1
|
Ahmed T. Lipid nanoparticle mediated small interfering RNA delivery as a potential therapy for Alzheimer's disease. Eur J Neurosci 2024; 59:2915-2954. [PMID: 38622050 DOI: 10.1111/ejn.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that exhibits a gradual decline in cognitive function and is prevalent among a significant number of individuals globally. The use of small interfering RNA (siRNA) molecules in RNA interference (RNAi) presents a promising therapeutic strategy for AD. Lipid nanoparticles (LNPs) have been developed as a delivery vehicle for siRNA, which can selectively suppress target genes, by enhancing cellular uptake and safeguarding siRNA from degradation. Numerous research studies have exhibited the effectiveness of LNP-mediated siRNA delivery in reducing amyloid beta (Aβ) levels and enhancing cognitive function in animal models of AD. The feasibility of employing LNP-mediated siRNA delivery as a therapeutic approach for AD is emphasized by the encouraging outcomes reported in clinical studies for other medical conditions. The use of LNP-mediated siRNA delivery has emerged as a promising strategy to slow down or even reverse the progression of AD by targeting the synthesis of tau phosphorylation and other genes linked to the condition. Improvement of the delivery mechanism and determination of the most suitable siRNA targets are crucial for the efficacious management of AD. This review focuses on the delivery of siRNA through LNPs as a promising therapeutic strategy for AD, based on the available literature.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Castañeda Cataña MA, Dodes Traian MM, Rivas Marquina AP, Marquez AB, Arrúa EC, Carlucci MJ, Damonte EB, Pérez OE, Sepúlveda CS. Design and characterization of BSA-mycophenolic acid nanocomplexes: Antiviral activity exploration. Int J Biol Macromol 2024; 265:131023. [PMID: 38513897 DOI: 10.1016/j.ijbiomac.2024.131023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
The interactions between bovine serum albumin (BSA) and mycophenolic acid (MPA) were investigated in silico through molecular docking and in vitro, using fluorescence spectroscopy. Dynamic light scattering and scanning electron microscopy were used to figure out the structure of MPA-Complex (MPA-C). The binding affinity between MPA and BSA was determined, yielding a Kd value of (12.0 ± 0.7) μM, and establishing a distance of 17 Å between the BSA and MPA molecules. The presence of MPA prompted protein aggregation, leading to the formation of MPA-C. The cytotoxicity of MPA-C and its ability to fight Junín virus (JUNV) were tested in A549 and Vero cell lines. It was found that treating infected cells with MPA-C decreased the JUNV yield and was more effective than free MPA in both cell line models for prolonged time treatments. Our results represent the first report of the antiviral activity of this type of BSA-MPA complex against JUNV, as assessed in cell culture model systems. MPA-C shows promise as a candidate for drug formulation against human pathogenic arenaviruses.
Collapse
Affiliation(s)
- Mayra A Castañeda Cataña
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Martín M Dodes Traian
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Andrea P Rivas Marquina
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, 4612 Palpalá, Jujuy, Argentina
| | - Agostina B Marquez
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Eva C Arrúa
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, 4612 Palpalá, Jujuy, Argentina
| | - María J Carlucci
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Elsa B Damonte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), 1428 Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Oscar E Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), 1428 Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Claudia S Sepúlveda
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), 1428 Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina.
