190 PMCID: PMC7411525 DOI: 10.3389/fneur.2020.00703] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is a multi-factorial cerebrovascular disease with high worldwide morbidity and mortality. In the past few years, multiple studies have revealed the underlying mechanism of ischemia/reperfusion injury, including calcium overload, amino acid toxicity, oxidative stress, and inflammation. Connexin 43 (Cx43), the predominant connexin protein in astrocytes, has been recently proven to display non-substitutable roles in the pathology of ischemic stroke development and progression through forming gap junctions and hemichannels. Under normal conditions, astrocytic Cx43 could be found in hemichannels or in the coupling with other hemichannels on astrocytes, neurons, or oligodendrocytes to form the neuro-glial syncytium, which is involved in metabolites exchange between communicated cells, thus maintaining the homeostasis of the CNS environment. In ischemic stroke, the phosphorylation of Cx43 might cause the degradation of gap junctions and the opening of hemichannels, contributing to the release of inflammatory mediators. However, the remaining gap junctions could facilitate the exchange of protective and harmful metabolites between healthy and injured cells, protecting the injured cells to some extent or damaging the healthy cells depending on the balance of the exchange of protective and harmful metabolites. In this study, we review the changes in astrocytic Cx43 expression and distribution as well as the influence of these changes on the function of astrocytes and other cells in the CNS, providing new insight into the pathology of ischemic stroke injury; we also discuss the potential of astrocytic Cx43 as a target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Lin Qiu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yaoting Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Kenmochi H, Yamasaki T, Koizumi S, Sameshima T, Namba H. Nicotine does not affect stem cell properties requisite for suicide gene therapy against glioma. Neurol Res 2020; 42:818-827. [PMID: 32588772 DOI: 10.1080/01616412.2020.1782123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE: Glioblastoma is one of the most lethal tumors in adult central nervous system with a median survival of a year and half and effective therapeutic strategy is urgently needed. For that reason, stem cell-based suicide gene therapies have attracted much interest because of potent tumor tropism of stem cells and bystander effect. In this current clinical situation, stem cells are promising delivery tool of suicide genes for glioma therapy. Since habitual cigarette smoking still prevails worldwide, we investigated the effect of nicotine on stem cell tropism toward glioma and gap junctional intercellular communication (GJIC) function between glioma and stem cells, both of which are important for suicide gene therapies. Methods: Mouse induced pluripotent stem cell-derived neural stem cells (iPS-NSCs) and human dental pulp mesenchymal stem cells (DPSCs) were used. The effect of nicotine on tumor tropism to glioma-conditioned medium (CM) at a non-cytotoxic concentration was assessed with Matrigel invasion assay. Nicotine effect on GJIC was assessed with the scrape loading/dye transfer (SL/DT) assay for co-culture of glioma and stem cells and the parachute assay among glioma cells using high-content analysis. Results: Tumor tropism of iPS-NSCs toward GL261-CM and DPSCs toward U251-CM was not affected by nicotine (0.1 and 1 µM). Nicotine at the concentrations equivalent to habitual smoking (1 µM) did not affect GJIC of iPS-NSC/GL261 and DPSC/U251 and GJIC among each glioma cells. Conclusions: The study demonstrated that non-cytotoxic concentrations of nicotine did not significantly change the stem cell properties requisite for stem cell-based suicide gene therapy.
Collapse
Affiliation(s)
- Hiroaki Kenmochi
- Department of Neurosurgery, Hamamatsu University School of Medicine , Higashi-ku, Hamamatsu, Japan
| | - Tomohiro Yamasaki
- Department of Neurosurgery, Hamamatsu University School of Medicine , Higashi-ku, Hamamatsu, Japan
| | - Shinichiro Koizumi
- Department of Neurosurgery, Hamamatsu University School of Medicine , Higashi-ku, Hamamatsu, Japan
| | - Tetsuro Sameshima
- Department of Neurosurgery, Hamamatsu University School of Medicine , Higashi-ku, Hamamatsu, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine , Higashi-ku, Hamamatsu, Japan
| |
Collapse
|
29
|
Wareham LK, Calkins DJ. The Neurovascular Unit in Glaucomatous Neurodegeneration. Front Cell Dev Biol 2020; 8:452. [PMID: 32656207 PMCID: PMC7325980 DOI: 10.3389/fcell.2020.00452] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
Glaucoma is a neurodegenerative disease of the visual system and leading cause of blindness worldwide. The disease is associated with sensitivity to intraocular pressure (IOP), which over a large range of magnitudes stresses retinal ganglion cell (RGC) axons as they pass through the optic nerve head in forming the optic projection to the brain. Despite clinical efforts to lower IOP, which is the only modifiable risk factor for glaucoma, RGC degeneration and ensuing loss of vision often persist. A major contributor to failure of hypotensive regimens is the multifactorial nature of how IOP-dependent stress influences RGC physiology and structure. This stress is conveyed to the RGC axon through interactions with structural, glial, and vascular components in the nerve head and retina. These interactions promote pro-degenerative pathways involving biomechanical, metabolic, oxidative, inflammatory, immunological and vascular challenges to the microenvironment of the ganglion cell and its axon. Here, we focus on the contribution of vascular dysfunction and breakdown of neurovascular coupling in glaucoma. The vascular networks of the retina and optic nerve head have evolved complex mechanisms that help to maintain a continuous blood flow and supply of metabolites despite fluctuations in ocular perfusion pressure. In healthy tissue, autoregulation and neurovascular coupling enable blood flow to stay tightly controlled. In glaucoma patients evidence suggests these pathways are dysfunctional, thus highlighting a potential role for pathways involved in vascular dysfunction in progression and as targets for novel therapeutic intervention.
