1
|
Karahmet Sher E, Alebić M, Marković Boras M, Boškailo E, Karahmet Farhat E, Karahmet A, Pavlović B, Sher F, Lekić L. Nanotechnology in medicine revolutionizing drug delivery for cancer and viral infection treatments. Int J Pharm 2024; 660:124345. [PMID: 38885775 DOI: 10.1016/j.ijpharm.2024.124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Advancements in nanotechnology were vastly applied in medicine and pharmacy, especially in the field of nano-delivery systems. It took a long time for these systems to ensure precise delivery of very delicate molecules, such as RNA, to cells at concentrations that yield remarkable efficiency, with success rates reaching 95.0% and 94.5%. These days, there are several advantages of using nanotechnological solutions in the prevention and treatment of cancer and viral infections. Its interventions improve treatment outcomes both due to increased effectiveness of the drug at target location and by reducing adverse reactions, thereby increasing patient adherence to the therapy. Based on the current knowledge an updated review was made, and perspective, opportunities and challenges in nanomedicine were discussed. The methods employed include comprehensive examination of existing literature and studies on nanoparticles and nano-delivery systems including both in vitro tests performed on cell cultures and in vivo assessments carried out on appropriate animal models, with a specific emphasis on their applications in oncology and virology. This brings together various aspects including both structure and formation as well as its association with characteristic behaviour in organisms, providing a novel perspective. Furthermore, the practical application of these systems in medicine and pharmacy with a focus on viral diseases and malignancies was explored. This review can serve as a valuable guide for fellow researchers, helping them navigate the abundance of findings in this field. The results indicate that applications of nanotechnological solutions for the delivery of medicinal products improving therapeutic outcomes will continue to expand.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Mirna Alebić
- Department of Pharmacy, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Marijana Marković Boras
- Department of Laboratory Diagnostic, University Clinical Hospital Mostar, Mostar 88000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Boškailo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Esma Karahmet Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Alma Karahmet
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Bojan Pavlović
- Faculty of Physical Education and Sports, University of East Sarajevo, Lukavica, Republika Srpska 75327, Bosnia and Herzegovina
| | - Farooq Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Lana Lekić
- Faculty of Health Studies, University of Sarajevo, Sarajevo 71000, Bosnia and Herzegovina
| |
Collapse
|
2
|
Wani FA, Behera K, Patel R. Amphiphilic Micelles as Superior Nanocarriers in Drug Delivery: from Current Preclinical Surveys to Structural Frameworks. ChemistrySelect 2022. [DOI: 10.1002/slct.202201928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Farooq Ahmad Wani
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
- Department of Chemistry Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Kamalakanta Behera
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Rajan Patel
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
| |
Collapse
|
3
|
He M, Nandu N, Uyar TB, Royzen M, Yigit MV. Small molecule-induced DNA hydrogel with encapsulation and release properties. Chem Commun (Camb) 2021; 56:7313-7316. [PMID: 32478344 DOI: 10.1039/d0cc03439h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogels are networks of polymers that can be used for packaging different payload types. They are proven to be versatile materials for various biomedical applications. Implanted hydrogels with encapsulated drugs have been shown to release the therapeutic payloads at disease sites. Hydrogels are usually made through chemical polymerization reactions. Whereas, DNA is a naturally occurring biopolymer which can assemble into highly ordered structures through noncovalent interactions. Here, we have employed a small molecule, cyanuric acid (CA), to assemble polyA-tailed DNA motif into a hydrogel. Encapsulation of a small molecule chemotherapeutic drug, a fluorescent molecule, two proteins and several nanoparticle formulations has been studied. Release of doxorubicin, small fluorescent molecule and fluorescently-labeled antibodies has been demonstrated.
Collapse
Affiliation(s)
- Muhan He
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Nidhi Nandu
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Taha Bilal Uyar
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Maksim Royzen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA. and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA
| | - Mehmet V Yigit
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA. and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA
| |
Collapse
|
4
|
Zhang J, Chen Z, Kankala RK, Wang SB, Chen AZ. Self-propelling micro-/nano-motors: Mechanisms, applications, and challenges in drug delivery. Int J Pharm 2021; 596:120275. [PMID: 33508344 DOI: 10.1016/j.ijpharm.2021.120275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
In recent times, numerous efforts have been put forward to fabricating the self-propelling micro-/nano-motors (MNMs) for various applications, such as drug delivery, environmental remediation, biosensing, and precision surgery at the micro-/nanoscale, among others. Owing to their potential advantages, the application of such innovative architectures has been increasingly recognized towards addressing various challenges in the related fields. Specifically, these MNMs offer enormous potential in nanomedicine in overcoming the significant challenge of low permeation of the biological barriers. Herein, we emphasize the powered mechanism of MNMs, including artificial and natural-based MNMs, and discuss the characteristics, as well as the challenges being faced by MNMs in drug delivery. Further, the research progress of MNMs as drug carriers in different environments (gastrointestinal tract, saliva, urinary bladder, blood, and extracellular matrix, ECM) of the body in recent years is summarized, highlighting the representative works on MNMs towards in vivo applications. Together, we firmly believe that these innovative MNMs-based designs may play a crucial role in the clinical practice in the future.
Collapse
Affiliation(s)
- Jianting Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, PR China
| | - Zhoujiang Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, PR China.
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, PR China.
| |
Collapse
|
5
|
Maltotriose-modified poly(propylene imine) Glycodendrimers as a potential novel platform in the treatment of chronic lymphocytic Leukemia. A proof-of-concept pilot study in the animal model of CLL. Toxicol Appl Pharmacol 2020; 403:115139. [PMID: 32687837 DOI: 10.1016/j.taap.2020.115139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Cancer nanotherapeutics have shown promise in resolving some of the limitations of conventional drug delivery systems such as nonspecific biodistribution and targeting, lack of water solubility, and low therapeutic indices, Among the various nanoparticles that are available, dendrimers, highly branched macromolecules with a specific size and shape, are one of the most promising ones. In this preliminary study, we tested the anti-tumor activity of maltotriose-modified fourth-generation poly(propylene imine) glycodendrimers (PPI-G4-M3) in vivo in the subcutaneous MEC-1 xenograft model of human chronic lymphocytic leukemia (CLL) in NOD scid gamma mice. Fludarabine was used for model validation and as a positive treatment control. The anti-tumor response was calculated as tumor volume, tumor control ratio, and tumor growth inhibition. The study showed that PPI-G4-M3 inhibited subcutaneous tumor growth more efficiently than fludarabine. The anti-tumor response was dose-dependent. Cationic PPI-G4-M3 showed the highest anti-tumor activity but also higher toxicity than the neutral dendrimers and fludarabine. These first promising results warrant further studies in the optimization of dendrimers charge, dose, route and schedule of administration to combat CLL.
Collapse
|
6
|
Uyar TB, Wu K, He M, Khan I, Royzen M, Yigit MV. Switchable Fluorescence of Doxorubicin for Label-Free Imaging of Bioorthogonal Drug Release. ChemMedChem 2020; 15:988-994. [PMID: 32216081 PMCID: PMC7397846 DOI: 10.1002/cmdc.202000065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Monitoring the release and activation of prodrug formulations provides essential information about the outcome of a therapy. While the prodrug delivery can be confirmed by using different imaging techniques, confirming the release of active payload by using imaging is a challenge. Here, we have discovered that the switchable fluorescence of doxorubicin can validate drug release upon its uncaging reaction with a highly specific chemical partner. We have observed that the conjugation of doxorubicin with a trans-cyclooctene (TCO) diminishes its fluorescence at 595 nm. This quenched fluorescence of the doxorubicin prodrug is recovered upon its bond-cleaving reaction with tetrazine. Clinically assessed iron oxide nanoparticles were used to formulate a doxorubicin nanodrug. The release of doxorubicin from the nanodrug was studied under various experimental conditions. A fivefold increase in doxorubicin fluorescence is observed after complete release. The studies were carried out in vitro in MDA-MB-231 breast cancer cells. An increase in Dox signal was observed upon tetrazine administration. This switchable fluorescence mechanism of Dox could be employed for fundamental studies, that is, the reactivity of various tetrazine and TCO linker types under different experimental conditions. In addition, the system could be instrumental for translational research where the release and activation of doxorubicin prodrug payloads can be monitored by using optical imaging systems.
