1
|
Vorotnikov YA, Vorotnikova NA, Shestopalov MA. Silica-Based Materials Containing Inorganic Red/NIR Emitters and Their Application in Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5869. [PMID: 37687562 PMCID: PMC10488461 DOI: 10.3390/ma16175869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
The low absorption of biological substances and living tissues in the red/near-infrared region (therapeutic window) makes luminophores emitting in the range of ~650-1350 nm favorable for in vitro and in vivo imaging. In contrast to commonly used organic dyes, inorganic red/NIR emitters, including ruthenium complexes, quantum dots, lanthanide compounds, and octahedral cluster complexes of molybdenum and tungsten, not only exhibit excellent emission in the desired region but also possess additional functional properties, such as photosensitization of the singlet oxygen generation process, upconversion luminescence, photoactivated effects, and so on. However, despite their outstanding functional applicability, they share the same drawback-instability in aqueous media under physiological conditions, especially without additional modifications. One of the most effective and thus widely used types of modification is incorporation into silica, which is (1) easy to obtain, (2) biocompatible, and (3) non-toxic. In addition, the variety of morphological characteristics, along with simple surface modification, provides room for creativity in the development of various multifunctional diagnostic/therapeutic platforms. In this review, we have highlighted biomedical applications of silica-based materials containing red/NIR-emitting compounds.
Collapse
Affiliation(s)
- Yuri A. Vorotnikov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia;
| | | | - Michael A. Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia;
| |
Collapse
|
2
|
Baig MS, Suryawanshi RM, Zehravi M, Mahajan HS, Rana R, Banu A, Subramanian M, Kaundal AK, Puri S, Siddiqui FA, Sharma R, Khan SL, Chen KT, Emran TB. Surface decorated quantum dots: Synthesis, properties and role in herbal therapy. Front Cell Dev Biol 2023; 11:1139671. [PMID: 37025169 PMCID: PMC10070951 DOI: 10.3389/fcell.2023.1139671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/24/2023] [Indexed: 04/08/2023] Open
Abstract
Quantum dots are the serendipitous outcome of materials research. It is the tiny carbonaceous nanoparticles with diameters ranging from 1 to 10 nm. This review is a brief discussion of the synthesis, properties, and biomedical applicability of quantum dots, especially in herbal therapy. As quantum dots are highly polar, they can be surface decorated with several kinds of polar functionalities, such as polymeric molecules, small functional molecules, and so on. The review also consists of the basic physical and optical properties of quantum dots and their excitation-dependent properties in the application section. We focus on therapeutics, where quantum dots are used as drugs or imaging probes. Nanoprobes for several diagnostics are quite new in the biomedical research domain. Quantum dot-based nanoprobes are in high demand due to their excellent fluorescence, non-bleaching nature, biocompatibility, anchoring feasibility for several analytes, and fast point-of-care sensibility. Lastly, we also included a discussion on quantum dot-based drug delivery as phytomedicine.
Collapse
Affiliation(s)
- Mirza Shahed Baig
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Aurangabad, India
| | | | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj, Saudi Arabia
| | - Hitendra S. Mahajan
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Ritesh Rana
- Department of Pharmaceutics, Himachal Institute of Pharmaceutical Education and Research (HIPER), Hamirpur, Himachal Pradesh, India
| | - Ahemadi Banu
- Department of Pharmacology, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, India
| | | | - Amit Kumar Kaundal
- Department of Pharmaceutical Analysis and Quality Assurance, Himachal Institute of Pharmaceutical Education and Research (HIPER), Hamirpur, Himachal Pradesh, India
| | - Sachin Puri
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Maharashtra, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Maharashtra, India
- *Correspondence: Sharuk L. Khan, ; Kow-Tong Cheng,
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital, managed by Show Chwan Medical Care Corporation, Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Sharuk L. Khan, ; Kow-Tong Cheng,
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
3
|
Xiong J, Zhang H, Qin L, Zhang S, Cao J, Jiang H. Magnetic Fluorescent Quantum Dots Nanocomposites in Food Contaminants Analysis: Current Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms23084088. [PMID: 35456904 PMCID: PMC9028821 DOI: 10.3390/ijms23084088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
The presence of food contaminants can cause foodborne illnesses, posing a severe threat to human health. Therefore, a rapid, sensitive, and convenient method for monitoring food contaminants is eagerly needed. The complex matrix interferences of food samples and poor performance of existing sensing probes bring significant challenges to improving detection performances. Nanocomposites with multifunctional features provide a solution to these problems. The combination of the superior characteristics of magnetic nanoparticles (MNPs) and quantum dots (QDs) to fabricate magnetic fluorescent quantum dots (MNPs@QDs) nanocomposites are regarded as an ideal multifunctional probe for food contaminants analysis. The high-efficiency pretreatment and rapid fluorescence detection are concurrently integrated into one sensing platform using MNPs@QDs nanocomposites. In this review, the contemporary synthetic strategies to fabricate MNPs@QDs, including hetero-crystalline growth, template embedding, layer-by-layer assembly, microemulsion technique, and one-pot method, are described in detail, and their advantages and limitations are discussed. The recent advances of MNPs@QDs nanocomposites in detecting metal ions, foodborne pathogens, toxins, pesticides, antibiotics, and illegal additives are comprehensively introduced from the perspectives of modes and detection performances. The review ends with current challenges and opportunities in practical applications and prospects in food contaminants analysis, aiming to promote the enthusiasm for multifunctional sensing platform research.
Collapse
Affiliation(s)
- Jincheng Xiong
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Huixia Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Linqian Qin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Shuai Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
- Correspondence: ; Tel.: +86-010-6273-4478; Fax: +86-010-6273-1032
| |
Collapse
|
4
|
Li J, Zhang J, Guo Z, Jiang H, Zhang H, Wang X. Self-Assembly Fabrication of Honeycomb-like Magnetic-Fluorescent Fe 3O 4-QDs Nanocomposites for Bimodal Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14471-14477. [PMID: 33231462 DOI: 10.1021/acs.langmuir.0c00077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic-fluorescent nanocomposites have a tremendous potential in biomedicine realms as a revolutionary dual-modality probe tool for more accurate medical detection. However, complicated and inefficient postprocesses pose obstacles to obtaining high-quality magnetic-fluorescent nanocomposites. Thus, the fabrication of magnetic-fluorescent functional nanocomposites via a simple, effective, and ideal method remains a challenge and is still waiting to be tapped. The new synthesis approaches are becoming impending demands and probably enable us to address these above-mentioned problems. In this contribution, we present a novel self-assembly synthesis route for the construction of magnetic-fluorescent bimodal imaging nanocomposites rather than adopting sophisticated postpreparative processes. The Fe3O4 and quatum dots (QDs) nanocomposites were cross-linked fleetly by cerium(III) ion driven coordination bonds in which the cerium(III) ions served as the cross-connecting node and the carboxylate groups acted as bridging ligands. The potential application for dual-modality imaging capability was validated on tumor-bearing mice. This ingenious strategy was extremely efficient and handy for the magnetic-fluorescent Fe3O4-QDs nanocomposite construction. Significantly, our cerium(III) ion driven self-assembly method probably has a wide applicability for nanoparticles and organic molecules containing carboxyl groups but extensive explorations are still necessary.