Collapse
Affiliation(s)
- Lauren K Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
30
|
Varela-Vázquez A, Guitián-Caamaño A, Carpintero-Fernandez P, Fonseca E, Sayedyahossein S, Aasen T, Penuela S, Mayán MD. Emerging functions and clinical prospects of connexins and pannexins in melanoma. Biochim Biophys Acta Rev Cancer 2020; 1874:188380. [PMID: 32461135 DOI: 10.1016/j.bbcan.2020.188380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Cellular communication through gap junctions and hemichannels formed by connexins and through channels made by pannexins allows for metabolic cooperation and control of cellular activity and signalling. These channel proteins have been described to be tumour suppressors that regulate features such as cell death, proliferation and differentiation. However, they display cancer type-dependent and stage-dependent functions and may facilitate tumour progression through junctional and non-junctional pathways. The accumulated knowledge and emerging strategies to target connexins and pannexins are providing novel clinical opportunities for the treatment of cancer. Here, we provide an updated overview of the role of connexins and pannexins in malignant melanoma. We discuss how targeting of these channel proteins may be used to potentiate antitumour effects in therapeutic settings, including through improved immune-mediated tumour elimination.
Collapse
Affiliation(s)
- Adrián Varela-Vázquez
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Amanda Guitián-Caamaño
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Paula Carpintero-Fernandez
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain; Dermatology Deparment, University Hospital of A Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Samar Sayedyahossein
- Department of Anatomy & Cell Biology, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A5C1, Canada
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, Barcelona, Spain
| | - Silvia Penuela
- Department of Anatomy & Cell Biology, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A5C1, Canada
| | - María D Mayán
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain.
| |
Collapse
|
31
|
McCutcheon S, Majeska RJ, Spray DC, Schaffler MB, Vazquez M. Apoptotic Osteocytes Induce RANKL Production in Bystanders via Purinergic Signaling and Activation of Pannexin Channels. J Bone Miner Res 2020; 35:966-977. [PMID: 31910292 PMCID: PMC8009310 DOI: 10.1002/jbmr.3954] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/25/2019] [Accepted: 12/14/2019] [Indexed: 12/15/2022]
Abstract
Localized apoptosis of osteocytes, the tissue-resident cells within bone, occurs with fatigue microdamage and activates bone resorption. Osteoclasts appear to target and remove dying osteocytes, resorbing damaged bone matrix as well. Osteocyte apoptosis similarly activates bone resorption with estrogen loss and in disuse. Apoptotic osteocytes trigger viable neighbor (ie, bystander) osteocytes to produce RANKL, the cytokine required for osteoclast activation. Signals from apoptotic osteocytes that trigger this bystander RANKL expression remain obscure. Studying signaling among osteocytes has been hampered by lack of in vitro systems that model the limited communication among osteocytes in vivo (ie, via gap junctions on cell processes and/or paracrine signals through thin pericellular fluid spaces around osteocytes). Here, we used a novel multiscale fluidic device (the Macro-micro-nano, or Mμn) that reproduces these key anatomical features. Osteocytes in discrete compartments of the device communicate only via these limited pathways, which allows assessment of their roles in triggering osteocytes RANKL expression. Apoptosis of MLOY-4 osteocytes in the Mμn device caused increased osteocyte RANKL expression in the neighboring compartment, consistent with in vivo findings. This RANKL upregulation in bystander osteocytes was prevented by blocking Pannexin 1 channels as well as its ATP receptor. ATP alone caused comparable RANKL upregulation in bystander osteocytes. Finally, blocking Connexin 43 gap junctions did not abolish osteocyte RANKL upregulation, but did alter the distribution of RANKL expressing bystander osteocytes. These findings point to extracellular ATP, released from apoptotic osteocytes via Panx1 channels, as a major signal for triggering bystander osteocyte RANKL expression and activating bone remodeling. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sean McCutcheon
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Robert J Majeska
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - David C Spray
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
32
|
HIV gp120 Protein Increases the Function of Connexin 43 Hemichannels and Pannexin-1 Channels in Astrocytes: Repercussions on Astroglial Function. Int J Mol Sci 2020; 21:ijms21072503. [PMID: 32260308 PMCID: PMC7178136 DOI: 10.3390/ijms21072503] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
At least half of human immunodeficiency virus (HIV)-infected individuals suffer from a wide range of cognitive, behavioral and motor deficits, collectively known as HIV-associated neurocognitive disorders (HAND). The molecular mechanisms that amplify damage within the brain of HIV-infected individuals are unknown. Recently, we described that HIV augments the opening of connexin-43 (Cx43) hemichannels in cultured human astrocytes, which result in the collapse of neuronal processes. Whether HIV soluble viral proteins such as gp120, can regulate hemichannel opening in astrocytes is still ignored. These channels communicate the cytosol with the extracellular space during pathological conditions. We found that gp120 enhances the function of both Cx43 hemichannels and pannexin-1 channels in mouse cortical astrocytes. These effects depended on the activation of IL-1β/TNF-α, p38 MAP kinase, iNOS, cytoplasmic Ca2+ and purinergic signaling. The gp120-induced channel opening resulted in alterations in Ca2+ dynamics, nitric oxide production and ATP release. Although the channel opening evoked by gp120 in astrocytes was reproduced in ex vivo brain preparations, these responses were heterogeneous depending on the CA1 region analyzed. We speculate that soluble gp120-induced activation of astroglial Cx43 hemichannels and pannexin-1 channels could be crucial for the pathogenesis of HAND.