Collapse
Affiliation(s)
- Taha Bilal Uyar
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Kui Wu
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Muhan He
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Irfan Khan
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Maksim Royzen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
- The RNA Institute University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Mehmet V Yigit
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
- The RNA Institute University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
7
|
Domingues C, Alvarez-Lorenzo C, Concheiro A, Veiga F, Figueiras A. Nanotheranostic Pluronic-Like Polymeric Micelles: Shedding Light into the Dark Shadows of Tumors. Mol Pharm 2019; 16:4757-4774. [DOI: 10.1021/acs.molpharmaceut.9b00945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cátia Domingues
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra 3004-531, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
| | - Ana Figueiras
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
| |
Collapse
|
8
|
Ghosh S, Carter KA, Lovell JF. Liposomal formulations of photosensitizers. Biomaterials 2019; 218:119341. [PMID: 31336279 PMCID: PMC6663636 DOI: 10.1016/j.biomaterials.2019.119341] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) is a clinical ablation modality to treat cancers and other diseases. PDT involves administration of a photosensitizer, followed by irradiation of target tissue with light. As many photosensitizers are small and hydrophobic, solubilization approaches and nanoscale delivery vehicles have been extensively explored. Liposomes and lipid-based formulations have been used for the past 30 years, and in some cases have been developed into well-defined commercial PDT products. This review provides an overview of common liposomal formulation strategies for photosensitizers for PDT and also photothermal therapy. Furthermore, research efforts have examined the impact of co-loading therapeutic cargo along with photosensitizers within liposomes. Additional recent approaches including imaging, overcoming hypoxia, upconversion and activatable liposomal formulations are discussed.
Collapse
Affiliation(s)
- Sanjana Ghosh
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
9
|
Nayak R, Meerovich I, Dash AK. Translational Multi-Disciplinary Approach for the Drug and Gene Delivery Systems for Cancer Treatment. AAPS PharmSciTech 2019; 20:160. [PMID: 30968269 DOI: 10.1208/s12249-019-1367-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/11/2019] [Indexed: 01/11/2023] Open
Abstract
Over the last several decades, nanoparticulate delivery systems have emerged as advanced drug and gene delivery tools for cancer therapy. However, their translation into clinical use still poses major challenges. Even though many innovative nanoparticulate approaches have shown very positive results both in vitro and in vivo, few of them have found a place in clinical practice. Possible factors responsible for the existing gap in the translation of nanomedicine to clinical practice may include oversimplification of enhanced permeability and retention effect, lack of correlation between the in vivo animal data vs their translation in human, and challenging multiple biological steps experienced during systemic delivery of nanomedicine. Understanding these challenges and coming up with solutions to overcome them is an important step in effective translation of nanomedicine into clinical practice. This review focuses on advancements in the field of nanomedicine used for anti-cancer therapy, including passive targeting, active targeting, and stimuli-controlled delivery. The review further reveals some of the challenges that are currently faced by pharmaceutical scientists in translation of nanomedicine; these include lack of adequate models for preclinical testing that can predict efficacy in humans, absence of appropriate regulatory guidelines for their approval processes, and difficulty in scale-up of the manufacturing of nanodrug delivery systems. A better understanding of these challenges will help us in filling the gap between the bench and bedside in cancer therapy.
Collapse
|
10
|
Liu X, Jiang J, Chan R, Ji Y, Lu J, Liao YP, Okene M, Lin J, Lin P, Chang CH, Wang X, Tang I, Zheng E, Qiu W, Wainberg ZA, Nel AE, Meng H. Improved Efficacy and Reduced Toxicity Using a Custom-Designed Irinotecan-Delivering Silicasome for Orthotopic Colon Cancer. ACS NANO 2019; 13:38-53. [PMID: 30525443 PMCID: PMC6554030 DOI: 10.1021/acsnano.8b06164] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Irinotecan is a key chemotherapeutic agent for the treatment of colorectal (CRC) and pancreatic (PDAC) cancer. Because of a high incidence of bone marrow and gastrointestinal (GI) toxicity, Onivyde (a liposome) was introduced to provide encapsulated irinotecan (Ir) delivery in PDAC patients. While there is an ongoing clinical trial (NCT02551991) to investigate the use of Onivyde as a first-line option to replace irinotecan in FOLFIRINOX, the liposomal formulation is currently prescribed as a second-line treatment option (in combination with 5-fluorouracil and leucovorin) for patients with metastatic PDAC who failed gemcitabine therapy. However, the toxicity of Onivyde remains a concern that needs to be addressed for use in CRC as well. Our goal was to custom design a mesoporous silica nanoparticle (MSNP) carrier for encapsulated irinotecan delivery in a robust CRC model. This was achieved by developing an orthotopic tumor chunk model in immunocompetent mice. With a view to increase the production volume and to expand the disease applications, the carrier design was improved by using an ethanol exchange method for coating of a supported lipid bilayer (LB) that entraps a protonating agent. The encapsulated protonating agent was subsequently used for remote loading of irinotecan. The excellent irinotecan loading capacity and stability of the LB-coated MSNP carrier, also known as a "silicasome", previously showed improved efficacy and reduced toxicity when compared to an in-house liposomal carrier in a PDAC model. Intravenous injection of the silicasomes in a well-developed orthotopic colon cancer model in mice demonstrated improved pharmacokinetics and tumor drug content over free drug and Onivyde. Moreover, improved drug delivery was accompanied by substantially improved efficacy, increased survival, and reduced bone marrow and GI toxicity compared to the free drug and Onivyde. We also confirmed that the custom-designed irinotecan silicasomes outperform Onivyde in an orthotopic PDAC model. In summary, the Ir-silicasome appears to be promising as a treatment option for CRC in humans based on improved efficacy and the carrier's favorable safety profile.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jinhong Jiang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Ryan Chan
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Ying Ji
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Jianqin Lu
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Michael Okene
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Joshua Lin
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Paulina Lin
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Chong Hyun Chang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Ivanna Tang
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Emily Zheng
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Waveley Qiu
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Zev A. Wainberg
- Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Andre E. Nel
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Huan Meng
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Shao S, Rajendiran V, Lovell JF. Metalloporphyrin Nanoparticles: Coordinating Diverse Theranostic Functions. Coord Chem Rev 2019; 379:99-120. [PMID: 30559508 PMCID: PMC6294123 DOI: 10.1016/j.ccr.2017.09.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metalloporphyrins serve key roles in natural biological processes and also have demonstrated utility for biomedical applications. They can be encapsulated or grafted in conventional nanoparticles or can self-assemble themselves at the nanoscale. A wide range of metals can be stably chelated either before or after porphyrin nanoparticle formation, without the necessity of any additional chelator chemistry. The addition of metals can substantially alter a range of behaviors such as modulating phototherapeutic efficacy; conferring responsiveness to biological stimuli; or providing contrast for magnetic resonance, positron emission or surface enhanced Raman imaging. Chelated metals can also provide a convenient handle for bioconjugation with other molecules via axial coordination. This review provides an overview of some recent biomedical, nanoparticulate approaches involving gain-of-function metalloporphyrins and related molecules.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Venugopal Rajendiran
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
12
|
Carter KA, Luo D, Geng J, Stern ST, Lovell JF. Blood Interactions, Pharmacokinetics, and Depth-Dependent Ablation of Rat Mammary Tumors with Photoactivatable, Liposomal Doxorubicin. Mol Cancer Ther 2018; 18:592-601. [PMID: 30587558 DOI: 10.1158/1535-7163.mct-18-0549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/28/2018] [Accepted: 12/13/2018] [Indexed: 11/16/2022]
Abstract
Photosensitizers can be integrated with drug delivery vehicles to develop chemophototherapy agents with antitumor synergy between chemo- and photocomponents. Long-circulating doxorubicin (Dox) in porphyrin-phospholipid (PoP) liposomes (LC-Dox-PoP) incorporates a phospholipid-like photosensitizer (2 mole %) in the bilayer of Dox-loaded stealth liposomes. Hematological effects of endotoxin-minimized LC-Dox-PoP were characterized via standardized assays. In vitro interaction with erythrocytes, platelets, and plasma coagulation cascade were generally unremarkable, whereas complement activation was found to be similar to that of commercial Doxil. Blood partitioning suggested that both the Dox and PoP components of LC-Dox-PoP were stably entrapped or incorporated in liposomes. This was further confirmed with pharmacokinetic studies in Fischer rats, which showed the PoP and Dox components of the liposomes both had nearly identical, long circulation half-lives (25-26 hours). In a large orthotopic mammary tumor model in Fischer rats, following intravenous dosing (2 mg/kg Dox), the depth of enhanced Dox delivery in response to 665 nm laser irradiation was over 1 cm. LC-Dox-PoP with laser treatment cured or potently suppressed tumor growth, with greater efficacy observed in tumors 0.8 to 1.2 cm, compared with larger ones. The skin at the treatment site healed within approximately 30 days. Taken together, these data provide insight into nanocharacterization and photo-ablation parameters for a chemophototherapy agent.