| |
Collapse
|
3
|
Kapate N, Liao R, Sodemann RL, Stinson T, Prakash S, Kumbhojkar N, Suja VC, Wang LLW, Flanz M, Rajeev R, Villafuerte D, Shaha S, Janes M, Park KS, Dunne M, Golemb B, Hone A, Adebowale K, Clegg J, Slate A, McGuone D, Costine-Bartell B, Mitragotri S. Backpack-mediated anti-inflammatory macrophage cell therapy for the treatment of traumatic brain injury. PNAS NEXUS 2024; 3:pgad434. [PMID: 38187808 PMCID: PMC10768983 DOI: 10.1093/pnasnexus/pgad434] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
Traumatic brain injury (TBI) is a debilitating disease with no current therapies outside of acute clinical management. While acute, controlled inflammation is important for debris clearance and regeneration after injury, chronic, rampant inflammation plays a significant adverse role in the pathophysiology of secondary brain injury. Immune cell therapies hold unique therapeutic potential for inflammation modulation, due to their active sensing and migration abilities. Macrophages are particularly suited for this task, given the role of macrophages and microglia in the dysregulated inflammatory response after TBI. However, maintaining adoptively transferred macrophages in an anti-inflammatory, wound-healing phenotype against the proinflammatory TBI milieu is essential. To achieve this, we developed discoidal microparticles, termed backpacks, encapsulating anti-inflammatory interleukin-4, and dexamethasone for ex vivo macrophage attachment. Backpacks durably adhered to the surface of macrophages without internalization and maintained an anti-inflammatory phenotype of the carrier macrophage through 7 days in vitro. Backpack-macrophage therapy was scaled up and safely infused into piglets in a cortical impact TBI model. Backpack-macrophages migrated to the brain lesion site and reduced proinflammatory activation of microglia in the lesion penumbra of the rostral gyrus of the cortex and decreased serum concentrations of proinflammatory biomarkers. These immunomodulatory effects elicited a 56% decrease in lesion volume. The results reported here demonstrate, to the best of our knowledge, a potential use of a cell therapy intervention for a large animal model of TBI and highlight the potential of macrophage-based therapy. Further investigation is required to elucidate the neuroprotection mechanisms associated with anti-inflammatory macrophage therapy.
Collapse
Affiliation(s)
- Neha Kapate
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rick Liao
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Ryan Luke Sodemann
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tawny Stinson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Supriya Prakash
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Ninad Kumbhojkar
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Vineeth Chandran Suja
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Lily Li-Wen Wang
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mikayla Flanz
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Rohan Rajeev
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Dania Villafuerte
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Suyog Shaha
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Morgan Janes
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kyung Soo Park
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Michael Dunne
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - Bryan Golemb
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alexander Hone
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kolade Adebowale
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| | - John Clegg
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Andrea Slate
- Center of Comparative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Declan McGuone
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Beth Costine-Bartell
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02134, USA
| |
Collapse
|
4
|
Chopade P, Chopade N, Zhao Z, Mitragotri S, Liao R, Chandran Suja V. Alzheimer's and Parkinson's disease therapies in the clinic. Bioeng Transl Med 2023; 8:e10367. [PMID: 36684083 PMCID: PMC9842041 DOI: 10.1002/btm2.10367] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent neurodegenerative diseases, affecting millions and costing billions each year in the United States alone. Despite tremendous progress in developing therapeutics that manage the symptoms of these two diseases, the scientific community has yet to develop a treatment that effectively slows down, inhibits, or cures neurodegeneration. To gain a better understanding of the current therapeutic frontier for the treatment of AD and PD, we provide a review on past and present therapeutic strategies for these two major neurodegenerative disorders in the clinical trial process. We briefly recap currently US Food and Drug Administration-approved therapies, and then explore trends in clinical trials across the variables of therapy mechanism of disease intervention, administration route, use of delivery vehicle, and outcome measures, across the clinical phases over time for "Drug" and "Biologic" therapeutics. We then present the success rate of past clinical trials and analyze the intersections in therapeutic approaches for AD and PD, revealing the shift in clinical trials away from therapies targeting neurotransmitter systems that provide symptomatic relief, and towards anti-aggregation, anti-inflammatory, anti-oxidant, and regeneration strategies that aim to inhibit the root causes of disease progression. We also highlight the evolving distribution of the types of "Biologic" therapies investigated, and the slowly increasing yet still severe under-utilization of delivery vehicles for AD and PD therapeutics. We then briefly discuss novel preclinical strategies for treating AD and PD. Overall, this review aims to provide a succinct overview of the clinical landscape of AD and PD therapies to better understand the field's therapeutic strategy in the past and the field's evolution in approach to the present, to better inform how to effectively treat AD and PD in the future.