Collapse
|
33
|
Chu IR, Pan RL, Yang CS, Wu LC. A doxycycline-inducible C17.2 neural stem cell-based combination of differentiation and suicide gene therapy for an in vitro tumorigenic C6 glioma model. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1804449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Inn-Ray Chu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Rong-Long Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, Taiwan
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Chen Wu
- Department of Applied Chemistry, College of Science and Technology, National Chi Nan University, Nantou, Taiwan
| |
Collapse
|
34
|
Gap Junction Intercellular Communication in the Carcinogenesis Hallmarks: Is This a Phenomenon or Epiphenomenon? Cells 2019; 8:cells8080896. [PMID: 31416286 PMCID: PMC6721698 DOI: 10.3390/cells8080896] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/03/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
If occupational tumors are excluded, cancer causes are largely unknown. Therefore, it appeared useful to work out a theory explaining the complexity of this disease. More than fifty years ago the first demonstration that cells communicate with each other by exchanging ions or small molecules through the participation of connexins (Cxs) forming Gap Junctions (GJs) occurred. Then the involvement of GJ Intercellular Communication (GJIC) in numerous physiological cellular functions, especially in proliferation control, was proven and accounts for the growing attention elicited in the field of carcinogenesis. The aim of the present paper is to verify and discuss the role of Cxs, GJs, and GJIC in cancer hallmarks, pointing on the different involved mechanisms in the context of the multi-step theory of carcinogenesis. Functional GJIC acts both as a tumor suppressor and as a tumor enhancer in the metastatic stage. On the contrary, lost or non-functional GJs allow the uncontrolled proliferation of stem/progenitor initiated cells. Thus, GJIC plays a key role in many biological phenomena or epiphenomena related to cancer. Depending on this complexity, GJIC can be considered a tumor suppressor in controlling cell proliferation or a cancer ally, with possible preventive or therapeutic implications in both cases.
Collapse
|
35
|
Wu DP, Ding CH, Bai LR, Zhou Y, Yang SM, Zhang F, Huang JL. Decreased phototoxicity of photodynamic therapy by Cx32/Cx26-composed GJIC: A "Good Samaritan" effect. Lasers Surg Med 2019; 51:301-308. [PMID: 30615224 DOI: 10.1002/lsm.23044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Photodynamic therapy (PDT) has been widely used to treat malignant tumors. Our previous studies indicated that connexin (Cx) 32- and Cx26-composed gap junctional intercellular communication (GJIC) could improve the phototoxicity of PDT. However, the role of heterotypic Cx32/Cx26-formed GJIC in PDT phototoxicity is still unknown. Thus, the present study was aimed to investigate the effect of Cx32/Cx26-formed GJIC on PDT efficacy. METHODS CCK8 assay was used to detect cell survival after PDT. Western blot assay was utilized to detect Cx32/Cx26 expression. "Parachute" dye-coupling assay was performed to measure the function of GJ channels. The intracellular Ca2+ concentrations were determined using flow cytometer. ELISA assay was performed to detect the intracellular levels of PGE2 and cAMP. RESULTS The present study demonstrates there is a Cx32/Cx26-formed GJIC-dependent reduction of phototoxicity when cells were exposure to low concentration of Photofrin. Such a protective action is missing at low cell density due to the lack of GJ coupling. Under high-cell density condition, where there is opportunity for the cells to contact each other and form GJ, suppressing Cx32/Cx26-formed GJIC by either inhibiting the expression of Cx32/Cx26 or pretreating with GJ channel inhibitor augments PDT phototoxicity after cells were treated with at 2.5 µg/ml Photofrin. The above results suggest that at low Photofrin concentration, the presence of Cx32/Cx26-formed GJIC may decrease the phototoxicity of PDT, leading to the insensitivity of malignant cells to PDT treatment. The GJIC-mediated PDT insensitivity was associated with Ca2+ and prostaglandin E2 (PGE2 ) signaling pathways. CONCLUSION The present study provides a cautionary note that for tumors expressing Cx32/Cx26, the presence of Cx32/Cx26-composed GJIC may cause the resistance of tumor cells to PDT. Oppositely, treatment strategies designed to downregulate the expression of Cx32/Cx26 or restrain the function of Cx32/Cx26-mediated GJIC may increase the sensitivity of malignant cell to PDT. Lasers Surg. Med. 51:301-308, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
| | - Chun-Hui Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
| | - Li-Ru Bai
- Department of Pharmacy, Wuxi Ninth Affiliated Hospital of Suzhou University, Wuxi City 214062, Jiangsu Province, P. R. China
| | - Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
| | - Si-Man Yang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, P. R. China
| | - Fan Zhang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, P. R. China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
| |
Collapse
|
36
|
Vitale ML, Pelletier RM. The anterior pituitary gap junctions: potential targets for toxicants. Reprod Toxicol 2018; 79:72-78. [PMID: 29906538 DOI: 10.1016/j.reprotox.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/16/2023]
Abstract
The anterior pituitary regulates endocrine organs and physiological activities in the body. Environmental pollutants and drugs deleterious to the endocrine system may affect anterior pituitary activity through direct action on anterior pituitary cells. Within the gland, endocrine and folliculostellate cells are organized into and function as individual tridimensional networks, each network regulating its activity by coordinating the connected cells' responses to physiological or pathological cues. The gap junctions connecting endocrine cells and/or folliculostellate cells allow transmission of information among cells that is necessary for adequate network function. Toxicants may affect gap junctions as well as the physiology of the anterior pituitary. However, whether toxicants effects on anterior pituitary hormone secretion involve gap junctions is unknown. The folliculostellate cell gap junctions are sensitive to hormones, cytokines and growth factors. These cells may be an interesting experimental model for evaluating whether toxicants target anterior pituitary gap junctions.