Collapse
Affiliation(s)
- Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York.
| |
Collapse
|
13
|
Macháček M, Carter KA, Kostelanský F, Miranda D, Seffouh A, Ortega J, Šimůnek T, Zimčík P, Lovell JF. Binding of an amphiphilic phthalocyanine to pre-formed liposomes confers light-triggered cargo release. J Mater Chem B 2018; 6:7298-7305. [PMID: 30984399 PMCID: PMC6456075 DOI: 10.1039/c8tb01602j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Liposomes are able to load a range of cargos and have been used for drug delivery applications, including for stimuli-triggered drug release. Here, we describe an approach for imparting near infrared (NIR) light-triggered release to pre-formed liposomes, using a newly-synthesized cationic, amphiphilic phthalocyanine. When simply mixed in aqueous solution with cargo-loaded liposomes, the cationic amphiphilic phthalocyanine, but not a cationic hydrophilic azaphthalocyanine, spontaneously incorporates into the liposome bilayer. This enables subsequent release of loaded cargo (doxorubcin or basic orange) upon irradiation with NIR light. The rate of release could be altered by varying the amount of photosensitizer added to the liposomes. In the absence of NIR light exposure, stable cargo loading of the liposomes was maintained. Introduction.
Collapse
Affiliation(s)
- Miloslav Macháček
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Filip Kostelanský
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Dyego Miranda
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec, H3A 0C7, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec, H3A 0C7, Canada
| | - Tomáš Šimůnek
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Petr Zimčík
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
14
|
Ghosh S, Qi R, Carter KA, Zhang G, Pfeifer BA, Lovell JF. Loading and Releasing Ciprofloxacin in Photoactivatable Liposomes. Biochem Eng J 2018; 141:43-48. [PMID: 31105464 DOI: 10.1016/j.bej.2018.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We demonstrate that ciprofloxacin can be actively loaded into liposomes that contain small amounts of porphyrin-phospholipid (PoP). PoP renders the liposomes photoactivatable, so that the antibiotic is released from the carrier under red light irradiation (665 nm). The use of 2 molar % PoP in the liposomes accommodated active loading of ciprofloxacin. Further inclusion of 2 molar % of an unsaturated phospholipid accelerated light-triggered drug release, with more than 90 % antibiotic release from the liposomes occurring in less than 30 seconds. With or without laser treatment, ciprofloxacin PoP liposomes inhibited the growth of Bacillus subtilis in liquid media, apparently due to uptake of the liposomes by the bacteria. However, when liposomes were first separated from smaller molecules with centrifugal filtration, only the filtrate from laser-treated liposomes was bactericidal, confirming effective release of active antibiotic. These results establish the feasibility of remote loading antibiotics into photoactivatable liposomes, which could lead to opportunities for enhanced localized antibiotic therapy.
Collapse
Affiliation(s)
- Sanjana Ghosh
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Ruiquan Qi
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Guojian Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| |
Collapse
|
15
|
Chitgupi U, Lovell JF. Naphthalocyanines as contrast agents for photoacoustic and multimodal imaging. Biomed Eng Lett 2018; 8:215-221. [PMID: 30603204 PMCID: PMC6208521 DOI: 10.1007/s13534-018-0059-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/11/2018] [Accepted: 02/19/2018] [Indexed: 11/27/2022] Open
Abstract
Naphthalocyanines (Ncs) are a family of aromatic small molecule with large near infrared extinction coefficients, making them appealing contrast agent candidates for photoacoustic imaging (PAI). Depending on the substitutions on the Nc periphery or metal center, different spectrally-resolved absorption peak wavelengths are possible, which can enable photoacoustic contrast multiplexing. Owing to their generally poor aqueous solubility, approaches have been developed to modify Ncs or formulate them as biocompatible contrast agents for PAI. Due to their inherent capacity for metal ion chelation, Ncs hold potential for complementary multimodal contrast imaging techniques such as 64Cu positron emission tomography. In this research perspective, we highlight some recent reports involving the use of Ncs in PAI.
Collapse
Affiliation(s)
- Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
| |
Collapse
|
16
|
Li C, Xu L, Liu Z, Li Z, Quan Z, Al Kheraif AA, Lin J. Current progress in the controlled synthesis and biomedical applications of ultrasmall (<10 nm) NaREF 4 nanoparticles. Dalton Trans 2018. [PMID: 29527602 DOI: 10.1039/c8dt00258d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The design and fabrication of rare earth upconversion nanoparticle (UCNP)-based nanomedical platforms have evoked increasing interest. However, their bio-safety is always the most worrisome problem. Most nanoparticles can accumulate in the internal organs, leading to acute toxicity, a long-term inflammatory response, or even fibrosis and cancer. In contrast, ultrasmall (sub-10 nm) nanoparticles have minimal safety risk because they can escape from macrophages, pass biological barriers, and be easily degraded or excreted from the body. In this review, we mainly introduce new progress in preparation strategies, imaging and drug delivery with regards to ultrasmall UCNPs, with an emphasis on rare earth fluorides, NaREF4. Finally, we discuss the future outlook and challenges relating to ultrasmall UCNPs.
Collapse
Affiliation(s)
- Chunxia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Understanding the Pathological Basis of Neurological Diseases Through Diagnostic Platforms Based on Innovations in Biomedical Engineering: New Concepts and Theranostics Perspectives. MEDICINES 2018; 5:medicines5010022. [PMID: 29495320 PMCID: PMC5874587 DOI: 10.3390/medicines5010022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
The pace of advancement of genomics and proteomics together with the recent understanding of the molecular basis behind rare diseases could lead in the near future to significant advances in the diagnosing and treating of many pathological conditions. Innovative diagnostic platforms based on biomedical engineering (microdialysis and proteomics, biochip analysis, non-invasive impedance spectroscopy, etc.) are introduced at a rapid speed in clinical practice: this article primarily aims to highlight how such platforms will advance our understanding of the pathological basis of neurological diseases. An overview of the clinical challenges and regulatory hurdles facing the introduction of such platforms in clinical practice, as well as their potential impact on patient management, will complement the discussion on foreseeable theranostic perspectives. Indeed, the techniques outlined in this article are revolutionizing how we (1) identify biomarkers that better define the diagnostic criteria of any given disease, (2) develop research models, and (3) exploit the externalities coming from innovative pharmacological protocols (i.e., those based on monoclonal antibodies, nanodrugs, etc.) meant to tackle the molecular cascade so far identified.