Collapse
Affiliation(s)
| | | | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Samir Mitragotri
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Rick Liao
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Vineeth Chandran Suja
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringCambridgeMassachusettsUSA
| |
Collapse
|
5
|
Pandey N, Anastasiadis P, Carney CP, Kanvinde PP, Woodworth GF, Winkles JA, Kim AJ. Nanotherapeutic treatment of the invasive glioblastoma tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114415. [PMID: 35787387 PMCID: PMC10947564 DOI: 10.1016/j.addr.2022.114415] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most common malignant adult brain cancer with no curative treatment strategy. A significant hurdle in GBM treatment is effective therapeutic delivery to the brain-invading tumor cells that remain following surgery within functioning brain regions. Developing therapies that can either directly target these brain-invading tumor cells or act on other cell types and molecular processes supporting tumor cell invasion and recurrence are essential steps in advancing new treatments in the clinic. This review highlights some of the drug delivery strategies and nanotherapeutic technologies that are designed to target brain-invading GBM cells or non-neoplastic, invasion-supporting cells residing within the GBM tumor microenvironment.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States.
| |
Collapse
|
6
|
Zhou W, Fu Y, Zhang M, Buabeid MA, Ijaz M, Murtaza G. Nanoparticle-mediated therapy of neuronal damage in the neonatal brain. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Helmbrecht H, Joseph A, McKenna M, Zhang M, Nance E. Governing Transport Principles for Nanotherapeutic Application in the Brain. Curr Opin Chem Eng 2020; 30:112-119. [PMID: 33304774 DOI: 10.1016/j.coche.2020.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurological diseases account for a significant portion of the global disease burden. While research efforts have identified potential drugs or drug targets for neurological diseases, most therapeutic platforms are still ineffective at reaching the target location selectively and with high yield. Restricted transport, including passage across the blood-brain barrier, through the brain parenchyma, and into specific cells, is a major cause of ineffective therapeutic delivery. However, nanotechnology is a promising, tailorable platform for overcoming these transport barriers and improving therapeutic delivery to the brain. We provide a transport-oriented analysis of nanotechnology's ability to navigate these transport barriers in the brain. We also provide an opinion on the need for technology development for increasing our capacity to characterize and quantify nanoparticle passage through each transport barrier. Finally, we highlight the importance of incorporating the effect of disease, metabolic state, and regional dependencies to better understand transport of nanotherapeutics in the brain.
Collapse
Affiliation(s)
- Hawley Helmbrecht
- Department of Chemical Engineering, University of Washington, Seattle WA 98195
| | - Andrea Joseph
- Department of Chemical Engineering, University of Washington, Seattle WA 98195
| | - Michael McKenna
- Department of Chemical Engineering, University of Washington, Seattle WA 98195
| | - Mengying Zhang
- Molecular Engineering and Sciences Institute, University of Washington, Seattle WA 98105
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle WA 98195.,Molecular Engineering and Sciences Institute, University of Washington, Seattle WA 98105.,Department of Radiology, University of Washington, Seattle WA 98195.,eScience Institute, University of Washington, Seattle WA 98195
| |
Collapse
|
8
|
Joseph A, Liao R, Zhang M, Helmbrecht H, McKenna M, Filteau JR, Nance E. Nanoparticle-microglial interaction in the ischemic brain is modulated by injury duration and treatment. Bioeng Transl Med 2020; 5:e10175. [PMID: 33005740 PMCID: PMC7510458 DOI: 10.1002/btm2.10175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Cerebral ischemia is a major cause of death in both neonates and adults, and currently has no cure. Nanotechnology represents one promising area of therapeutic development for cerebral ischemia due to the ability of nanoparticles to overcome biological barriers in the brain. ex vivo injury models have emerged as a high-throughput alternative that can recapitulate disease processes and enable nanoscale probing of the brain microenvironment. In this study, we used oxygen-glucose deprivation (OGD) to model ischemic injury and studied nanoparticle interaction with microglia, resident immune cells in the brain that are of increasing interest for therapeutic delivery. By measuring cell death and glutathione production, we evaluated the effect of OGD exposure time and treatment with azithromycin (AZ) on slice health. We found a robust injury response with 0.5 hr of OGD exposure and effective treatment after immediate application of AZ. We observed an OGD-induced shift in microglial morphology toward increased heterogeneity and circularity, and a decrease in microglial number, which was reversed after treatment. OGD enhanced diffusion of polystyrene-poly(ethylene glycol) (PS-PEG) nanoparticles, improving transport and ability to reach target cells. While microglial uptake of dendrimers or quantum dots (QDs) was not enhanced after injury, internalization of PS-PEG was significantly increased. For PS-PEG, AZ treatment restored microglial uptake to normal control levels. Our results suggest that different nanoparticle platforms should be carefully screened before application and upon doing so; disease-mediated changes in the brain microenvironment can be leveraged by nanoscale drug delivery devices for enhanced cell interaction.