Collapse
Affiliation(s)
- María Leiza Vitale
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC Canada.
| | - R-Marc Pelletier
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC Canada
| |
Collapse
|
37
|
Suppression of connexin 43 phosphorylation promotes astrocyte survival and vascular regeneration in proliferative retinopathy. Proc Natl Acad Sci U S A 2018; 115:E5934-E5943. [PMID: 29891713 DOI: 10.1073/pnas.1803907115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Degeneration of retinal astrocytes precedes hypoxia-driven pathologic neovascularization and vascular leakage in ischemic retinopathies. However, the molecular events that underlie astrocyte loss remain unclear. Astrocytes abundantly express connexin 43 (Cx43), a transmembrane protein that forms gap junction (GJ) channels and hemichannels. Cx channels can transfer toxic signals from dying cells to healthy neighbors under pathologic conditions. Here we show that Cx43 plays a critical role in astrocyte apoptosis and the resulting preretinal neovascularization in a mouse model of oxygen-induced retinopathy. Opening of Cx43 hemichannels was not observed following hypoxia. In contrast, GJ coupling between astrocytes increased, which could lead to amplification of injury. Accordingly, conditional deletion of Cx43 maintained a higher density of astrocytes in the hypoxic retina. We also identify a role for Cx43 phosphorylation in mediating these processes. Increased coupling in response to hypoxia is due to phosphorylation of Cx43 by casein kinase 1δ (CK1δ). Suppression of this phosphorylation using an inhibitor of CK1δ or in site-specific phosphorylation-deficient mice similarly protected astrocytes from hypoxic damage. Rescue of astrocytes led to restoration of a functional retinal vasculature and lowered the hypoxic burden, thereby curtailing neovascularization and neuroretinal dysfunction. We also find that absence of astrocytic Cx43 does not affect developmental angiogenesis or neuronal function in normoxic retinas. Our in vivo work directly links phosphorylation of Cx43 to astrocytic coupling and apoptosis and ultimately to vascular regeneration in retinal ischemia. This study reveals that targeting Cx43 phosphorylation in astrocytes is a potential direction for the treatment of proliferative retinopathies.
Collapse
|
38
|
Ma Y, Han X, de Castro RB, Zhang P, Zhang K, Hu Z, Qin L. Analysis of the bystander effect in cone photoreceptors via a guided neural network platform. SCIENCE ADVANCES 2018; 4:eaas9274. [PMID: 29750200 PMCID: PMC5942910 DOI: 10.1126/sciadv.aas9274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The mammalian retina system consists of a complicated photoreceptor structure, which exhibits extensive random synaptic connections. To study retinal development and degeneration, various experimental models have been used previously, but these models are often uncontrollable, are difficult to manipulate, and do not provide sufficient similarity or precision. Therefore, the mechanisms in many retinal diseases remain unclear because of the limited capability in observing the progression and molecular driving forces. For example, photoreceptor degeneration can spread to surrounding healthy photoreceptors via a phenomenon known as the bystander effect; however, no in-depth observations can be made to decipher the molecular mechanisms or the pathways that contribute to the spreading. It is then necessary to build dissociated neural networks to investigate the communications with controllability of cells and their treatment. We developed a neural network chip (NN-Chip) to load single neurons into highly ordered microwells connected by microchannels for synapse formation to build the neural network. By observing the distribution of apoptosis spreading from light-induced apoptotic cones to the surrounding cones, we demonstrated convincing evidence of the existence of a cone-to-cone bystander killing effect. Combining the NN-Chip with microinjection technology, we also found that the gap junction protein connexin 36 (Cx36) is critical for apoptosis spreading and the bystander effect in cones. In addition, our unique NN-Chip platform provides a quantitative, high-throughput tool for investigating signaling mechanisms and behaviors in neurons and opens a new avenue for screening potential drug targets to cure retinal diseases.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xin Han
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ricardo Bessa de Castro
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
- College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kai Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zhongbo Hu
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
39
|
Cardiotoxic Effects of Short-Term Doxorubicin Administration: Involvement of Connexin 43 in Calcium Impairment. Int J Mol Sci 2017; 18:ijms18102121. [PMID: 29019935 PMCID: PMC5666803 DOI: 10.3390/ijms18102121] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
The use of Doxorubicin (DOXO), a potent antineoplastic agent, is limited by the development of cardiotoxicity. DOXO-induced cardiotoxicity is multifactorial, although alterations in calcium homeostasis, seem to be involved. Since even the Connexin43 (Cx43) plays a pivotal role in these two phenomena, in this study we have analyzed the effects of DOXO on Cx43 expression and localization. Damage caused by anthracyclines on cardiomyocytes is immediate after each injection, in the present study we used a short-term model of DOXO-induced cardiomyopathy. C57BL/6j female mice were randomly divided in groups and injected with DOXO (2 or 10 mg/kg i.p.) for 1–3 or 7 days once every other day. Cardiac function was assessed by Echocardiography. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCAII) and phospholamban (PLB) expression were assessed by Western blot analysis, intracellular [Ca2+] were detected spectrofluorometrically by means of Fura-2 pentakis (acetoxymethyl) ester (FURA-2AM), and Cx43 and pCx43 expression and localization was analyzed by Western blot and confirmed by immunofluorescence analysis. DOXO induces impairment in Ca2+ homeostasis, already evident after a single administration, and affects Cx43 expression and localization. Our data suggest that DOXO-induced alterations in Ca2+ homeostasis causes in the cells the induction of compensatory mechanisms until a certain threshold, above which cardiac injury is triggered.