Collapse
Affiliation(s)
- Jincheng Li
- State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jialei Zhang
- State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zengchao Guo
- State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xuemei Wang
- State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
5
|
Wang W, Liu X, Zheng X, Jin HJ, Li X. Biomineralization: An Opportunity and Challenge of Nanoparticle Drug Delivery Systems for Cancer Therapy. Adv Healthc Mater 2020; 9:e2001117. [PMID: 33043640 DOI: 10.1002/adhm.202001117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization is a common process in organisms to produce hard biomaterials by combining inorganic ions with biomacromolecules. Multifunctional nanoplatforms are developed based on the mechanism of biomineralization in many biomedical applications. In the past few years, biomineralization-based nanoparticle drug delivery systems for the cancer treatment have gained a lot of research attention due to the advantages including simple preparation, good biocompatibility, degradability, easy modification, versatility, and targeting. In this review, the research trends of biomineralization-based nanoparticle drug delivery systems and their applications in cancer therapy are summarized. This work aims to promote future researches on cancer therapy based on biomineralization. Rational design of nanoparticle drug delivery systems can overcome the bottleneck in the clinical transformation of nanomaterials. At the same time, biomineralization has also provided new research ideas for cancer treatment, i.e., targeted therapy, which has significantly better performance.
Collapse
Affiliation(s)
- Weicai Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology Equipment and Diagnosis‐Therapy Integration in Universities of Shandong Shandong Province Key Laboratory of Detection Technology for Tumor Makers School of Chemistry and Chemical Engineering Linyi University Linyi Shandong 276005 China
| | - Xiaofan Liu
- Collaborative Innovation Center of Tumor Marker Detection Technology Equipment and Diagnosis‐Therapy Integration in Universities of Shandong Shandong Province Key Laboratory of Detection Technology for Tumor Makers School of Chemistry and Chemical Engineering Linyi University Linyi Shandong 276005 China
| | - Xiangjiang Zheng
- Collaborative Innovation Center of Tumor Marker Detection Technology Equipment and Diagnosis‐Therapy Integration in Universities of Shandong Shandong Province Key Laboratory of Detection Technology for Tumor Makers School of Chemistry and Chemical Engineering Linyi University Linyi Shandong 276005 China
| | - Hyung Jong Jin
- Department of Bioscience and Biotechnology The University of Suwon Hwaseong Gyeonggi‐Do 18323 Republic of Korea
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology Equipment and Diagnosis‐Therapy Integration in Universities of Shandong Shandong Province Key Laboratory of Detection Technology for Tumor Makers School of Chemistry and Chemical Engineering Linyi University Linyi Shandong 276005 China
| |
Collapse
|
6
|
Choudhary N, Guadalupe Jaraquemada-Peláez MD, Zarschler K, Wang X, Radchenko V, Kubeil M, Stephan H, Orvig C. Chelation in One Fell Swoop: Optimizing Ligands for Smaller Radiometal Ions. Inorg Chem 2020; 59:5728-5741. [DOI: 10.1021/acs.inorgchem.0c00509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Neha Choudhary
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Marı́a de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kristof Zarschler
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Xiaozhu Wang
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
7
|
Ottoboni L, von Wunster B, Martino G. Therapeutic Plasticity of Neural Stem Cells. Front Neurol 2020; 11:148. [PMID: 32265815 PMCID: PMC7100551 DOI: 10.3389/fneur.2020.00148] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Neural stem cells (NSCs) have garnered significant scientific and commercial interest in the last 15 years. Given their plasticity, defined as the ability to develop into different phenotypes inside and outside of the nervous system, with a capacity of almost unlimited self-renewal, of releasing trophic and immunomodulatory factors, and of exploiting temporal and spatial dynamics, NSCs have been proposed for (i) neurotoxicity testing; (ii) cellular therapies to treat CNS diseases; (iii) neural tissue engineering and repair; (iv) drug target validation and testing; (v) personalized medicine. Moreover, given the growing interest in developing cell-based therapies to target neurodegenerative diseases, recent progress in developing NSCs from human-induced pluripotent stem cells has produced an analog of endogenous NSCs. Herein, we will review the current understanding on emerging conceptual and technological topics in the neural stem cell field, such as deep characterization of the human compartment, single-cell spatial-temporal dynamics, reprogramming from somatic cells, and NSC manipulation and monitoring. Together, these aspects contribute to further disentangling NSC plasticity to better exploit the potential of those cells, which, in the future, might offer new strategies for brain therapies.
Collapse
Affiliation(s)
- Linda Ottoboni
- Neurology and Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Gianvito Martino
- Neurology and Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy
| |
Collapse
|
8
|
Chetty SS, Praneetha S, Vadivel Murugan A, Govarthanan K, Verma RS. Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells Labeled with Mn 2+ and Gd 3+ Co-Doped CuInS 2-ZnS Nanocrystals for Multimodality Imaging in a Tumor Mice Model. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3415-3429. [PMID: 31875453 DOI: 10.1021/acsami.9b19054] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mesenchymal stem cell (MSCs) therapy has recently received profound interest as a targeting platform in cancer theranostics because of inherent tumor-homing abilities. However, the terminal tracking of MSCs engraftment by fluorescent in situ hybridization, immuno-histochemistry, and flow-cytometry techniques to translate into clinics is still challenging because of a dearth of inherent MSCs-specific markers and FDA approval for genetic modifications of MSCs. To address this challenge, a cost-effective noninvasive imaging technology based on multifunctional nanocrystals (NCs) with enhanced detection sensitivity, spatial-temporal resolution, and deep-tissue diagnosis is needed to be developed to track the transplanted stem cells. A hassle-free labeling of human umbilical cord Wharton's Jelly (WJ)-derived MSCs with Mn2+ and Gd3+ co-doped CuInS2-ZnS (CIS-ZMGS) NCs has been demonstrated in 2 h without requiring an electroporation process or transfection agents. It has been found that WJ-MSCs labeling did not affect their multilineage differentiation (adipocyte, osteocyte, chondrocyte), immuno-phenotypes (CD44+, CD105+, CD90+), protein (β-actin, vimentin, CD73, α-SMCA), and gene expressions. Interestingly, CIS-ZMGS-NCs-labeled WJ-MSCs exhibit near-infrared (NIR) fluorescence with a quantum yield of 84%, radiant intensity of ∼3.999 × 1011 (p/s/cm2/sr)/(μW/cm2), magnetic relaxivity (longitudinal r1 = 2.26 mM-1 s-1, transverse r2 = 16.47 mM-1 s-1), and X-ray attenuation (78 HU) potential for early noninvasive multimodality imaging of a subcutaneous melanoma in B16F10-tumor-bearing C57BL/6 mice in 6 h. The ex vivo imaging and inductively coupled plasma mass-spectroscopy analyses of excised organs along with confocal microscopy and immunofluorescence of tumor results also significantly confirmed the positive tropism of CIS-ZMGS-NCs-labeled WJ-MSCs in the tumor environment. Hence, we propose the magnetofluorescent CIS-ZMGS-NCs-labeled WJ-MSCs as a next-generation nanobioprobe of three commonly used imaging modalities for stem cell-assisted anticancer therapy and tracking tissue/organ regenerations.