Collapse
Affiliation(s)
- Andrea Joseph
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Rick Liao
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Mengying Zhang
- Molecular Engineering and Sciences InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Hawley Helmbrecht
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Michael McKenna
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Jeremy R. Filteau
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Elizabeth Nance
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
- Molecular Engineering and Sciences InstituteUniversity of WashingtonSeattleWashingtonUSA
- Department of RadiologyUniversity of WashingtonSeattleWashingtonUSA
- eScience InstituteUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
9
|
Zhang M, Vojtech L, Ye Z, Hladik F, Nance E. Quantum Dot Labeling and Visualization of Extracellular Vesicles. ACS APPLIED NANO MATERIALS 2020; 3:7211-7222. [PMID: 34568770 PMCID: PMC8460064 DOI: 10.1021/acsanm.0c01553] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication. Their role in disease processes, uncovered mostly over the last two decades, makes them potential biomarkers, leading to a need to fundamentally understand EV biology. Direct visualization of EVs can provide insights into EV behavior, but current labeling techniques are often restricted by false-positive signals and rapid photobleaching. Hence, we developed a method of labeling EVs through conjugation with quantum dots (QDs)-high photoluminescent nanosized semi-conductors-using click chemistry. We showed that QD-EV conjugation could be tailored by altering QD to EV ratio or by using a catalyst. This conjugation chemistry was stable in a biological environment and upon storage for up to a week. Using size-exclusion chromatography, QD-EV conjugates could be separated from unconjugated QDs, enabling EV-specific signal detection. We demonstrate that these QD-EV conjugates can be live- and fixed-imaged in high resolution on cells and in tissue sheets, and the conjugates have better photostability compared with the commonly used EV dye DiI. We labeled two distinct EV populations: human semen EVs (sEVs) from fresh semen samples donated by healthy volunteers and brain EVs (bEVs) from excised rat brain tissues. We visualized QD-sEVs in epithelial sheets isolated from human vaginal mucosa and time-lapse imaged QD-bEV interactions with microglial BV-2 cells. The development of the QD-EV conjugate will benefit the study of EV localization, movement, and function and accelerate their potential use as biomarkers, therapeutic agents, or drug-delivery vehicles.