Collapse
|
40
|
Zeleny TNC, Kohler C, Neutzner A, Killer HE, Meyer P. Cell-Cell Interaction Proteins (Gap Junctions, Tight Junctions, and Desmosomes) and Water Transporter Aquaporin 4 in Meningothelial Cells of the Human Optic Nerve. Front Neurol 2017; 8:308. [PMID: 28706505 PMCID: PMC5489558 DOI: 10.3389/fneur.2017.00308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/13/2017] [Indexed: 01/12/2023] Open
Abstract
Purpose Meningothelial cells (MECs) play a central role in the maintenance of cerebrospinal fluid (CSF) homeostasis and in physiological and pathophysiological processes within the subarachnoid space (SAS) linking them to optic nerve (ON) pathologies. Still, not much is known about their structural properties that might enable MECs to perform specific functions within the ON microenvironment. Methods For closer characterization of the structural properties of the human MEC layer in the arachnoid, we performed immunohistological analyses to evaluate the presence of cell–cell interaction markers, namely, markers for tight junctions (JAM1, Occludin, and Claudin 5), gap junctions (Connexin 26 and 43), and desmosomes (Desmoplakin) as well as for water channel marker aquaporin 4 (AQP4) in retrobulbar, midorbital, and intracanalicular human ON sections. Results MECs displayed immunopositivity for markers of tight junctions (JAM1, Occludin, and Claudin 5) and gap junctions (Connexin 26 and 43) as well as for AQP4 water channels. However, no immunopositivity was found for Desmoplakin. Conclusion MECs are connected via tight junctions and gap junctions, and they possess AQP4 water channels. The presence of these proteins emphasizes the important function of MECs within the ON microenvironment as part of the meningeal barrier. Beyond this barrier function, the expression of these proteins by MECs supports a broader role of these cells in signal transduction and CSF clearance pathways within the ON microenvironment.
Collapse
Affiliation(s)
| | - Corina Kohler
- Department of Biomedicine, Ocular Pharmacology and Physiology, University Hospital Basel, Basel, Switzerland.,Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Albert Neutzner
- Department of Biomedicine, Ocular Pharmacology and Physiology, University Hospital Basel, Basel, Switzerland.,Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Hanspeter E Killer
- Department of Ophthalmology, Kantonsspital Aarau, Aarau, Switzerland.,Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Peter Meyer
- Department of Biomedicine, Ocular Pharmacology and Physiology, University Hospital Basel, Basel, Switzerland.,Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
41
|
Akopian A, Kumar S, Ramakrishnan H, Roy K, Viswanathan S, Bloomfield SA. Targeting neuronal gap junctions in mouse retina offers neuroprotection in glaucoma. J Clin Invest 2017; 127:2647-2661. [PMID: 28604388 PMCID: PMC5490768 DOI: 10.1172/jci91948] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/27/2017] [Indexed: 01/26/2023] Open
Abstract
The progressive death of retinal ganglion cells and resulting visual deficits are hallmarks of glaucoma, but the underlying mechanisms remain unclear. In many neurodegenerative diseases, cell death induced by primary insult is followed by a wave of secondary loss. Gap junctions (GJs), intercellular channels composed of subunit connexins, can play a major role in secondary cell death by forming conduits through which toxic molecules from dying cells pass to and injure coupled neighbors. Here we have shown that pharmacological blockade of GJs or genetic ablation of connexin 36 (Cx36) subunits, which are highly expressed by retinal neurons, markedly reduced loss of neurons and optic nerve axons in a mouse model of glaucoma. Further, functional parameters that are negatively affected in glaucoma, including the electroretinogram, visual evoked potential, visual spatial acuity, and contrast sensitivity, were maintained at control levels when Cx36 was ablated. Neuronal GJs may thus represent potential therapeutic targets to prevent the progressive neurodegeneration and visual impairment associated with glaucoma.
Collapse
|
42
|
Zhao Y, Lai Y, Ge H, Guo Y, Feng X, Song J, Wang Q, Fan L, Peng Y, Cao M, Harris AL, Wang X, Tao L. Non-junctional Cx32 mediates anti-apoptotic and pro-tumor effects via epidermal growth factor receptor in human cervical cancer cells. Cell Death Dis 2017; 8:e2773. [PMID: 28492539 PMCID: PMC5520707 DOI: 10.1038/cddis.2017.183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
The role of connexin proteins (Cx), which form gap junctions (GJ), in progression and chemotherapeutic sensitivity of cervical cancer (CaCx), is unclear. Using cervix specimens (313 CaCx, 78 controls) and CaCx cell lines, we explored relationships among Cx expression, prognostic variables and mechanisms that may link them. In CaCx specimens, Cx32 was upregulated and cytoplasmically localized, and three other Cx downregulated, relative to controls. Cx32 expression correlated with advanced FIGO staging, differentiation and increased tumor size. In CaCx cell lines, Cx32 expression suppressed streptonigrin/cisplatin-induced apoptosis in the absence of functional GJ. In CaCx specimens and cell lines, expression of Cx32 upregulated epidermal growth factor receptor (EGFR) expression. Inhibition of EGFR signaling abrogated the anti-apoptotic effect of Cx32 expression. In conclusion, upregulated Cx32 in CaCx cells produces anti-apoptotic, pro-tumorigenic effects in vivo and vitro. Abnormal Cx32 expression/localization in CaCx appears to be both a mechanism and biomarker of chemotherapeutic resistance.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Pharmacology, Zhongshan