Collapse
Affiliation(s)
- Shashank Shankar Chetty
- Advanced Functional Nanostructured Materials Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies , Pondicherry University (A Central University) , Puducherry 605014 , India
| | - Selvarasu Praneetha
- Advanced Functional Nanostructured Materials Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies , Pondicherry University (A Central University) , Puducherry 605014 , India
| | - Arumugam Vadivel Murugan
- Advanced Functional Nanostructured Materials Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies , Pondicherry University (A Central University) , Puducherry 605014 , India
| | - Kavitha Govarthanan
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology , Indian Institute of Technology-Madras (IIT-M) , Chennai 600036 , India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology , Indian Institute of Technology-Madras (IIT-M) , Chennai 600036 , India
| |
Collapse
|
9
|
Koktysh DS, Pham W. A Combinatorial Approach for the Fabrication of Magneto-Optical Hybrid Nanoparticles. Int J Nanomedicine 2019; 14:9855-9863. [PMID: 31849473 PMCID: PMC6913303 DOI: 10.2147/ijn.s228962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/25/2019] [Indexed: 11/30/2022] Open
Abstract
Introduction The increasing demands for better resolution combined with anatomical information in biomedical imaging necessitate the development of multimodal contrast agents. In this respect, the multivalency of nanotechnology enables the integration of nanomaterials with distinct biophysical properties into a unique probe, capable to exert superior imaging characterstics through synergistic enhancement unmatched by any single modality. Materials and methods Novel magneto-optical hybrid nanoparticles (MOHNPs), comprise semiconductor quantum dots (QDs) tethered on the surface of superparamagnetic iron oxide (SPIO) NPs, were synthesized using a combinatorial approach. The semiconductor components utilized for the synthesis of the hybrid NPs contained cadmium-free QDs, which were stabilized by a variety of functional ligands including thiols, polyethyleneimine (PEI) and amphiphilic polymers. While SPIO NPs were further modified with silica or PEI on the outermost layer. The main mechanism to assemble semiconductor QDs onto the SPIO NPs employed a core-shell approach, in which covalent bonding and electrostatic interaction held the components together. Results The versatility of the NP assembling mechanism described in this work offered a robust and flexible fabrication of MOHNPs. A proof-of-concept study demonstrated desterous coating of folic acid onto the surface of MOHNPs to create a targeted imaging probe. The emission of the resulted hybrid NPs extended in the near-infrared region, suitable for in vivo applications. Conclusion This novel assembling technology offers far-reaching capabilities to generate complex multimodal nanoiamging probes.
Collapse
Affiliation(s)
- Dmitry S Koktysh
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.,Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Wellington Pham
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
10
|
Recent Progress in Synthesis and Functionalization of Multimodal Fluorescent-Magnetic Nanoparticles for Biological Applications. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020172] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
There is a great interest in the development of new nanomaterials for multimodal imaging applications in biology and medicine. Multimodal fluorescent-magnetic based nanomaterials deserve particular attention as they can be used as diagnostic and drug delivery tools, which could facilitate the diagnosis and treatment of cancer and many other diseases. This review focuses on the recent developments of magnetic-fluorescent nanocomposites and their biomedical applications. The recent advances in synthetic strategies and approaches for the preparation of fluorescent-magnetic nanocomposites are presented. The main biomedical uses of multimodal fluorescent-magnetic nanomaterials, including biological imaging, cancer therapy and drug delivery, are discussed, and prospects of this field are outlined.
Collapse
|
11
|
Dou YK, Chen Y, He XW, Li WY, Li YH, Zhang YK. Synthesis of Water-Dispersible Mn2+ Functionalized Silicon Nanoparticles under Room Temperature and Atmospheric Pressure for Fluorescence and Magnetic Resonance Dual-Modality Imaging. Anal Chem 2017; 89:11286-11292. [DOI: 10.1021/acs.analchem.7b01644] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ya-Kun Dou
- College
of Chemistry, Research Center for Analytical Sciences, State Key Laboratory
of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing
and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yang Chen
- Key
Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, China
| | - Xi-Wen He
- College
of Chemistry, Research Center for Analytical Sciences, State Key Laboratory
of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing
and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Wen-You Li
- College
of Chemistry, Research Center for Analytical Sciences, State Key Laboratory
of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing
and Molecular Recognition, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Yu-Hao Li
- Key
Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, China
| | - Yu-Kui Zhang
- College
of Chemistry, Research Center for Analytical Sciences, State Key Laboratory
of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing
and Molecular Recognition, Nankai University, Tianjin 300071, China
- National
Chromatographic Research and Analysis Center, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
12
|
Development of multifunctional nanoparticles towards applications in non-invasive magnetic resonance imaging and axonal tracing. J Biol Inorg Chem 2017; 22:1305-1316. [DOI: 10.1007/s00775-017-1503-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022]
|
13
|
Stem Cell Tracking Technologies for Neurological Regenerative Medicine Purposes. Stem Cells Int 2017; 2017:2934149. [PMID: 29138636 PMCID: PMC5613625 DOI: 10.1155/2017/2934149] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/12/2017] [Accepted: 07/09/2017] [Indexed: 01/15/2023] Open
Abstract
The growing field of stem cell therapy is moving toward clinical trials in a variety of applications, particularly for neurological diseases. However, this translation of cell therapies into humans has prompted a need to create innovative and breakthrough methods for stem cell tracing, to explore the migration routes and its reciprocity with microenvironment targets in the body, to monitor and track the outcome after stem cell transplantation therapy, and to track the distribution and cell viability of transplanted cells noninvasively and longitudinally. Recently, a larger number of cell tracking methods in vivo were developed and applied in animals and humans, including magnetic resonance imaging, nuclear medicine imaging, and optical imaging. This review has been intended to summarize the current use of those imaging tools in tracking stem cells, detailing their main features and drawbacks, including image resolution, tissue penetrating depth, and biosafety aspects. Finally, we address that multimodality imaging method will be a more potential tracking tool in the future clinical application.