Collapse
|
18
|
A dual-channel endoscope for quantitative imaging, monitoring, and triggering of doxorubicin release from liposomes in living mice. Sci Rep 2017; 7:15578. [PMID: 29138489 PMCID: PMC5686102 DOI: 10.1038/s41598-017-15790-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Doxorubicin (Dox) is approved for use in liposomal form for the treatment of ovarian cancer. We previously developed a long-circulating Dox formulation in liposomes containing small amounts of porphyrin-phospholipid, which enables on-demand drug release with near-infrared irradiation. In this study, we present and evaluate a dual-modal, dual-channel light endoscope that allows quantitative reflectance and fluorescence imaging for monitoring of local Dox concentrations in target areas. The endoscope consists of two flexible imaging fibers; one to transmit diagnostic and therapeutic light to the target, and the other to detect fluorescent and reflected light. Thus, the endoscope serves for imaging, for light delivery to trigger drug release, and for monitoring drug concentration kinetics during drug release. We characterized the performance of this endoscope in tissue phantoms and in an in vivo model of ovarian cancer. This study demonstrates the feasibility of non-invasive, quantitative mapping of Dox distribution in vivo via endoscopic imaging.
Collapse
|
19
|
Odiba A, Ottah V, Ottah C, Anunobi O, Ukegbu C, Edeke A, Uroko R, Omeje K. Therapeutic nanomedicine surmounts the limitations of pharmacotherapy. Open Med (Wars) 2017. [DOI: 10.1515/med-2017-0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AbstractScience always strives to find an improved way of doing things and nanoscience is one such approach. Nanomaterials are suitable for pharmaceutical applications mostly because of their size which facilitates absorption, distribution, metabolism and excretion of the nanoparticles. Whether labile or insoluble nanoparticles, their cytotoxic effect on malignant cells has moved the use of nanomedicine into focus. Since nanomedicine can be described as the science and technology of diagnosing, treating and preventing diseases towards ultimately improving human health, a lot of nanotechnology options have received approval by various regulatory agencies. Nanodrugs also have been discovered to be more precise in targeting the desired site, hence maximizing the therapeutic effects, while minimizing side-effects on the rest of the body. This unique property and more has made nanomedicine popular in therapeutic medicine employing nanotechnology in genetic therapy, drug encapsulation, enzyme manipulation and control, tissue engineering, target drug delivery, pharmacogenomics, stem cell and cloning, and even virus-based hybrids. This review highlights nanoproducts that are in development and have gained approval through one clinical trial stage or the other.
Collapse
Affiliation(s)
- Arome Odiba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Victoria Ottah
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Comfort Ottah
- 4Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Usman Danfodio University, Sokoto, Nigeria
| | - Ogechukwu Anunobi
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Biochemistry, Faculty of Science and Technology, Bingham University Karu, Nasarawa State, Nigeria
| | - Chimere Ukegbu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Affiong Edeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Robert Uroko
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Biochemistry, Faculty of Science, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Kingsley Omeje
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
20
|
Khan I, Seebald LM, Robertson NM, Yigit MV, Royzen M. Controlled in-cell activation of RNA therapeutics using bond-cleaving bio-orthogonal chemistry. Chem Sci 2017; 8:5705-5712. [PMID: 28989610 PMCID: PMC5621156 DOI: 10.1039/c7sc01380a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022] Open
Abstract
In vitro exogenous activation of siRNA nanodrug using bio-orthogonal de-click chemistry.
Temporal control of siRNA activation is a major challenge for RNAi-based therapeutics. The majority of the reported siRNA delivery systems rely on environmental factors, such as differences in extracellular and intracellular redox potential, ATP concentration, or pH to activate an siRNA payload. However dynamic endogenous environments are far too complex to rely on for controllable siRNA release and can result in premature siRNA activation prior to reaching the intended biological target. In addition, there are uncertainties about timing, degree and rate of the siRNA activation with spontaneous release approaches. Herein we describe a bio-orthogonal chemistry approach to address this important challenge. With our approach we were able achieve two major goals: complete siRNA inactivation upon immobilization of the payload on the surface of iron oxide nanoparticles and controlled in-cell activation with the addition of a small non-toxic chemical trigger after sufficient cellular uptake of the nanoparticles was confirmed. We have demonstrated our in-cell activation approach using two siRNAs against green fluorescent protein (GFP) and cyclin dependent kinase 8 (CDK8) in GFP expressing MDA-MB-231 cell line. We anticipate that this methodology will potentially advance the clinical translation of RNAi-based therapeutics, as the described bio-orthogonal chemistry can be generalized for any siRNA of choice.
Collapse
Affiliation(s)
- Irfan Khan
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| | - Leah M Seebald
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| | - Neil M Robertson
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| | - Mehmet V Yigit
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| | - Maksim Royzen
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA . ; ; Tel: +1-518-442-3002 ; Tel: +1-518-437-4463.,The RNA Institute , University at Albany , State University of New York , 1400 Washington Avenue , Albany , New York 12222 , USA
| |
Collapse
|
21
|
Bornholdt J, Saber AT, Lilje B, Boyd M, Jørgensen M, Chen Y, Vitezic M, Jacobsen NR, Poulsen SS, Berthing T, Bressendorff S, Vitting-Seerup K, Andersson R, Hougaard KS, Yauk CL, Halappanavar S, Wallin H, Vogel U, Sandelin A. Identification of Gene Transcription Start Sites and Enhancers Responding to Pulmonary Carbon Nanotube Exposure in Vivo. ACS NANO 2017; 11:3597-3613. [PMID: 28345861 DOI: 10.1021/acsnano.6b07533] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Increased use of nanomaterials in industry, medicine, and consumer products has raised concerns over their toxicity. To ensure safe use of nanomaterials, understanding their biological effects at the molecular level is crucial. In particular, the regulatory mechanisms responsible for the cascade of genes activated by nanomaterial exposure are not well-characterized. To this end, we profiled the genome-wide usage of gene transcription start sites and linked active enhancer regions in lungs of C57BL/6 mice 24 h after intratracheal instillation of a single dose of the multiwalled carbon nanotube (MWCNT) Mitsui-7. Our results revealed a massive gene regulatory response, where expression of key inflammatory genes (e.g., Csf3, Il24, and Fgf23) was increased >100-fold 24 h after Mitsui-7 exposure. Many of the Mitsui-7-responsive transcription start sites were alternative transcription start sites for known genes, and the number of alternative transcription start sites used in a given gene was correlated with overall Mitsui-7 response. Strikingly, genes that were up-regulated after Mitsui-7 exposure only through their main annotated transcription start site were linked to inflammatory and defense responses, while genes up-regulated only through alternative transcription start sites were functionally heterogeneous and not inflammation-associated. Furthermore, we identified almost 12 000 active enhancers, many of which were Mitsui-7-responsive, and we identified similarly responding putative target genes. Overall, our study provides the location and activity of Mitsui-7-induced enhancers and transcription start sites, providing a useful resource for targeted experiments elucidating the biological effects of nanomaterials and the identification of biomarkers for early detection of MWCNT-induced inflammation.