Collapse
Affiliation(s)
- Mengying Zhang
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195-1652, United States
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington 98195-6460, United States
| | - Ziming Ye
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| | - Florian Hladik
- Department of Obstetrics and Gynecology and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98195-6460, United States
| | - Elizabeth Nance
- Molecular Engineering and Sciences Institute, Department of Chemical Engineering, Center on Human Development and Disability, and Department of Radiology, University of Washington, Seattle, Washington 98195-1652, United States
| |
Collapse
|
10
|
Liao R, Wood TR, Nance E. Superoxide dismutase reduces monosodium glutamate-induced injury in an organotypic whole hemisphere brain slice model of excitotoxicity. J Biol Eng 2020; 14:3. [PMID: 32042309 PMCID: PMC7001228 DOI: 10.1186/s13036-020-0226-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 12/26/2022] Open
Abstract
Background Knowledge of glutamate excitotoxicity has increased substantially over the past few decades, with multiple proposed pathways involved in inflicting damage. We sought to develop a monosodium glutamate (MSG) exposed ex vivo organotypic whole hemisphere (OWH) brain slice model of excitotoxicity to study excitotoxic processes and screen the efficacy of superoxide dismutase (SOD). Results The OWH model is a reproducible platform with high cell viability and retained cellular morphology. OWH slices exposed to MSG induced significant cytotoxicity and downregulation of neuronal excitation-related gene expression. The OWH brain slice model has enabled us to isolate and study components of excitotoxicity, distinguishing the effects of glutamate excitation, hyperosmolar stress, and inflammation. We find that extracellularly administered SOD is significantly protective in inhibiting cell death and restoring healthy mitochondrial morphology. SOD efficacy suggests that superoxide scavenging is a promising therapeutic strategy in excitotoxic injury. Conclusions Using OWH brain slice models, we can obtain a better understanding of the pathological mechanisms of excitotoxic injury, and more rapidly screen potential therapeutics.
Collapse
Affiliation(s)
- Rick Liao
- 1Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane NE, Seattle, WA 98195 USA
| | - Thomas R Wood
- 2Department of Pediatrics, University of Washington, Seattle, WA USA
| | - Elizabeth Nance
- 1Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane NE, Seattle, WA 98195 USA.,3Department of Radiology, University of Washington, Seattle, WA USA.,4Center on Human Development and Disability, University of Washington, Seattle, WA USA
| |
Collapse
|
11
|
Liao R, Wood TR, Nance E. Nanotherapeutic modulation of excitotoxicity and oxidative stress in acute brain injury. Nanobiomedicine (Rij) 2020; 7:1849543520970819. [PMID: 35186151 PMCID: PMC8855450 DOI: 10.1177/1849543520970819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Excitotoxicity is a primary pathological process that occurs during stroke, traumatic brain injury (TBI), and global brain ischemia such as perinatal asphyxia. Excitotoxicity is triggered by an overabundance of excitatory neurotransmitters within the synapse, causing a detrimental cascade of excessive sodium and calcium influx, generation of reactive oxygen species, mitochondrial damage, and ultimately cell death. There are multiple potential points of intervention to combat excitotoxicity and downstream oxidative stress, yet there are currently no therapeutics clinically approved for this specific purpose. For a therapeutic to be effective against excitotoxicity, the therapeutic must accumulate at the disease site at the appropriate concentration at the right time. Nanotechnology can provide benefits for therapeutic delivery, including overcoming physiological obstacles such as the blood–brain barrier, protect cargo from degradation, and provide controlled release of a drug. This review evaluates the use of nano-based therapeutics to combat excitotoxicity in stroke, TBI, and hypoxia–ischemia with an emphasis on mitigating oxidative stress, and consideration of the path forward toward clinical translation.
Collapse
Affiliation(s)
- Rick Liao
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Thomas R Wood
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.,Department of Radiology, University of Washington, Seattle, WA, USA.,Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Wood T, Nance E. Disease-directed engineering for physiology-driven treatment interventions in neurological disorders. APL Bioeng 2019; 3:040901. [PMID: 31673672 PMCID: PMC6811362 DOI: 10.1063/1.5117299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
Neurological disease is killing us. While there have long been attempts to develop therapies for both acute and chronic neurological diseases, no current treatments are curative. Additionally, therapeutic development for neurological disease takes 15 years and often costs several billion dollars. More than 96% of these therapies will fail in late stage clinical trials. Engineering novel treatment interventions for neurological disease can improve outcomes and quality of life for millions; however, therapeutics should be designed with the underlying physiology and pathology in mind. In this perspective, we aim to unpack the importance of, and need to understand, the physiology of neurological disease. We first dive into the normal physiological considerations that should guide experimental design, and then assess the pathophysiological factors of acute and chronic neurological disease that should direct treatment design. We provide an analysis of a nanobased therapeutic intervention that proved successful in translation due to incorporation of physiology at all stages of the research process. We also provide an opinion on the importance of keeping a high-level view to designing and administering treatment interventions. Finally, we close with an implementation strategy for applying a disease-directed engineering approach. Our assessment encourages embracing the complexity of neurological disease, as well as increasing efforts to provide system-level thinking in our development of therapeutics for neurological disease.