Collapse
|
14
|
Facile synthesis of Gd-doped CdTe quantum dots with optimized properties for optical/MR multimodal imaging. J Biol Inorg Chem 2017; 22:1151-1163. [DOI: 10.1007/s00775-017-1491-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022]
|
15
|
Moulick A, Richtera L, Milosavljevic V, Cernei N, Haddad Y, Zitka O, Kopel P, Heger Z, Adam V. Advanced nanotechnologies in avian influenza: Current status and future trends - A review. Anal Chim Acta 2017; 983:42-53. [PMID: 28811028 PMCID: PMC7094654 DOI: 10.1016/j.aca.2017.06.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 02/04/2023]
Abstract
In the last decade, the control of avian influenza virus has experienced many difficulties, which have caused major global agricultural problems that have also led to public health consequences. Conventional biochemical methods are not sufficient to detect and control agricultural pathogens in the field due to the growing demand for food and subsidiary products; thus, studies aiming to develop potent alternatives to conventional biochemical methods are urgently needed. In this review, emerging detection systems, their applicability to diagnostics, and their therapeutic possibilities in view of nanotechnology are discussed. Nanotechnology-based sensors are used for rapid, sensitive and cost-effective diagnostics of agricultural pathogens. The application of different nanomaterials promotes interactions between these materials and the virus, which enables researchers to construct portable electroanalytical biosensing analyser that should effectively detect the influenza virus. The present review will provide insights into the guidelines for future experiments to develop better techniques to detect and control influenza viruses.
Collapse
Affiliation(s)
- Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| |
Collapse
|
16
|
|
17
|
Zhang F, Kong XQ, Li Q, Sun TT, Chai C, Shen W, Hong ZY, He XW, Li WY, Zhang YK. Facile synthesis of CdTe@GdS fluorescent-magnetic nanoparticles for tumor-targeted dual-modal imaging. Talanta 2016; 148:108-15. [DOI: 10.1016/j.talanta.2015.10.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 12/26/2022]
|
18
|
Labiadh H, Ben Chaabane T, Sibille R, Balan L, Schneider R. A facile method for the preparation of bifunctional Mn:ZnS/ZnS/Fe3O4 magnetic and fluorescent nanocrystals. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1743-1751. [PMID: 26425426 PMCID: PMC4578387 DOI: 10.3762/bjnano.6.178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/25/2015] [Indexed: 06/05/2023]
Abstract
Bifunctional magnetic and fluorescent core/shell/shell Mn:ZnS/ZnS/Fe3O4 nanocrystals were synthesized in a basic aqueous solution using 3-mercaptopropionic acid (MPA) as a capping ligand. The structural and optical properties of the heterostructures were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The PL spectra of Mn:ZnS/ZnS/Fe3O4 quantum dots (QDs) showed marked visible emission around 584 nm related to the (4)T1 → (6)A1 Mn(2+) transition. The PL quantum yield (QY) and the remnant magnetization can be regulated by varying the thickness of the magnetic shell. The results showed that an increase in the thickness of the Fe3O4 magnetite layer around the Mn:ZnS/ZnS core reduced the PL QY but improved the magnetic properties of the composites. Nevertheless, a good compromise was achieved in order to maintain the dual modality of the nanocrystals, which may be promising candidates for various biological applications.
Collapse
Affiliation(s)
- Houcine Labiadh
- Unité de Recherche Synthèse et Structure de Nanomatériaux UR 11 ES 30, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte, Tunisia
| | - Tahar Ben Chaabane
- Unité de Recherche Synthèse et Structure de Nanomatériaux UR 11 ES 30, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte, Tunisia
| | - Romain Sibille
- Institut Jean Lamour (IJL), Université de Lorraine, CNRS, UMR 7198, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Lavinia Balan
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, UMR 7361, 15 rue Jean Starcky, 68093 Mulhouse, France
| | - Raphaël Schneider
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| |
Collapse
|
19
|
Shan G, Tang T. Expression of cyclin D1 and cyclin E in urothelial bladder carcinoma detected in tissue chips using a quantum dot immunofluorescence technique. Oncol Lett 2015; 10:1271-1276. [PMID: 26622662 DOI: 10.3892/ol.2015.3436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 03/25/2015] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the expression of cyclin D1 and cyclin E in tissue chips of bladder cancer using quantum dots (QDs), as well as examine its clinicopathological significance. The QD-based immunofluorescence tissue chemical technique was adopted to detect cyclin D1 and cyclin E expression in 75 tissue chips of human urothelial bladder carcinoma (including 70 cases of urothelial bladder carcinoma and 5 cases of cystitis), and its correlation with clinicopathological features was analyzed. The positive rates of cyclin D1 and cyclin E expression in urothelial bladder carcinoma were 68.6% (48/70) and 70.0% (49/70), respectively; however, no expression was observed in cystitis. Based on the results of statistical analysis, the difference in the positive rates of cyclin D1 and cyclin E expression between urothelial bladder carcinoma and cystitis was significant (P<0.05). QD staining and statistical analysis revealed that the expression of cyclin D1 and cyclin E in urothelial bladder carcinoma was significantly higher compared with that in cystitis (P<0.05). However, no statistically significant difference (P>0.05) in cyclin D1 expression was observed in relation to pathological stage, clinical stage or invasion of urothelial bladder carcinoma; however, there was a significant difference (P<0.05) in cyclin E expression with respect to these factors. These results demonstrated that overexpression of cyclin D1 may be an early event in the occurrence of urothelial bladder carcinoma. Cyclin D1 may play a role in the initial stage where cell proliferation is a necessary step, without invasion or metastasis. In addition, overexpression of cyclin E was correlated with the stage and depth of invasion of urothelial bladder carcinoma. In conclusion, the abnormal expression of cyclin D1 and cyclin E may be involved in the occurrence and development of urothelial bladder carcinoma.