Collapse
Affiliation(s)
- Jette Bornholdt
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | | | - Berit Lilje
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Mette Boyd
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Mette Jørgensen
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Yun Chen
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Morana Vitezic
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | | | - Sarah Søs Poulsen
- National Research Centre for the Working Environment , 2100 Copenhagen, Denmark
| | - Trine Berthing
- National Research Centre for the Working Environment , 2100 Copenhagen, Denmark
| | - Simon Bressendorff
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
| | | | - Carole L Yauk
- Environmental and Radiation Health Sciences Directorate, Health Canada , Ottawa, Ontario K1A 0K9, Canada
| | - Sabina Halappanavar
- Environmental and Radiation Health Sciences Directorate, Health Canada , Ottawa, Ontario K1A 0K9, Canada
| | - Håkan Wallin
- National Research Centre for the Working Environment , 2100 Copenhagen, Denmark
- Department of Public Health, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment , 2100 Copenhagen, Denmark
- Department of Micro and Nanotechnology, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology University of Copenhagen , 2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen , 2200 Copenhagen, Denmark
| |
Collapse
|
22
|
Mignani S, El Brahmi N, Eloy L, Poupon J, Nicolas V, Steinmetz A, El Kazzouli S, Bousmina MM, Blanchard-Desce M, Caminade AM, Majoral JP, Cresteil T. Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators. Eur J Med Chem 2017; 132:142-156. [PMID: 28350998 DOI: 10.1016/j.ejmech.2017.03.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/21/2022]
Abstract
A multivalent phosphorus dendrimer 1G3 and its corresponding Cu-complex, 1G3-Cu have been recently identified as agents retaining high antiproliferative potency. This antiproliferative capacity was preserved in cell lines overexpressing the efflux pump ABC B1, whereas cross-resistance was observed in ovarian cancer cell lines resistant to cisplatin. Theoretical 3D models were constructed: the dendrimers appear as irregularly shaped disk-like nano-objects of about 22 Å thickness and 49 Å diameter, which accumulated in cells after penetration by endocytosis. To get insight in their mode of action, cell death pathways have been examined in human cancer cell lines: early apoptosis was followed by secondary necrosis after multivalent phosphorus dendrimers exposure. The multivalent plain phosphorus dendrimer 1G3 moderately activated caspase-3 activity, in contrast with the multivalent Cu-conjugated phosphorus dendrimer 1G3-Cu which strikingly reduced the caspase-3 content and activity. This decrease of caspase activity is not related to the presence of copper, since inorganic copper has no or little effect on caspase-3. Conversely the potent apoptosis activation could be related to a noticeable translocation of Bax to the mitochondria, resulting in the release of AIF into the cytosol, its translocation to the nucleus and a severe DNA fragmentation, without alteration of the cell cycle. The multivalent Cu-conjugated phosphorus dendrimer is more efficient than its non-complexed analog to activate this pathway in close relationship with the higher antiproliferative potency. Therefore, this multivalent Cu-conjugated phosphorus dendrimer 1G3-Cu can be considered as a new and promising first-in-class antiproliferative agent with a distinctive mode of action, inducing apoptosis tumor cell death through Bax activation pathway.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologiques, 45, rue des Saints Pères, 75006 Paris, France.
| | - Nabil El Brahmi
- Euromed Research Institute, Euro-Mediterranean University of Fes (UEMF), Route de Meknes, 30000, Fès, Morocco; Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université de Toulouse UPS, INPT, F 31077 Toulouse Cedex 4, France
| | - Laure Eloy
- ICSN-CNRS UPR 2301, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Joel Poupon
- Laboratoire de Toxicologie Biologique, Hôpital Lariboisière, 75475 Paris Cedex 10, France
| | - Valérie Nicolas
- IPSIT, Faculté de Pharmacie, Université Paris Sud, 92290 Chatenay-Malabry, France
| | - Anke Steinmetz
- Sanofi R&D, LGCR, Centre de Recherche Vitry-Alfortville, 94403 Vitry-sur-Seine Cedex, France
| | - Said El Kazzouli
- Euromed Research Institute, Euro-Mediterranean University of Fes (UEMF), Route de Meknes, 30000, Fès, Morocco
| | - Mosto M Bousmina
- Euromed Research Institute, Euro-Mediterranean University of Fes (UEMF), Route de Meknes, 30000, Fès, Morocco
| | - Mireille Blanchard-Desce
- Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux, 351 cours de la Libération, Talence, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université de Toulouse UPS, INPT, F 31077 Toulouse Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université de Toulouse UPS, INPT, F 31077 Toulouse Cedex 4, France.
| | - Thierry Cresteil
- ICSN-CNRS UPR 2301, Avenue de la Terrasse, 91198 Gif sur Yvette, France; IPSIT, Faculté de Pharmacie, Université Paris Sud, 92290 Chatenay-Malabry, France.
| |
Collapse
|
23
|
Guo C, Chen Y, Gao W, Chang A, Ye Y, Shen W, Luo Y, Yang S, Sun P, Xiang R, Li N. Liposomal Nanoparticles Carrying anti-IL6R Antibody to the Tumour Microenvironment Inhibit Metastasis in Two Molecular Subtypes of Breast Cancer Mouse Models. Am J Cancer Res 2017; 7:775-788. [PMID: 28255366 PMCID: PMC5327649 DOI: 10.7150/thno.17237] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/04/2016] [Indexed: 12/17/2022] Open
Abstract
Tumour microenvironment (TME) contributes significantly towards potentiating the stemness and metastasis properties of cancer cells. IL6-Stat3 is one of the important cell signaling pathways in mediating the communication between tumour and immune cells. Here, we have systematically developed a novel anti-CD44 antibody-mediated liposomal nanoparticle delivery system loaded with anti-IL6R antibody, which could specifically target the TME of CD44+ breast cancer cells in different mouse models for triple negative and luminal breast cancer. This nanoparticle had an enhanced and specific tumour targeting efficacy with dramatic anti-tumour metastasis effects in syngeneic BALB/c mice bearing 4T1 cells as was in the syngeneic MMTV-PyMT mice. It inhibited IL6R-Stat3 signaling and moderated the TME, characterized by the reduced expression of genes encoding Stat3, Sox2, VEGFA, MMP-9 and CD206 in the breast tissues. Furthermore, this nanoparticle reduced the subgroups of Sox2+ and CD206+ cells in the lung metastatic foci, demonstrating its inhibitory effect on the lung metastatic niche for breast cancer stem cells. Taken together, the CD44 targeted liposomal nanoparticles encapsulating anti-IL6R antibody achieved a significant effect to inhibit the metastasis of breast cancer in different molecular subtypes of breast cancer mouse models. Our results shed light on the application of nanoparticle mediated cancer immune-therapy through targeting TME.
Collapse
|
24
|
Huang H, Lovell JF. Advanced Functional Nanomaterials for Theranostics. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1603524. [PMID: 28824357 PMCID: PMC5560626 DOI: 10.1002/adfm.201603524] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanoscale materials have been explored extensively as agents for therapeutic and diagnostic (i.e. theranostic) applications. Research efforts have shifted from exploring new materials in vitro to designing materials that function in more relevant animal disease models, thereby increasing potential for clinical translation. Current interests include non-invasive imaging of diseases, biomarkers and targeted delivery of therapeutic drugs. Here, we discuss some general design considerations of advanced theranostic materials and challenges of their use, from both diagnostic and therapeutic perspectives. Common classes of nanoscale biomaterials, including magnetic nanoparticles, quantum dots, upconversion nanoparticles, mesoporous silica nanoparticles, carbon-based nanoparticles and organic dye-based nanoparticles, have demonstrated potential for both diagnosis and therapy. Variations such as size control and surface modifications can modulate biocompatibility and interactions with target tissues. The needs for improved disease detection and enhanced chemotherapeutic treatments, together with realistic considerations for clinically translatable nanomaterials will be key driving factors for theranostic agent research in the near future.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| |
Collapse
|
25
|
Luo D, Carter KA, Miranda D, Lovell JF. Chemophototherapy: An Emerging Treatment Option for Solid Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600106. [PMID: 28105389 PMCID: PMC5238751 DOI: 10.1002/advs.201600106] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/21/2016] [Indexed: 05/17/2023]
Abstract
Near infrared (NIR) light penetrates human tissues with limited depth, thereby providing a method to safely deliver non-ionizing radiation to well-defined target tissue volumes. Light-based therapies including photodynamic therapy (PDT) and laser-induced thermal therapy have been validated clinically for curative and palliative treatment of solid tumors. However, these monotherapies can suffer from incomplete tumor killing and have not displaced existing ablative modalities. The combination of phototherapy and chemotherapy (chemophototherapy, CPT), when carefully planned, has been shown to be an effective tumor treatment option preclinically and clinically. Chemotherapy can enhance the efficacy of PDT by targeting surviving cancer cells or by inhibiting regrowth of damaged tumor blood vessels. Alternatively, PDT-mediated vascular permeabilization has been shown to enhance the deposition of nanoparticulate drugs into tumors for enhanced accumulation and efficacy. Integrated nanoparticles have been reported that combine photosensitizers and drugs into a single agent. More recently, light-activated nanoparticles have been developed that release their payload in response to light irradiation to achieve improved drug bioavailability with superior efficacy. CPT can potently eradicate tumors with precise spatial control, and further clinical testing is warranted.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Kevin A. Carter
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Dyego Miranda
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| |
Collapse
|
26
|
Chitgupi U, Qin Y, Lovell JF. Targeted Nanomaterials for Phototherapy. Nanotheranostics 2017; 1:38-58. [PMID: 29071178 PMCID: PMC5646723 DOI: 10.7150/ntno.17694] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
Abstract
Phototherapies involve the irradiation of target tissues with light. To further enhance selectivity and potency, numerous molecularly targeted photosensitizers and photoactive nanoparticles have been developed. Active targeting typically involves harnessing the affinity between a ligand and a cell surface receptor for improved accumulation in the targeted tissue. Targeting ligands including peptides, proteins, aptamers and small molecules have been explored for phototherapy. In this review, recent examples of targeted nanomaterials used in phototherapy are summarized.