Collapse
|
13
|
Curtis C, McKenna M, Pontes H, Toghani D, Choe A, Nance E. Predicting in situ nanoparticle behavior using multiple particle tracking and artificial neural networks. NANOSCALE 2019; 11:22515-22530. [PMID: 31746912 PMCID: PMC7202937 DOI: 10.1039/c9nr06327g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Predictive models of nanoparticle transport can drive design of nanotherapeutic platforms to overcome biological barriers and achieve localized delivery. In this paper, we demonstrate the ability of artificial neural networks to predict both nanoparticle properties, such as size and protein adsorption, and aspects of the brain microenvironment, such as cell internalization, viscosity, and brain region by using large (>100 000) trajectory datasets collected via multiple particle tracking in in vitro gel models of the brain and cultured organotypic brain slices. Our neural network achieved a 0.75 recall score when predicting gel viscosity based on trajectory datasets, compared to 0.49 using an obstruction scaling model. When predicting in situ nanoparticle size based on trajectory datasets, neural networks achieved a 0.90 recall score compared to 0.83 using an optimized Stokes-Einstein predictor. To distinguish between nanoparticles of different sizes in more complex nanoparticle mixtures, our neural network achieved up to a recall score of 0.85. Even in cases of more nuanced output variables where mathematical models are not available, such as protein adhesion, neural networks retained the ability to distinguish between particle populations (recall score of 0.89). These findings demonstrate how trajectory datasets in combination with machine learning techniques can be used to characterize the particle-microenvironment interaction space.
Collapse
Affiliation(s)
- Chad Curtis
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Szablowski JO, Bar-Zion A, Shapiro MG. Achieving Spatial and Molecular Specificity with Ultrasound-Targeted Biomolecular Nanotherapeutics. Acc Chem Res 2019; 52:2427-2434. [PMID: 31397992 PMCID: PMC7462121 DOI: 10.1021/acs.accounts.9b00277] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise targeting of cells in deep tissues is one of the primary goals of nanomedicine. However, targeting a specific cellular population within an entire organism is challenging due to off-target effects and the need for deep tissue delivery. Focused ultrasound can reduce off-targeted effects by spatially restricting the delivery or action of molecular constructs to specific anatomical sites. Ultrasound can also increase the efficiency of nanotherapeutic delivery into deep tissues by enhancing the permeability of tissue boundaries, promoting convection, or depositing energy to actuate cellular activity. In this review we focus on the interface between biomolecular engineering and focused ultrasound and describe the applications of this intersection in neuroscience, oncology, and synthetic biology. Ultrasound can be used to trigger the transport of therapeutic payloads into a range of tissues, including specific regions of the brain, where it can be targeted with millimeter precision through intact skull. Locally delivered molecular constructs can then control specific cells and molecular pathways within the targeted region. When combined with viral vectors and engineered neural receptors, this technique enables noninvasive control of specific circuits and behaviors. The penetrant energy of ultrasound can also be used to more directly actuate micro- and nanotherapeutic constructs, including microbubbles, vaporizable nanodroplets, and polymeric nanocups, which nucleate cavitation upon ultrasound exposure, leading to local mechanical effects. In addition, it was recently discovered that a unique class of acoustic biomolecules-genetically encodable nanoscale protein structures called gas vesicles-can be acoustically "detonated" as sources of inertial cavitation. This enables the targeted disruption of selected cells within the area of insonation by gas vesicles that are engineered to bind cell surface receptors. It also facilitates ultrasound-triggered release of molecular payloads from engineered therapeutic cells heterologously expressing intracellular gas vesicles. Finally, focused ultrasound energy can be used to locally elevate tissue temperature and activate temperature-sensitive proteins and pathways. The elevation of temperature allows noninvasive control of gene expression in vivo in cells engineered to express thermal bioswitches. Overall, the intersection of biomolecular engineering, nanomaterials and focused ultrasound can provide unparalleled specificity in controlling, modulating, and treating physiological processes in deep tissues.