Collapse
Affiliation(s)
- Guang Shan
- Department of Urologic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tian Tang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
20
|
Sharma VK, Gokyar S, Kelestemur Y, Erdem T, Unal E, Demir HV. Manganese doped fluorescent paramagnetic nanocrystals for dual-modal imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4961-4966. [PMID: 25111198 DOI: 10.1002/smll.201401143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/13/2014] [Indexed: 06/03/2023]
Abstract
In this work, dual-modal (fluorescence and magnetic resonance) imaging capabilities of water-soluble, low-toxicity, monodisperse Mn-doped ZnSe nanocrystals (NCs) with a size (6.5 nm) below the optimum kidney cutoff limit (10 nm) are reported. Synthesizing Mn-doped ZnSe NCs with varying Mn(2+) concentrations, a systematic investigation of the optical properties of these NCs by using photoluminescence (PL) and time resolved fluorescence are demonstrated. The elemental properties of these NCs using X-ray photoelectron spectroscopy and inductive coupled plasma-mass spectroscopy confirming Mn(2+) doping is confined to the core of these NCs are also presented. It is observed that with increasing Mn(2+) concentration the PL intensity first increases, reaching a maximum at Mn(2+) concentration of 3.2 at% (achieving a PL quantum yield (QY) of 37%), after which it starts to decrease. Here, this high-efficiency sample is demonstrated for applications in dual-modal imaging. These NCs are further made water-soluble by ligand exchange using 3-mercaptopropionic acid, preserving their PL QY as high as 18%. At the same time, these NCs exhibit high relaxivity (≈2.95 mM(-1) s(-1)) to obtain MR contrast at 25 °C, 3 T. Therefore, the Mn(2+) doping in these water-soluble Cd-free NCs are sufficient to produce contrast for both fluorescence and magnetic resonance imaging techniques.
Collapse
Affiliation(s)
- Vijay Kumar Sharma
- UNAM-Institute of Materials Science and Nanotechnology, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | | | | | | | | | | |
Collapse
|
21
|
Bennett KM, Jo JI, Cabral H, Bakalova R, Aoki I. MR imaging techniques for nano-pathophysiology and theranostics. Adv Drug Deliv Rev 2014; 74:75-94. [PMID: 24787226 DOI: 10.1016/j.addr.2014.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/02/2014] [Accepted: 04/20/2014] [Indexed: 11/25/2022]
Abstract
The advent of nanoparticle DDSs (drug delivery systems, nano-DDSs) is opening new pathways to understanding physiology and pathophysiology at the nanometer scale. A nano-DDS can be used to deliver higher local concentrations of drugs to a target region and magnify therapeutic effects. However, interstitial cells or fibrosis in intractable tumors, as occurs in pancreatic or scirrhous stomach cancer, tend to impede nanoparticle delivery. Thus, it is critical to optimize the type and size of nanoparticles to reach the target. High-resolution 3D imaging provides a means of "seeing" the nanoparticle distribution and therapeutic effects. We introduce the concept of "nano-pathophysiological imaging" as a strategy for theranostics. The strategy consists of selecting an appropriate nano-DDS and rapidly evaluating drug effects in vivo to guide the next round of therapy. In this article we classify nano-DDSs by component carrier materials and present an overview of the significance of nano-pathophysiological MRI.
Collapse
|
22
|
Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S. Core/shell nanoparticles in biomedical applications. Adv Colloid Interface Sci 2014; 209:8-39. [PMID: 24491963 DOI: 10.1016/j.cis.2013.12.008] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Nanoparticles have several exciting applications in different areas and biomedial field is not an exception of that because of their exciting performance in bioimaging, targeted drug and gene delivery, sensors, and so on. It has been found that among several classes of nanoparticles core/shell is most promising for different biomedical applications because of several advantages over simple nanoparticles. This review highlights the development of core/shell nanoparticles-based biomedical research during approximately past two decades. Applications of different types of core/shell nanoparticles are classified in terms of five major aspects such as bioimaging, biosensor, targeted drug delivery, DNA/RNA interaction, and targeted gene delivery.
Collapse
|
23
|
Zhang F, He F, He XW, Li WY, Zhang YK. Aqueous synthesis of highly luminescent surface Mn2+-doped CdTe quantum dots as a potential multimodal agent. LUMINESCENCE 2014; 29:1059-65. [DOI: 10.1002/bio.2660] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/07/2014] [Accepted: 02/10/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Fei Zhang
- State Key Laboratory of Medicinal Chemical Biology, and Department of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
- Synergetic Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 People's Republic of China
| | - Fei He
- State Key Laboratory of Medicinal Chemical Biology, and Department of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
- Synergetic Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 People's Republic of China
| | - Xi-Wen He
- State Key Laboratory of Medicinal Chemical Biology, and Department of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
- Synergetic Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 People's Republic of China
| | - Wen-You Li
- State Key Laboratory of Medicinal Chemical Biology, and Department of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
- Synergetic Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 People's Republic of China
| | - Yu-Kui Zhang
- State Key Laboratory of Medicinal Chemical Biology, and Department of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
- Synergetic Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 People's Republic of China
- National Chromatographic Research and Analysis Center; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116011 People's Republic of China
| |
Collapse
|
24
|
Krejcova L, Nejdl L, Rodrigo MAM, Zurek M, Matousek M, Hynek D, Zitka O, Kopel P, Adam V, Kizek R. 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots. Biosens Bioelectron 2014; 54:421-7. [PMID: 24296063 DOI: 10.1016/j.bios.2013.10.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/10/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022]
Abstract
In this study, we report a new three-dimensional (3D), bead-based microfluidic chip developed for rapid, sensitive and specific detection of influenza hemagglutinin. The principle of microfluidic chip is based on implementation of two-step procedure that includes isolation based on paramagnetic beads and electrochemical detection. As a platform for isolation process, streptavidin-modified MPs, which were conjugated via biotinylated glycan (through streptavidin-biotin affinity) followed by linkage of hemagglutinin to glycan, were used. Vaccine hemagglutinin (HA vaxi) was labeled with CdS quantum dots (QDs) at first. Detection of the isolation product by voltammetry was the end point of the procedure. The suggested and developed method can be used also for detection of other specific substances that are important for control, diagnosis or therapy of infectious diseases.
Collapse
Affiliation(s)
- Ludmila Krejcova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Lukas Nejdl
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic
| | - Michal Zurek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Miroslav Matousek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic.
| |
Collapse
|
25
|
Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors. Biomaterials 2014; 35:1608-17. [DOI: 10.1016/j.biomaterials.2013.10.078] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/27/2013] [Indexed: 12/19/2022]
|
26
|
One-Step Synthesis of Colloidal Quantum Dots of Iron Selenide Exhibiting Narrow Range Fluorescence in the Green Region. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/804290] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
MAGNETIC FLUORESCENT MICROSPHERES CONTAINING RARE EARTH PREPARED BY SOAP-FREE SEEDED EMULSION POLYMERIZATION AND THEIR CHARACTERIZATION. ACTA POLYM SIN 2013. [DOI: 10.3724/sp.j.1105.2013.13095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Multimodality molecular imaging of stem cells therapy for stroke. BIOMED RESEARCH INTERNATIONAL 2013; 2013:849819. [PMID: 24222920 PMCID: PMC3816035 DOI: 10.1155/2013/849819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/21/2013] [Indexed: 12/03/2022]
Abstract
Stem cells have been proposed as a promising therapy for treating stroke. While several studies have demonstrated the therapeutic benefits of stem cells, the exact mechanism remains elusive. Molecular imaging provides the possibility of the visual representation of biological processes at the cellular and molecular level. In order to facilitate research efforts to understand the stem cells therapeutic mechanisms, we need to further develop means of monitoring these cells noninvasively, longitudinally and repeatedly. Because of tissue depth and the blood-brain barrier (BBB), in vivo imaging of stem cells therapy for stroke has unique challenges. In this review, we describe existing methods of tracking transplanted stem cells in vivo, including magnetic resonance imaging (MRI), nuclear medicine imaging, and optical imaging (OI). Each of the imaging techniques has advantages and drawbacks. Finally, we describe multimodality imaging strategies as a more comprehensive and potential method to monitor transplanted stem cells for stroke.