Collapse
Affiliation(s)
| | | | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
27
|
Carter KA, Luo D, Razi A, Geng J, Shao S, Ortega J, Lovell JF. Sphingomyelin Liposomes Containing Porphyrin-phospholipid for Irinotecan Chemophototherapy. Theranostics 2016; 6:2329-2336. [PMID: 27877238 PMCID: PMC5118598 DOI: 10.7150/thno.15701] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/24/2016] [Indexed: 01/16/2023] Open
Abstract
Porphyrin-phospholipid (PoP) liposomes can entrap anti-cancer agents and release them in response to near infrared (NIR) light. Doxorubicin, when remotely loaded via an ammonium sulfate gradient at a high drug-to-lipid ratio, formed elongated crystals that altered liposome morphology and could not be loaded into liposomes with higher PoP content. On the other hand, irinotecan could also be remotely loaded but did not form large crystals and did not induce liposome elongation. The loading, stability, and NIR light-triggered release of irinotecan in PoP liposomes was altered by the types of lipids used and the presence of PEGylation. Sphingomyelin, which has been explored previously for liposomal irinotecan, was found to produce liposomes with relatively improved serum stability and rapid NIR light-triggered drug release. PoP liposomes composed from sphingomyelin, cholesterol and 2 molar percent PoP rapidly released irinotecan in vivo in response to NIR irradiation as monitored by intravital microscopy and also induced effective tumor eradication in mice bearing MIA Paca-2 subcutaneous tumor xenografts.
Collapse
Affiliation(s)
- Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Aida Razi
- Department of Biochemistry and Biomedical Sciences and M. G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences and M. G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260
| |
Collapse
|
28
|
Duchi S, Ramos-Romero S, Dozza B, Guerra-Rebollo M, Cattini L, Ballestri M, Dambruoso P, Guerrini A, Sotgiu G, Varchi G, Lucarelli E, Blanco J. Development of near-infrared photoactivable phthalocyanine-loaded nanoparticles to kill tumor cells: An improved tool for photodynamic therapy of solid cancers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1885-1897. [DOI: 10.1016/j.nano.2016.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 01/28/2023]
|
29
|
Abstract
Liposomes have been widely studied for drug delivery applications. The inclusion of photoactive molecules into liposomes opens the possibility of light‐controlled cargo release to enhance drug biodistribution or bioavailability at target sites. Membrane permeabilization induced by light can be an effective strategy for enhancing cargo delivery with spatial and temporal control, which holds potential for chemophototherapy approaches. Several diverse mechanisms have been reported including light‐induced oxidation, photocrosslinking, photoisomerization, photocleavage, and photothermal release. Here, we review selected recent reports of light‐triggered cargo release from liposomes.
Collapse
Affiliation(s)
- Dyego Miranda
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
30
|
Grossman JH, Crist RM, Clogston JD. Early Development Challenges for Drug Products Containing Nanomaterials. AAPS JOURNAL 2016; 19:92-102. [PMID: 27612680 DOI: 10.1208/s12248-016-9980-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/19/2016] [Indexed: 01/05/2023]
Abstract
The vast majority of drug product candidates in early development fail to progress to clinics. This is true for products containing nanomaterials just as for other types of pharmaceuticals. Early development pathways should therefore place high priority on experiments that help candidates fail faster and less expensively. Nanomedicines fail for many reasons, but some are more avoidable than others. Some of the points of failure are not considerations in the development of small molecules or biopharmaceuticals, and so may be unexpected, even to those with previous experience bringing drug products to the clinic. This article reviews experiments that have proven useful in providing "go/no-go" decision-making data for nanomedicines in early preclinical development. Of course, the specifics depend on the particulars of the drug product and the nanomaterial type, and not every product shares the same development pathway or the same potential points of failure. Here, we focus on challenges that differ from those in the development of traditional small molecule therapeutics, and on experiments that reveal deficiencies that can only be corrected by essentially starting over-altering the nanomedicine to an extent that all previous characterization and proof-of-concept testing must be repeated. Conducting these experiments early in the development process can save significant resources and time and allow developers to focus on derisked candidates with a greater likelihood of ultimate success.
Collapse
Affiliation(s)
- Jennifer H Grossman
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Wing D, Rm 1003, Frederick, Maryland, 21702, USA.
| | - Rachael M Crist
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Wing D, Rm 1003, Frederick, Maryland, 21702, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Wing D, Rm 1003, Frederick, Maryland, 21702, USA
| |
Collapse
|
31
|
das Neves J, Nunes R, Rodrigues F, Sarmento B. Nanomedicine in the development of anti-HIV microbicides. Adv Drug Deliv Rev 2016; 103:57-75. [PMID: 26829288 DOI: 10.1016/j.addr.2016.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Abstract
Prevention plays an invaluable role in the fight against HIV/AIDS. The use of microbicides is considered an interesting potential approach for topical pre-exposure prophylaxis of HIV sexual transmission. The prospects of having an effective product available are expected to be fulfilled in the near future as driven by recent and forthcoming results of clinical trials. Different dosage forms and delivery strategies have been proposed and tested for multiple microbicide drug candidates presently at different stages of the development pipeline. One particularly interesting approach comprises the application of nanomedicine principles to the development of novel anti-HIV microbicides, but its implications to efficacy and safety are not yet fully understood. Nanotechnology-based systems, either presenting inherent anti-HIV activity or acting as drug nanocarriers, may significantly influence features such as drug solubility, stability of active payloads, drug release, interactions between active moieties and virus/cells, intracellular drug delivery, drug targeting, safety, antiviral activity, mucoadhesive behavior, drug distribution and tissue penetration, and pharmacokinetics. The present manuscript provides a comprehensive and holistic overview of these topics as relevant to the development of vaginal and rectal microbicides. In particular, recent advances pertaining inherently active microbicide nanosystems and microbicide drug nanocarriers are discussed.