School of Medicine, Sun Yat-Sen University, Guangzhou
510080, China
- Department of Anesthesiology, Sun Yat-Sen
Memorial Hospital, Sun Yat-Sen University, Guangzhou
510120, China
| | - Yongchang Lai
- Department of Pharmacology, Zhongshan
School of Medicine, Sun Yat-Sen University, Guangzhou
510080, China
| | - Hui Ge
- Tumor Research Institute, Xinjiang
Medical University Affiliated Tumor Hospital, Urumqi,
Xinjiang
830000, China
| | - Yunquan Guo
- Department of Pathology, Xinjiang Medical
University Affiliated Tumor Hospital, Urumqi,
Xinjiang
830000, China
| | - Xue Feng
- Tumor Research Institute, Xinjiang
Medical University Affiliated Tumor Hospital, Urumqi,
Xinjiang
830000, China
| | - Jia Song
- Tumor Research Institute, Xinjiang
Medical University Affiliated Tumor Hospital, Urumqi,
Xinjiang
830000, China
| | - Qin Wang
- Department of Pharmacology, Zhongshan
School of Medicine, Sun Yat-Sen University, Guangzhou
510080, China
| | - Lixia Fan
- Department of Pharmacology, Zhongshan
School of Medicine, Sun Yat-Sen University, Guangzhou
510080, China
| | - Yuexia Peng
- Department of Pharmacology, Zhongshan
School of Medicine, Sun Yat-Sen University, Guangzhou
510080, China
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-Sen
Memorial Hospital, Sun Yat-Sen University, Guangzhou
510120, China
| | - Andrew L Harris
- Department of Pharmacology, Physiology
and Neuroscience, New Jersey Medical School - Rutgers University,
Newark, NJ
07103, USA
| | - Xiyan Wang
- Tumor Research Institute, Xinjiang
Medical University Affiliated Tumor Hospital, Urumqi,
Xinjiang
830000, China
| | - Liang Tao
- Department of Pharmacology, Zhongshan
School of Medicine, Sun Yat-Sen University, Guangzhou
510080, China
| |
Collapse
|
43
|
Evaluation of Connexin 43 Redistribution and Endocytosis in Astrocytes Subjected to Ischemia/Reperfusion or Oxygen-Glucose Deprivation and Reoxygenation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5064683. [PMID: 28424784 PMCID: PMC5382357 DOI: 10.1155/2017/5064683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 01/08/2023]
Abstract
Connexin 43 (Cx43) is the major component protein in astrocytic gap junction communication. Recent studies have shown the cellular processes of gap junction internalization and degradation, but many details remain unknown. This study investigated the distribution of Cx43 and its mechanism after ischemic insult. Astrocyte culture system and a model of ischemia/reperfusion (IR) or oxygen-glucose deprivation and reoxygenation (OGDR) were established. Cx43 distribution was observed by laser scanning confocal microscopy under different cultivation conditions. Western blot and RT-PCR assays were applied to quantify Cx43 and MAPRE1 (microtubule-associated protein RP/EB family member 1) expression at different time points. The total number of Cx43 was unchanged in the normal and IR/OGDR groups, but Cx43 particles in the cytoplasm of the IR/OGDR group were significantly greater than that of the normal group. Particles in the cytoplasm were significantly fewer after endocytosis was blocked by dynasore. There was no difference among the groups at each time point regarding protein or gene expression of MAPRE1. We concluded that internalization of Cx43 into the cytoplasm occurred during ischemia, which was partially mediated through endocytosis, not by the change of Cx43 quantity. Moreover, internalization was not related to microtubule transport.
Collapse
|
44
|
Yu J, Lin YH, Yang L, Huang CC, Chen L, Wang WC, Chen GW, Yan J, Sawettanun S, Lin CH. Improved Anticancer Photothermal Therapy Using the Bystander Effect Enhanced by Antiarrhythmic Peptide Conjugated Dopamine-Modified Reduced Graphene Oxide Nanocomposite. Adv Healthc Mater 2017; 6. [PMID: 27860462 DOI: 10.1002/adhm.201600804] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/12/2016] [Indexed: 12/13/2022]
Abstract
Despite tremendous efforts toward developing novel near-infrared (NIR)-absorbing nanomaterials, improvement in therapeutic efficiency remains a formidable challenge in photothermal cancer therapy. This study aims to synthesize a specific peptide conjugated polydopamine-modified reduced graphene oxide (pDA/rGO) nanocomposite that promotes the bystander effect to facilitate cancer treatment using NIR-activated photothermal therapy. To prepare a nanoplatform capable of promoting the bystander effect in cancer cells, we immobilized antiarrhythmic peptide 10 (AAP10) on the surface of dopamine-modified rGO (AAP10-pDA/rGO). Our AAP10-pDA/rGO could promote the bystander effect by increasing the expression of connexin 43 protein in MCF-7 breast-cancer cells. Because of its tremendous ability to absorb NIR absorption, AAP10-pDA/rGO offers a high photothermal effect under NIR irradiation. This leads to a massive death of MCF-7 cells via the bystander effect. Using tumor-bearing mice as the model, it is found that NIR radiation effectively ablates breast tumor in the presence of AAP10-pDA/rGO and inhibits tumor growth by ≈100%. Therefore, this research integrates the bystander and photothermal effects into a single nanoplatform in order to facilitate an efficient photothermal therapy. Furthermore, our AAP10-pDA/rGO, which exhibits both hyperthermia and the bystander effect, can prevent breast-cancer recurrence and, therefore, has great potential for future clinical and research applications.