Collapse
|
29
|
Langereis S, Geelen T, Grüll H, Strijkers GJ, Nicolay K. Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery. NMR IN BIOMEDICINE 2013; 26:728-44. [PMID: 23703874 DOI: 10.1002/nbm.2971] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 05/07/2023]
Abstract
Liposomes are a versatile class of nanoparticles with tunable properties, and multiple liposomal drug formulations have been clinically approved for cancer treatment. In recent years, an extensive library of gadolinium (Gd)-containing liposomal MRI contrast agents has been developed for molecular and cellular imaging of disease-specific markers and for image-guided drug delivery. This review discusses the advances in the development and novel applications of paramagnetic liposomes in molecular and cellular imaging, and in image-guided drug delivery. A high targeting specificity has been achieved in vitro using ligand-conjugated paramagnetic liposomes. On targeting of internalizing cell receptors, the effective longitudinal relaxivity r1 of paramagnetic liposomes is modulated by compartmentalization effects. This provides unique opportunities to monitor the biological fate of liposomes. In vivo contrast-enhanced MRI studies with nontargeted liposomes have shown the extravasation of liposomes in diseases associated with endothelial dysfunction, such as tumors and myocardial infarction. The in vivo use of targeted paramagnetic liposomes has facilitated the specific imaging of pathophysiological processes, such as angiogenesis and inflammation. Paramagnetic liposomes loaded with drugs have been utilized for therapeutic interventions. MR image-guided drug delivery using such liposomes allows the visualization and quantification of local drug delivery.
Collapse
Affiliation(s)
- Sander Langereis
- Department of Minimally Invasive Healthcare, Philips Research Eindhoven, Eindhoven, the Netherlands
| | | | | | | | | |
Collapse
|
30
|
Wang Y, Hu R, Lin G, Roy I, Yong KT. Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2786-2799. [PMID: 23394295 DOI: 10.1021/am302030a] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Considerable efforts have been devoted to the development of novel functionalized nanomaterials for bio-oriented applications. With unique optical properties and molar scale production, colloidal photoluminescent quantum dots (QDs) have been properly functionalized with controlled interfaces as new class of optical probes with extensive use in biomedical research. In this review, we present a brief summary on the current research interests of using fine engineered QDs as a nanoplatform for biomedical sensing and imaging applications. In addition, recent concerns on the potential toxic effects of QDs are described as a general guidance for the development on QD formulations in future studies.
Collapse
Affiliation(s)
- Yucheng Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | | | | | | |
Collapse
|
31
|
Chen J, Yang XQ, Meng YZ, Qin MY, Yan DM, Qian Y, Xu GQ, Yu Y, Ma ZY, Zhao YD. Reverse microemulsion-mediated synthesis of Bi2S3–QD@SiO2–PEG for dual modal CT–fluorescence imaging in vitro and in vivo. Chem Commun (Camb) 2013; 49:11800-2. [DOI: 10.1039/c3cc47710j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Yan K, Li P, Zhu H, Zhou Y, Ding J, Shen J, Li Z, Xu Z, Chu PK. Recent advances in multifunctional magnetic nanoparticles and applications to biomedical diagnosis and treatment. RSC Adv 2013. [DOI: 10.1039/c3ra40348c] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
33
|
Gong X, Zhang Q, Cui Y, Zhu S, Su W, Yang Q, Chang J. A facile method to prepare high-performance magnetic and fluorescent bifunctional nanocomposites and their preliminary application in biomolecule detection. J Mater Chem B 2013; 1:2098-2106. [DOI: 10.1039/c3tb20061b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Saha AK, Sharma P, Sohn HB, Ghosh S, Das RK, Hebard AF, Zeng H, Baligand C, Walter GA, Moudgil BM. Fe Doped CdTeS Magnetic Quantum Dots for Bioimaging. J Mater Chem B 2013; 1:6312-6320. [PMID: 24634776 DOI: 10.1039/c3tb20859a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile synthesis of 3-6 nm, water dispersible, near-infrared (NIR) emitting, quantum dots (QDs) magnetically doped with Fe is presented. Doping of alloyed CdTeS nanocrystals with Fe was achieved in situ using a simple hydrothermal method. The magnetic quantum dots (MQDs) were capped with NAcetyl-Cysteine (NAC) ligands, containing thiol and carboxylic acid functional groups to provide stable aqueous dispersion. The optical and magnetic properties of the Fe doped MQDs were characterized using several techniques. The synthesized MQDs are tuned to emit in the Vis-NIR (530-738 nm) wavelength regime and have high quantum yields (67.5-10%). NIR emitting (738 nm) MQDs having 5.6 atomic% Fe content exhibited saturation magnetization of 85 emu/gm[Fe] at room temperature. Proton transverse relaxivity of the Fe doped MQDs (738 nm) at 4.7 T was determined to be 3.6 mM-1s-1. The functional evaluation of NIR MQDs has been demonstrated using phantom and in vitro studies. These water dispersible, NIR emitting and MR contrast producing Fe doped CdTeS MQDs, in unagglomerated form, have the potential to act as multimodal contrast agents for tracking live cells.
Collapse
Affiliation(s)
- Ajoy K Saha
- Particle Engineering Research Center, Materials Science and Engineering, University of Florida, Gainesville, FL 32611
| | - Parvesh Sharma
- Particle Engineering Research Center, Materials Science and Engineering, University of Florida, Gainesville, FL 32611
| | - Han-Byul Sohn
- Particle Engineering Research Center, Materials Science and Engineering, University of Florida, Gainesville, FL 32611
| | - Siddhartha Ghosh
- Department of Physics, University of Florida, Gainesville, FL 32611
| | - Ritesh K Das
- Advanced Photon Source, Argonne National Lab, Argonne, Il 60439
| | - Arthur F Hebard
- Department of Physics, University of Florida, Gainesville, FL 32611
| | - Huadong Zeng
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, National High Magnetic Field Laboratory, Gainesville, FL 32610
| | - Celine Baligand
- Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
| | - Glenn A Walter
- Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
| | - Brij M Moudgil
- Particle Engineering Research Center, Materials Science and Engineering, University of Florida, Gainesville, FL 32611
| |
Collapse
|
35
|
Abstract
The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention. Nanoparticles, including fluorescent semiconductor nanocrystals (quantum dots) and magnetic nanoparticles, have proven their excellent properties for in vivo imaging techniques in a number of modalities such as magnetic resonance and fluorescence imaging, respectively. In this article, we review the main properties and applications of nanoparticles in various in vitro imaging techniques, including microscopy and/or laser breakdown spectroscopy and in vivo methods such as magnetic resonance imaging and/or fluorescence-based imaging. Moreover the advantages of the drug delivery performed by nanocarriers such as iron oxides, gold, biodegradable polymers, dendrimers, lipid based carriers such as liposomes or micelles are also highlighted.