Collapse
Affiliation(s)
- José das Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| | - Rute Nunes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
32
|
Zhang Y, Lovell JF. Recent applications of phthalocyanines and naphthalocyanines for imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27439671 DOI: 10.1002/wnan.1420] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/31/2016] [Accepted: 06/24/2016] [Indexed: 12/24/2022]
Abstract
With high extinction coefficients and long absorption wavelengths in the near infrared region, phthalocyanines (Pcs) and naphthalocyanines (Ncs) are well-suited for optical imaging and phototherapies in biological tissues. Pcs and Ncs have been used in a range of theranostic applications. Peripheral and axial substituents can be introduced to Pcs and Ncs for chemical modification. Seamless metal chelation of Pcs or Ncs can expand their possibilities as medical therapeutic and imaging agents. Nanoparticulate approaches enable unique ways to deliver Pcs and Ncs to target tissues and improve their solubility, biocompatibility, biodistribution and stability. Herein, we highlight some recent Pc or Nc nanoscale systems for theranostic applications. WIREs Nanomed Nanobiotechnol 2017, 9:e1420. doi: 10.1002/wnan.1420 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yumiao Zhang
- Department of Biomedical Engineering, University at Buffalo State University of New York, Buffalo, NY, USA.,Department of Chemical and Biological Engineering, University at Buffalo State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo State University of New York, Buffalo, NY, USA
| |
Collapse
|
33
|
Stewart PL. Cryo-electron microscopy and cryo-electron tomography of nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1417] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/11/2016] [Accepted: 06/02/2016] [Indexed: 01/04/2023]
|
34
|
Luo D, Li N, Carter KA, Lin C, Geng J, Shao S, Huang WC, Qin Y, Atilla-Gokcumen GE, Lovell JF. Rapid Light-Triggered Drug Release in Liposomes Containing Small Amounts of Unsaturated and Porphyrin-Phospholipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3039-47. [PMID: 27121003 PMCID: PMC4899298 DOI: 10.1002/smll.201503966] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/29/2016] [Indexed: 05/09/2023]
Abstract
Prompt membrane permeabilization is a requisite for liposomes designed for local stimuli-induced intravascular release of therapeutic payloads. Incorporation of a small amount (i.e., 5 molar percent) of an unsaturated phospholipid, such as dioleoylphosphatidylcholine (DOPC), accelerates near infrared (NIR) light-triggered doxorubicin release in porphyrin-phospholipid (PoP) liposomes by an order of magnitude. In physiological conditions in vitro, the loaded drug can be released in a minute under NIR irradiation, while liposomes maintain serum stability otherwise. This enables rapid laser-induced drug release using remarkably low amounts of PoP (i.e., 0.3 molar percent). Light-triggered drug release occurs concomitantly with DOPC and cholesterol oxidation, as detected by mass spectrometry. In the presence of an oxygen scavenger or an antioxidant, light-triggered drug release is inhibited, suggesting that the mechanism is related to singlet oxygen mediated oxidization of unsaturated lipids. Despite the irreversible modification of lipid composition, DOPC-containing PoP liposome permeabilization is transient. Human pancreatic xenograft growth in mice is significantly delayed with a single chemophototherapy treatment following intravenous administration of 6 mg kg(-1) doxorubicin, loaded in liposomes containing small amounts of DOPC and PoP.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Nasi Li
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kevin A. Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Cuiyan Lin
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Wei-chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Yueling Qin
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
35
|
Zhang Y, Song W, Geng J, Chitgupi U, Unsal H, Federizon J, Rzayev J, Sukumaran DK, Alexandridis P, Lovell JF. Therapeutic surfactant-stripped frozen micelles. Nat Commun 2016; 7:11649. [PMID: 27193558 PMCID: PMC4874033 DOI: 10.1038/ncomms11649] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/18/2016] [Indexed: 01/22/2023] Open
Abstract
Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like ‘top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and ‘bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2–3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated. The excipients used to solubilise hydrophobic drugs sometimes interfere with drug behaviour or induce adverse side effects once injected. Here, the authors use a low-temperature process to obtain surfactant-stripped micelles with high drug concentration for delivery of a wide range of hydrophobic cargoes.
Collapse
Affiliation(s)
- Yumiao Zhang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA.,Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Wentao Song
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Hande Unsal
- Department of Chemistry; University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Jasmin Federizon
- Department of Chemistry; University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Javid Rzayev
- Department of Chemistry; University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Dinesh K Sukumaran
- Department of Chemistry; University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA.,Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
36
|
Luan X, Guan YY, Lovell JF, Zhao M, Lu Q, Liu YR, Liu HJ, Gao YG, Dong X, Yang SC, Zheng L, Sun P, Fang C, Chen HZ. Tumor priming using metronomic chemotherapy with neovasculature-targeted, nanoparticulate paclitaxel. Biomaterials 2016; 95:60-73. [PMID: 27130953 DOI: 10.1016/j.biomaterials.2016.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 02/06/2023]
Abstract
Normalization of the tumor microenvironment is a promising approach to render conventional chemotherapy more effective. Although passively targeted drug nanocarriers have been investigated to this end, actively targeted tumor priming remains to be explored. In this work, we demonstrate an effective tumor priming strategy using metronomic application of nanoparticles actively targeted to tumor neovasculature. F56 peptide-conjugated paclitaxel-loaded nanoparticles (F56-PTX-NP) were formulated from PEGylated polylactide using an oil in water emulsion approach. Metronomic F56-PTX-NP specifically targeted tumor vascular endothelial cells (ECs), pruned vessels with strong antiangiogenic activity and induced thrombospondin-1 (TSP-1) secretion from ECs. The treatment induced tumor vasculature normalization as evidenced by significantly increased coverage of basement membrane and pericytes. The tumor microenvironment was altered with enhanced pO2, lower interstitial fluid pressure, and enhanced vascular perfusion and doxorubicin delivery. A "normalization window" of at least 9 days was induced, which was longer than other approaches using antiangiogenic agents. Together, these results show that metronomic, actively-targeted nanomedicine can induce tumor vascular normalization and modulate the tumor microenvironment, opening a window of opportunity for effective combination chemotherapies.
Collapse
Affiliation(s)
- Xin Luan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Ying-Yun Guan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China; Department of Pharmacy, Ruijin Hospital, SJTU-SM, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Mei Zhao
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Ya-Rong Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Hai-Jun Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Yun-Ge Gao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Xiao Dong
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Si-Cong Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Lin Zheng
- Pathology Center, Shanghai First People's Hospital, SJTU-SM, 280 South Chongqing Road, Shanghai 200025, China
| | - Peng Sun
- Department of General Surgery, Shanghai Tongren Hospital, SJTU-SM, 1111 Xianxia Road, Shanghai 200336, China
| | - Chao Fang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China.
| | - Hong-Zhuan Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
37
|
Carter KA, Wang S, Geng J, Luo D, Shao S, Lovell JF. Metal Chelation Modulates Phototherapeutic Properties of Mitoxantrone-Loaded Porphyrin-Phospholipid Liposomes. Mol Pharm 2016; 13:420-7. [PMID: 26691879 PMCID: PMC6247800 DOI: 10.1021/acs.molpharmaceut.5b00653] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liposomes incorporating porphyrin-phospholipid (PoP) can be formulated to release entrapped contents in response to near-infrared (NIR) laser irradiation. Here, we examine effects of chelating copper or zinc into the PoP. Cu(II) and Zn(II) PoP liposomes, containing 10 molar % HPPH-lipid, exhibited unique photophysical properties and released entrapped cargo in response to NIR light. Cu-PoP liposomes exhibited minimal fluorescence and reduced production of reactive oxygen species upon irradiation. Zn-PoP liposomes retained fluorescence and singlet oxygen generation properties; however, they rapidly self-bleached under laser irradiation. Compared to the free base form, both Cu- and Zn-PoP liposomes exhibited reduced phototoxicity in mice. When loaded with mitoxantrone and administered intravenously at 5 mg/kg to mice bearing human pancreatic cancer xenografts, synergistic effects between the drug and the light treatment (for this particular dose and formulation) were realized with metallo-PoP liposomes. The drug-light-interval affected chemophototherapy efficacy and safety.
Collapse
Affiliation(s)
- Kevin A. Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Sophie Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260
| |
Collapse
|
38
|
Truong NP, Quinn JF, Whittaker MR, Davis TP. Polymeric filomicelles and nanoworms: two decades of synthesis and application. Polym Chem 2016. [DOI: 10.1039/c6py00639f] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review highlights the substantial progress in the syntheses and applications of filomicelles, an emerging nanomaterial with distinct and useful properties.
Collapse
Affiliation(s)
- Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|
39
|
Sweeney AE. Nanomedicine concepts in the general medical curriculum: initiating a discussion. Int J Nanomedicine 2015; 10:7319-31. [PMID: 26677322 PMCID: PMC4677654 DOI: 10.2147/ijn.s96480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Various applications of nanoscale science to the field of medicine have resulted in the ongoing development of the subfield of nanomedicine. Within the past several years, there has been a concurrent proliferation of academic journals, textbooks, and other professional literature addressing fundamental basic science research and seminal clinical developments in nanomedicine. Additionally, there is now broad consensus among medical researchers and practitioners that along with personalized medicine and regenerative medicine, nanomedicine is likely to revolutionize our definitions of what constitutes human disease and its treatment. In light of these developments, incorporation of key nanomedicine concepts into the general medical curriculum ought to be considered. Here, I offer for consideration five key nanomedicine concepts, along with suggestions regarding the manner in which they might be incorporated effectively into the general medical curriculum. Related curricular issues and implications for medical education also are presented.