Collapse
Affiliation(s)
- Jiantao Yu
- Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Yu-Hsin Lin
- Department of Food and Beverage Management; Taipei College of Maritime Technology; Taipei 11174 Taiwan
| | - Lingyan Yang
- Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Chih-Ching Huang
- Institute of Bioscience and Biotechnology; National Taiwan Ocean University; Keelung 20224 Taiwan
| | - Liliang Chen
- The National Key Laboratory of Shock Wave and Detonation Physics; Institute of Fluid Physics; CAEP; Mianyang 621900 China
| | - Wen-Cheng Wang
- Research Center for Environmental Changes; Academia Sinica; Taipei 11529 Taiwan
| | - Guan-Wen Chen
- Department of Food Science; National Taiwan Ocean University; Keelung 20224 Taiwan
| | - Junyan Yan
- Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Saranta Sawettanun
- Department of Biotechnology; National Formosa University; Yunlin 63208 Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology; National Formosa University; Yunlin 63208 Taiwan
| |
Collapse
|
45
|
Malekian N, Habibi J, Zangooei MH, Aghakhani H. Integrating evolutionary game theory into an agent-based model of ductal carcinoma in situ: Role of gap junctions in cancer progression. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 136:107-117. [PMID: 27686708 DOI: 10.1016/j.cmpb.2016.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/18/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVE There are many cells with various phenotypic behaviors in cancer interacting with each other. For example, an apoptotic cell may induce apoptosis in adjacent cells. A living cell can also protect cells from undergoing apoptosis and necrosis. These survival and death signals are propagated through interaction pathways between adjacent cells called gap junctions. The function of these signals depends on the cellular context of the cell receiving them. For instance, a receiver cell experiencing a low level of oxygen may interpret a received survival signal as an apoptosis signal. In this study, we examine the effect of these signals on tumor growth. METHODS We make an evolutionary game theory component in order to model the signal propagation through gap junctions. The game payoffs are defined as a function of cellular context. Then, the game theory component is integrated into an agent-based model of tumor growth. After that, the integrated model is applied to ductal carcinoma in situ, a type of early stage breast cancer. Different scenarios are explored to observe the impact of the gap junction communication and parameters of the game theory component on cancer progression. We compare these scenarios by using the Wilcoxon signed-rank test. RESULTS The Wilcoxon signed-rank test succeeds in proving a significant difference between the tumor growth of the model before and after considering the gap junction communication. The Wilcoxon signed-rank test also proves that the tumor growth significantly depends on the oxygen threshold of turning survival signals into apoptosis. CONCLUSIONS In this study, the gap junction communication is modeled by using evolutionary game theory to illustrate its role at early stage cancers such as ductal carcinoma in situ. This work indicates that the gap junction communication and the oxygen threshold of turning survival signals into apoptosis can notably affect cancer progression.
Collapse
Affiliation(s)
- Negin Malekian
- Software Engineering, Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran.
| | - Jafar Habibi
- Software Engineering, Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
| | - Mohammad Hossein Zangooei
- Software Engineering, Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
| | - Hojjat Aghakhani
- Software Engineering, Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
| |
Collapse
|
46
|
Kim YJ, Kim J, Kim YS, Shin B, Choo OS, Lee JJ, Choung YH. Connexin 43 Acts as a Proapoptotic Modulator in Cisplatin-Induced Auditory Cell Death. Antioxid Redox Signal 2016; 25:623-636. [PMID: 27122099 DOI: 10.1089/ars.2015.6412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS Gap junction coupling is known to play a role in intercellular communication by the Good Samaritan effect or bystander effect. Nonjunctional connexins (Cxs) may also play certain gap junction-independent roles in cell death or survival. The purpose of the present study was to investigate the role of junctional and nonjunctional Cxs in ototoxic drug-induced auditory cell death by focusing on Cx43 in the cochlea. RESULTS Nonjunctional Cx43 conditions were prepared by low confluence culture (5 × 103/cm2) or a trafficking inhibitor, brefeldin A (BFA), in auditory cells, and short lengthened Cx43s with amino-terminal (NT; amino acids 1-256) or carboxy-terminal (CT; amino acids 257-382) were transfected into Cx-deficient HeLa cells to avoid gap junction formation. Knockdown of nonchannel Cx43 (small interfering RNA [siRNA]) inhibited Cis-diamminedichloroplatinum (cisplatin)-induced cell death regardless of gap junction formation; however, a gap junction blocker, 18 alpha-glycyrrhetinic acid (18α-GA), showed inhibitory effect only under the junctional condition. BFA did not show any additive influence on the inhibitory effect of siRNA Cx43. Shortened Cx43-transfected HeLa cells also resulted in a significant increase in cell death under cisplatin. In the animal studies with cisplatin-treated rats, hearing thresholds of auditory brainstem response were significantly preserved by a gap junction blocker, carbenoxolone, showing much more preserved stereocilia of hair cells in scanning electron microscopic findings. Innovation and Conclusion: Cx43 plays a proapoptotic role in cisplatin-induced auditory cell death in both junctional and nonjunctional conditions. Targeting the Cx-mediated signaling control may be helpful in designing new therapeutic strategies for drug-induced ototoxicity. Antioxid. Redox Signal. 25, 623-636.
Collapse
Affiliation(s)
- Yeon Ju Kim
- 1 Department of Otolaryngology, Ajou University School of Medicine , Suwon, Republic of Korea
| | - Jangho Kim
- 2 Department of Rural and Biosystems Engineering, Chonnam National University , Gwangju, Republic of Korea
| | - Young Sun Kim
- 1 Department of Otolaryngology, Ajou University School of Medicine , Suwon, Republic of Korea
| | - Beomyong Shin
- 3 Department of Medical Sciences, The Graduate School, Ajou University , Suwon, Republic of Korea
| | - Oak-Sung Choo
- 1 Department of Otolaryngology, Ajou University School of Medicine , Suwon, Republic of Korea
| | - Jong Joo Lee
- 1 Department of Otolaryngology, Ajou University School of Medicine , Suwon, Republic of Korea
| | - Yun-Hoon Choung
- 1 Department of Otolaryngology, Ajou University School of Medicine , Suwon, Republic of Korea.,3 Department of Medical Sciences, The Graduate School, Ajou University , Suwon, Republic of Korea
| |
Collapse
|
47
|
Soon ASC, Chua JW, Becker DL. Connexins in endothelial barrier function - novel therapeutic targets countering vascular hyperpermeability. Thromb Haemost 2016; 116:852-867. [PMID: 27488046 DOI: 10.1160/th16-03-0210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022]
Abstract
Prolonged vascular hyperpermeability is a common feature of many diseases. Vascular hyperpermeability is typically associated with changes in the expression patterns of adherens and tight junction proteins. Here, we focus on the less-appreciated contribution of gap junction proteins (connexins) to basal vascular permeability and endothelial dysfunction. First, we assess the association of connexins with endothelial barrier integrity by introducing tools used in connexin biology and relating the findings to customary readouts in vascular biology. Second, we explore potential mechanistic ties between connexins and junction regulation. Third, we review the role of connexins in microvascular organisation and development, focusing on interactions of the endothelium with mural cells and tissue-specific perivascular cells. Last, we see how connexins contribute to the interactions between the endothelium and components of the immune system, by using neutrophils as an example. Mounting evidence of crosstalk between connexins and other junction proteins suggests that we rethink the way in which different junction components contribute to endothelial barrier function. Given the multiple points of connexin-mediated communication arising from the endothelium, there is great potential for synergism between connexin-targeted inhibitors and existing immune-targeted therapeutics. As more drugs targeting connexins progress through clinical trials, it is hoped that some might prove effective at countering vascular hyperpermeability.