Collapse
|
36
|
Liu L, Xiao L, Zhu HY. Preparation and characterization of CS–Fe3O4@ZnS:Mn magnetic-fluorescent nanoparticles in aqueous media. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.04.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Kim HM, Noh YW, Park HS, Cho MY, Hong KS, Lee H, Shin DH, Kang J, Sung MH, Poo H, Lim YT. Self-fluorescence of chemically crosslinked MRI nanoprobes to enable multimodal imaging of therapeutic cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:666-670. [PMID: 22223602 DOI: 10.1002/smll.201102361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Indexed: 05/31/2023]
Abstract
Old chemistry for novel materials: Self-fluorescent high-relaxivity T(2)-weighted magnetic resonance imaging (MRI) contrast agents are produced. They are a novel type of MR/optical dual-modality in vivo imaging nanoprobe using glutaraldehyde crosslinking chemistry, and they are used to label and monitor therapeutic cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Hyun Min Kim
- Graduate School and Department of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lee DE, Kim AY, Saravanakumar G, Koo H, Kwon IC, Choi K, Park JH, Kim K. Hyaluronidase-sensitive SPIONs for MR/optical dual imaging nanoprobes. Macromol Res 2011. [DOI: 10.1007/s13233-011-0804-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Koktysh D, Bright V, Pham W. Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging. NANOTECHNOLOGY 2011; 22:275606. [PMID: 21597146 PMCID: PMC3133788 DOI: 10.1088/0957-4484/22/27/275606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by the conjugation of superparamagnetic Fe3O4 nanoparticles and visible light emitting (∼600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. The synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive x-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) (∼800 nm) by conjugation of the superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water-soluble glutathione stabilized AgInS2/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. The observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging.
Collapse
Affiliation(s)
- Dmitry Koktysh
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | | | | |
Collapse
|
40
|
Trinh TT, Mott D, Thanh NTK, Maenosono S. One-pot synthesis and characterization of well defined core–shell structure of FePt@CdSe nanoparticles. RSC Adv 2011. [DOI: 10.1039/c1ra00012h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
41
|
Skajaa T, Zhao Y, van den Heuvel DJ, Gerritsen HC, Cormode DP, Koole R, van Schooneveld MM, Post JA, Fisher EA, Fayad ZA, de Mello Donega C, Meijerink A, Mulder WJM. Quantum dot and Cy5.5 labeled nanoparticles to investigate lipoprotein biointeractions via Förster resonance energy transfer. NANO LETTERS 2010; 10:5131-8. [PMID: 21087054 PMCID: PMC3256273 DOI: 10.1021/nl1037903] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The study of lipoproteins, natural nanoparticles comprised of lipids and apolipoproteins that transport fats throughout the body, is of key importance to better understand, treat, and prevent cardiovascular disease. In the current study, we have developed a lipoprotein-based nanoparticle that consists of a quantum dot (QD) core and Cy5.5 labeled lipidic coating. The methodology allows judicious tuning of the QD/Cy5.5 ratio, which enabled us to optimize Förster resonance energy transfer (FRET) between the QD core and the Cy5.5-labeled coating. This phenomenon allowed us to study lipoprotein-lipoprotein interactions, lipid exchange dynamics, and the influence of apolipoproteins on these processes. Moreover, we were able to study HDL-cell interactions and exploit FRET to visualize HDL association with live macrophage cells.
Collapse
Affiliation(s)
- Torjus Skajaa
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, United States
- Clinical Institute and Department of Cardiology, Aarhus University Hospital (Skejby), Brendstrupgårdsvej 100, 8200 Århus N, Denmark
| | - Yiming Zhao
- Condensed Matter and Interfaces, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - Dave J. van den Heuvel
- Molecular Biophysics, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - Hans C. Gerritsen
- Molecular Biophysics, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - David P. Cormode
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, United States
| | - Rolf Koole
- Condensed Matter and Interfaces, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - Matti M. van Schooneveld
- Inorganic Chemistry and Catalysis, Debye Institute, Utrecht University, Sorbonnelaan 16, 3584 CA, The Netherlands
| | - Jan Andries Post
- Biomolecular Imaging, Department of Biology, Science Faculty, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Edward A. Fisher
- Departments of Medicine (Cardiology) and Cell Biology, NYU School of Medicine, 522 First Avenue, Smilow 8, New York, New York 10016, United States
| | - Zahi A. Fayad
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, United States
| | - Celso de Mello Donega
- Condensed Matter and Interfaces, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - Andries Meijerink
- Condensed Matter and Interfaces, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - Willem J. M. Mulder
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, United States
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, United States
- To whom correspondence should be addressed. . Telephone: +1 2122417717
| |
Collapse
|
42
|
Jiang H, Cheng Z, Tian M, Zhang H. In vivo imaging of embryonic stem cell therapy. Eur J Nucl Med Mol Imaging 2010; 38:774-84. [PMID: 21107558 DOI: 10.1007/s00259-010-1667-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/01/2010] [Indexed: 12/11/2022]
Abstract
Embryonic stem cells (ESCs) have the most pluripotent potential of any stem cell. These cells, isolated from the inner cell mass of the blastocyst, are "pluripotent," meaning that they can give rise to all cell types within the developing embryo. As a result, ESCs have been regarded as a leading candidate source for novel regenerative medicine therapies and have been used to derive diverse cell populations, including myocardial and endothelial cells. However, before they can be safely applied clinically, it is important to understand the in vivo behavior of ESCs and their derivatives. In vivo analysis of ESC-derived cells remains critically important to define how these cells may function in novel regenerative medicine therapies. In this review, we describe several available imaging modalities for assessing cell engraftment and discuss their strengths and limitations. We also analyze the applications of these modalities in assessing the utility of ESCs in regenerative medicine therapies.