Collapse
Affiliation(s)
- Aldrin E Sweeney
- Center for Teaching & Learning, Ross University School of Medicine, Roseau, Commonwealth of Dominica
| |
Collapse
|
40
|
Luo D, Carter KA, Razi A, Geng J, Shao S, Lin C, Ortega J, Lovell JF. Porphyrin-phospholipid liposomes with tunable leakiness. J Control Release 2015; 220:484-494. [PMID: 26578438 DOI: 10.1016/j.jconrel.2015.11.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 11/27/2022]
Abstract
Drug bioavailability is a key consideration for drug delivery systems. When loaded with doxorubicin, liposomes containing 5 molar % porphyrin-phospholipid (HPPH liposomes) exhibited in vitro and in vivo serum stability that could be fine-tuned by varying the drug-to-lipid ratio. A higher drug loading ratio destabilized the liposomes, in contrast to standard liposomes which displayed an opposite and less pronounced trend. Following systemic administration of HPPH liposomes, near infrared laser irradiation induced vascular photodynamic damage, resulting in enhanced liposomal doxorubicin accumulation in tumors. In laser-irradiated tumors, the use of leaky HPPH liposomes resulted in improved doxorubicin bioavailability compared to stable standard liposomes. Using this approach, a single photo-treatment with 10mg/kg doxorubicin rapidly eradicated tumors in athymic nude mice bearing KB or MIA Paca-2 xenografts.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Aida Razi
- Department of Biochemistry and Biomedical Sciences and M. G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Cuiyan Lin
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences and M. G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
41
|
Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials 2015; 75:193-202. [PMID: 26513413 DOI: 10.1016/j.biomaterials.2015.10.027] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 01/01/2023]
Abstract
Stealth liposomes can be used to extend the blood circulation time of encapsulated therapeutics. Inclusion of 2 molar % porphyrin-phospholipid (PoP) imparted optimal near infrared (NIR) light-triggered release of doxorubicin (Dox) from conventional sterically stabilized stealth liposomes. The type and amount of PoP affected drug loading, serum stability and drug release induced by NIR light. Cholesterol and PEGylation were required for Dox loading, but slowed light-triggered release. Dox in stealth PoP liposomes had a long circulation half-life in mice of 21.9 h and was stable in storage for months. Following intravenous injection and NIR irradiation, Dox deposition increased ∼ 7 fold in treated subcutaneous human pancreatic xenografts. Phototreatment induced mild tumor heating and complex tumor hemodynamics. A single chemophototherapy treatment with Dox-loaded stealth PoP liposomes (at 5-7 mg/kg Dox) eradicated tumors while corresponding chemo- or photodynamic therapies were ineffective. A low dose 3 mg/kg Dox phototreatment with stealth PoP liposomes was more effective than a maximum tolerated dose of free (7 mg/kg) or conventional long-circulating liposomal Dox (21 mg/kg). To our knowledge, Dox-loaded stealth PoP liposomes represent the first reported long-circulating nanoparticle capable of light-triggered drug release.
Collapse
|
42
|
Rieffel J, Chitgupi U, Lovell JF. Recent Advances in Higher-Order, Multimodal, Biomedical Imaging Agents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4445-61. [PMID: 26185099 PMCID: PMC4582016 DOI: 10.1002/smll.201500735] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/27/2015] [Indexed: 05/17/2023]
Abstract
Advances in biomedical imaging have spurred the development of integrated multimodal scanners, usually capable of two simultaneous imaging modes. The long-term vision of higher-order multimodality is to improve diagnostics or guidance through the analysis of complementary, data-rich, co-registered images. Synergies achieved through combined modalities could enable researchers to better track diverse physiological and structural events, analyze biodistribution and treatment efficacy, and compare established and emerging modalities. Higher-order multimodal approaches stand to benefit from molecular imaging probes and, in recent years, contrast agents that have hypermodal characteristics have increasingly been reported in preclinical studies. Given the chemical requirements for contrast agents representing various modalities to be integrated into a single entity, the higher-order multimodal agents reported so far tend to be of nanoparticulate form. To date, the majority of reported nanoparticles have included components that are active for magnetic resonance. Herein, recent progress in higher-order multimodal imaging agents is reviewed, spanning a range of material and structural classes, and demonstrating utility in three (or more) imaging modalities.
Collapse
Affiliation(s)
- James Rieffel
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
43
|
Robertson NM, Hizir MS, Balcioglu M, Wang R, Yavuz MS, Yumak H, Ozturk B, Sheng J, Yigit MV. Discriminating a Single Nucleotide Difference for Enhanced miRNA Detection Using Tunable Graphene and Oligonucleotide Nanodevices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9943-52. [PMID: 26305398 DOI: 10.1021/acs.langmuir.5b02026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study we have reported our efforts to address some of the challenges in the detection of miRNAs using water-soluble graphene oxide and DNA nanoassemblies. Purposefully inserting mismatches at specific positions in our DNA (probe) strands shows increasing specificity against our target miRNA, miR-10b, over miR-10a which varies by only a single nucleotide. This increased specificity came at a loss of signal intensity within the system, but we demonstrated that this could be addressed with the use of DNase I, an endonuclease capable of cleaving the DNA strands of the RNA/DNA heteroduplex and recycling the RNA target to hybridize to another probe strand. As we previously demonstrated, this enzymatic signal also comes with an inherent activity of the enzyme on the surface-adsorbed probe strands. To remove this activity of DNase I and the steady nonspecific increase in the fluorescence signal without compromising the recovered signal, we attached a thermoresponsive PEGMA polymer (poly(ethylene glycol) methyl ether methacrylate) to nGO. This smart polymer is able to shield the probes adsorbed on the nGO surface from the DNase I activity and is capable of tuning the detection capacity of the nGO nanoassembly with a thermoswitch at 39 °C. By utilizing probes with multiple mismatches, DNase I cleavage of the DNA probe strands, and the attachment of PEGMA polymers to graphene oxide to block undesired DNase I activity, we were able to detect miR-10b from liquid biopsy mimics and breast cancer cell lines. Overall we have reported our efforts to improve the specificity, increase the sensitivity, and eliminate the undesired enzymatic activity of DNase I on surface-adsorbed probes for miR-10b detection using water-soluble graphene nanodevices. Even though we have demonstrated only the discrimination of miR-10b from miR-10a, our approach can be extended to other short RNA molecules which differ by a single nucleotide.
Collapse
Affiliation(s)
- Neil M Robertson
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mustafa Salih Hizir
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mustafa Balcioglu
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Rui Wang
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mustafa Selman Yavuz
- Department of Metallurgy and Materials Engineering, Advanced Technology Research and Application Center, Selcuk University , Konya, Turkey
| | - Hasan Yumak
- Department of Science, BMCC, City University of New York , 199 Chambers Street, New York, New York 10007, United States
| | - Birol Ozturk
- Department of Physics and Engineering Physics, Morgan State University , 1700 E. Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Jia Sheng
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mehmet V Yigit
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
44
|
Huang H, Song W, Rieffel J, Lovell JF. Emerging applications of porphyrins in photomedicine. FRONTIERS IN PHYSICS 2015; 3:23. [PMID: 28553633 PMCID: PMC5445930 DOI: 10.3389/fphy.2015.00023] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biomedical applications of porphyrins and related molecules have been extensively pursued in the context of photodynamic therapy. Recent advances in nanoscale engineering have opened the door for new ways that porphyrins stand to potentially benefit human health. Metalloporphyrins are inherently suitable for many types of medical imaging and therapy. Traditional nanocarriers such as liposomes, dendrimers and silica nanoparticles have been explored for photosensitizer delivery. Concurrently, entirely new classes of porphyrin nanostructures are being developed, such as smart materials that are activated by specific biochemicals encountered at disease sites. Techniques have been developed that improve treatments by combining biomaterials with photosensitizers and functional moieties such as peptides, DNA and antibodies. Compared to simpler structures, these more complex and functional designs can potentially decrease side effects and lead to safer and more efficient phototherapies. This review examines recent research on porphyrin-derived materials in multimodal imaging, drug delivery, bio-sensing, phototherapy and probe design, demonstrating their bright future for biomedical applications.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Wentao Song
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - James Rieffel
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|