Collapse
Affiliation(s)
| | | | - David Laurence Becker
- David L. Becker, PhD, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232 Singapore, Tel: +65 6592 3961, Fax: +65 6515 0417, E-mail:
| |
Collapse
|
48
|
Connexin 43, breast cancer tumor suppressor: Missed connections? Cancer Lett 2016; 374:117-126. [DOI: 10.1016/j.canlet.2016.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
|
49
|
Cheung WY, Fritton JC, Morgan SA, Seref-Ferlengez Z, Basta-Pljakic J, Thi MM, Suadicani SO, Spray DC, Majeska RJ, Schaffler MB. Pannexin-1 and P2X7-Receptor Are Required for Apoptotic Osteocytes in Fatigued Bone to Trigger RANKL Production in Neighboring Bystander Osteocytes. J Bone Miner Res 2016; 31:890-9. [PMID: 26553756 PMCID: PMC4915221 DOI: 10.1002/jbmr.2740] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022]
Abstract
Osteocyte apoptosis is required to induce intracortical bone remodeling after microdamage in animal models, but how apoptotic osteocytes signal neighboring "bystander" cells to initiate the remodeling process is unknown. Apoptosis has been shown to open pannexin-1 (Panx1) channels to release adenosine diphosphate (ATP) as a "find-me" signal for phagocytic cells. To address whether apoptotic osteocytes use this signaling mechanism, we adapted the rat ulnar fatigue-loading model to reproducibly introduce microdamage into mouse cortical bone and measured subsequent changes in osteocyte apoptosis, receptor activator of NF-κB ligand (RANKL) expression and osteoclastic bone resorption in wild-type (WT; C57Bl/6) mice and in mice genetically deficient in Panx1 (Panx1KO). Mouse ulnar loading produced linear microcracks comparable in number and location to the rat model. WT mice showed increased osteocyte apoptosis and RANKL expression at microdamage sites at 3 days after loading and increased intracortical remodeling and endocortical tunneling at day 14. With fatigue, Panx1KO mice exhibited levels of microdamage and osteocyte apoptosis identical to WT mice. However, they did not upregulate RANKL in bystander osteocytes or initiate resorption. Panx1 interacts with P2X7 R in ATP release; thus, we examined P2X7 R-deficient mice and WT mice treated with P2X7 R antagonist Brilliant Blue G (BBG) to test the possible role of ATP as a find-me signal. P2X7 RKO mice failed to upregulate RANKL in osteocytes or induce resorption despite normally elevated osteocyte apoptosis after fatigue loading. Similarly, treatment of fatigued C57Bl/6 mice with BBG mimicked behavior of both Panx1KO and P2X7 RKO mice; BBG had no effect on osteocyte apoptosis in fatigued bone but completely prevented increases in bystander osteocyte RANKL expression and attenuated activation of resorption by more than 50%. These results indicate that activation of Panx1 and P2X7 R are required for apoptotic osteocytes in fatigued bone to trigger RANKL production in neighboring bystander osteocytes and implicate ATP as an essential signal mediating this process.
Collapse
Affiliation(s)
- Wing Yee Cheung
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Christopher Fritton
- Department of Orthopaedic Surgery, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Stacy Ann Morgan
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | | | - Jelena Basta-Pljakic
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Mia M Thi
- Departments of Orthopaedic Surgery, Urology, and Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Sylvia O Suadicani
- Departments of Orthopaedic Surgery, Urology, and Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - David C Spray
- Departments of Orthopaedic Surgery, Urology, and Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Robert J Majeska
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| |
Collapse
|
50
|
Kamran MZ, Ranjan A, Kaur N, Sur S, Tandon V. Radioprotective Agents: Strategies and Translational Advances. Med Res Rev 2016; 36:461-93. [PMID: 26807693 DOI: 10.1002/med.21386] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/15/2015] [Accepted: 01/01/2016] [Indexed: 01/08/2023]
Abstract
Radioprotectors are agents required to protect biological system exposed to radiation, either naturally or through radiation leakage, and they protect normal cells from radiation injury in cancer patients undergoing radiotherapy. It is imperative to study radioprotectors and their mechanism of action comprehensively, looking at their potential therapeutic applications. This review intimately chronicles the rich intellectual, pharmacological story of natural and synthetic radioprotectors. A continuous effort is going on by researchers to develop clinically promising radioprotective agents. In this article, for the first time we have discussed the impact of radioprotectors on different signaling pathways in cells, which will create a basis for scientific community working in this area to develop novel molecules with better therapeutic efficacy. The bright future of exceptionally noncytotoxic derivatives of bisbenzimidazoles is also described as radiomodulators. Amifostine, an effective radioprotectant, has been approved by the FDA for limited clinical use. However, due to its adverse side effects, it is not routinely used clinically. Recently, CBLB502 and several analog of a peptide are under clinical trial and showed high success against radiotherapy in cancer. This article reviews the different types of radioprotective agents with emphasis on the strategies for the development of novel radioprotectors for drug development. In addition, direction for future strategies relevant to the development of radioprotectors is also addressed.
Collapse
Affiliation(s)
- Mohammad Zahid Kamran
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Atul Ranjan
- Kansas University of Medical Center, Kansas City, KS, 66160
| | - Navrinder Kaur
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Souvik Sur
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.,Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|