Collapse
Affiliation(s)
- Han Jiang
- Department of Nuclear Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | | | | | | |
Collapse
|
43
|
Zhang B, Chen B, Wang Y, Guo F, Li Z, Shi D. Preparation of highly fluorescent magnetic nanoparticles for analytes-enrichment and subsequent biodetection. J Colloid Interface Sci 2010; 353:426-32. [PMID: 20974471 DOI: 10.1016/j.jcis.2010.09.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/25/2010] [Accepted: 09/28/2010] [Indexed: 11/20/2022]
Abstract
Bifunctional nanoparticles with highly fluorescence and decent magnetic properties have been widely used in biomedical application. In this study, highly fluorescent magnetic nanoparticles (FMNPs) with uniform size of ca. 40 nm are prepared by encapsulation of both magnetic nanoparticles (MNPs) and shell/core quantum dots (QDs) with well-designed shell structure/compositions into silica matrix via a one-pot reverse microemulsion approach. The spectral analysis shows that the FMNPs hold high fluorescent quantum yield (QY). The QYs and saturation magnetization of the FMNPs can be regulated by varying the ratio of the encapsulated QDs to MNPs. Moreover, the surface of the FMNPs can be modified to offer chemical groups for antibody conjugation for following use in target-enrichment and subsequent fluorescent detection. The in vitro immunofluorescence assay and flow cytometric analysis indicate that the bifunctional FMNPs-antibody bioconjugates are capable of target-enrichment, magnetic separation and can also be used as alternative fluorescent probes on flow cytometry for biodetection.
Collapse
Affiliation(s)
- Bingbo Zhang
- The Institute for Advanced Materials & Nano Biomedicine, Tongji University, Shanghai 200092, China.
| | | | | | | | | | | |
Collapse
|
44
|
LIANG XING, CRECEA VASILICA, BOPPART STEPHENA. DYNAMIC OPTICAL COHERENCE ELASTOGRAPHY: A REVIEW. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2010; 3:221-233. [PMID: 22448192 PMCID: PMC3311124 DOI: 10.1142/s1793545810001180] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
With the development of optical coherence tomography, the application optical coherence elastography (OCE) has gained more and more attention in biomechanics for its unique features including micron-scale resolution, real-time processing, and non-invasive imaging. In this review, one group of OCE techniques, namely dynamic OCE, are introduced and discussed including external dynamic OCE mapping and imaging of ex vivo breast tumor, external dynamic OCE measurement of in vivo human skin, and internal dynamic OCE including acoustomotive OCE and magnetomotive OCE. These techniques overcame some of the major drawbacks of traditional static OCE, and broadened the OCE application fields. Driven by scientific needs to engineer new quantitative methods that utilize the high micron-scale resolution achievable with optics, results of biomechanical properties were obtained from biological tissues. The results suggest potential diagnostic and therapeutic clinical applications. Results from these studies also help our understanding of the relationship between biomechanical variations and functional tissue changes in biological systems.
Collapse
Affiliation(s)
- XING LIANG
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign Urbana, IL, 61801, USA
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana, IL, 61801, USA
| | - VASILICA CRECEA
- Department of Physics, University of Illinois at Urbana-Champaign Urbana, IL, 61801, USA
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana, IL, 61801, USA
| | - STEPHEN A. BOPPART
- Departments of Electrical and Computer Engineering, Bioengineering, and Internal Medicine, University of Illinois at Urbana-Champaign Urbana, IL, 61801, USA
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana, IL, 61801, USA
| |
Collapse
|
45
|
He X, Wang K, Cheng Z. In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:349-66. [PMID: 20564463 DOI: 10.1002/wnan.85] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The use of in vivo near-infrared fluorescence (NIRF) imaging techniques for sensitive cancer early detection is highly desirable, because biological tissues show very low absorption and autofluorescence in the NIR spectrum window. Cancer NIRF molecular imaging relies greatly on stable, highly specific and sensitive molecular probes. Nanoparticle-based NIRF probes have overcome some of the limitations of the conventional NIRF organic dyes, such as poor hydrophilicity and photostability, low quantum yield, insufficient stability in biological system, low detection sensitivity, etc. Therefore, a lot of efforts have been made to actively develop novel NIRF nanoparticles for in vivo cancer molecular imaging. The main focus of this article is to provide a brief overview of the synthesis, surface modification, and in vivo cancer imaging applications of nanoparticle-based NIRF probes, including dye-containing nanoparticles, NIRF quantum dots, and upconversion nanoparticles.
Collapse
Affiliation(s)
- Xiaoxiao He
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program and Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
46
|
Jańczewski D, Zhang Y, Das GK, Yi DK, Padmanabhan P, Bhakoo KK, Tan TTY, Selvan ST. Bimodal magnetic-fluorescent probes for bioimaging. Microsc Res Tech 2010; 74:563-76. [PMID: 20734412 DOI: 10.1002/jemt.20912] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 06/24/2010] [Indexed: 12/17/2022]
Abstract
Fluorescent optical probes have been intensively used in the area of bio-imaging. In this review article, we describe the recent advancements in the synthesis and application of bimodal magnetic-fluorescent probes for bioimaging. The bimodal probes consist of fluorescent [semiconducting quantum dots (e.g., CdSe/ZnS) or rare-earth doped (e.g., NaYF(4) :Yb,Er)] nanoparticles (NPs) and magnetic (iron oxide or gadolinium based) NPs for optical and magnetic resonance (MR) imaging.
Collapse
Affiliation(s)
- Dominik Jańczewski
- Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602
| | | | | | | | | | | | | | | |
Collapse
|
47
|
van Schooneveld MM, Gloter A, Stephan O, Zagonel LF, Koole R, Meijerink A, Mulder WJM, de Groot FMF. Imaging and quantifying the morphology of an organic-inorganic nanoparticle at the sub-nanometre level. NATURE NANOTECHNOLOGY 2010; 5:538-44. [PMID: 20526325 DOI: 10.1038/nnano.2010.105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 04/26/2010] [Indexed: 05/24/2023]
Abstract
The development of hybrid organic-inorganic nanoparticles is of interest for applications such as drug delivery, DNA and protein recognition, and medical diagnostics. However, the characterization of such nanoparticles remains a significant challenge due to the heterogeneous nature of these particles. Here, we report the direct visualization and quantification of the organic and inorganic components of a lipid-coated silica particle that contains a smaller semiconductor quantum dot. High-angle annular dark-field scanning transmission electron microscopy combined with electron energy loss spectroscopy was used to determine the thickness and chemical signature of molecular coating layers, the element atomic ratios, and the exact positions of different elements in single nanoparticles. Moreover, the lipid ratio and lipid phase segregation were also quantified.
Collapse
Affiliation(s)
- Matti M van Schooneveld
- Inorganic Chemistry & Catalysis, Debye Institute, Utrecht University, Sorbonnelaan 16, 3584 CA, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Li IF, Yeh CS. Synthesis of Gd doped CdSe nanoparticles for potential optical and MR imaging applications. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b924089f] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|