Collapse
Affiliation(s)
- Jerzy O. Szablowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Avinoam Bar-Zion
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
15
|
Arteaga Cabeza O, Mikrogeorgiou A, Kannan S, Ferriero DM. Advanced nanotherapies to promote neuroregeneration in the injured newborn brain. Adv Drug Deliv Rev 2019; 148:19-37. [PMID: 31678359 DOI: 10.1016/j.addr.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/19/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Neonatal brain injury affects thousands of babies each year and may lead to long-term and permanent physical and neurological problems. Currently, therapeutic hypothermia is standard clinical care for term newborns with moderate to severe neonatal encephalopathy. Nevertheless, it is not completely protective, and additional strategies to restore and promote regeneration are urgently needed. One way to ensure recovery following injury to the immature brain is to augment endogenous regenerative pathways. However, novel strategies such as stem cell therapy, gene therapies and nanotechnology have not been adequately explored in this unique age group. In this perspective review, we describe current efforts that promote neuroprotection and potential targets that are unique to the developing brain, which can be leveraged to facilitate neuroregeneration.
Collapse
|
16
|
Curtis C, Toghani D, Wong B, Nance E. Colloidal stability as a determinant of nanoparticle behavior in the brain. Colloids Surf B Biointerfaces 2018; 170:673-682. [PMID: 29986264 DOI: 10.1016/j.colsurfb.2018.06.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/17/2018] [Accepted: 06/22/2018] [Indexed: 01/07/2023]
Abstract
Drug delivery to the brain is challenging due to a highly regulated blood-brain barrier (BBB) and a complex brain microenvironment. Nanoparticles, due to their tailorability, provide promising platforms to enhance therapeutic delivery and achieve controlled release and disease-specific localization in the brain. However, we have yet to fully understand the complex interactions between nanoparticles and the biological environments in which they operate. It is important to perform a systematic study to characterize nanoparticle behavior as a function of ion composition, concentration, and pH in cerebrospinal fluid (CSF). These could alter nanoparticle biological identity and influence diffusive capability and cellular uptake. In this study, poly(ethylene glycol) (PEG)-coated and carboxyl-coated polystyrene (PS-PEG and PS-COOH respectively) nanoparticles (NPs) were used to evaluate the aggregation kinetics, colloidal stability, and diffusive capability of nanoparticles in conditions relevant to the brain microenvironment. Size, surface charge, and surface coating were varied in a range of CSF ion concentrations and compositions, pH conditions, and temperatures. Small changes in calcium concentration and pH destabilize nanoparticles in CSF. However, PS-PEG NPs remain stable over a wider variety of conditions than PS-COOH NPs, and have higher diffusion capabilities in both agarose gels, an in vitro model of the brain microenvironment, and an organotypic brain tissue slice model. These results demonstrate the need for steric stabilization to maintain nanoparticle colloidal stability in a wide range of conditions. Importantly, colloidal stabilization allows for increased diffusive capability and can be used to predict diffusive behavior in the brain microenvironment.
Collapse
Affiliation(s)
- Chad Curtis
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
| | - Dorsa Toghani
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, United States
| | - Ben Wong
- Math Academy, College of Engineering, University of Washington, Seattle, WA, 98195, United States
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States.
| |
Collapse
|
17
|
Rodriguez‐Otormin F, Duro‐Castano A, Conejos‐Sánchez I, Vicent MJ. Envisioning the future of polymer therapeutics for brain disorders. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1532. [DOI: 10.1002/wnan.1532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Aroa Duro‐Castano
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Valencia Spain
| | | | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Valencia Spain
| |
Collapse
|
18
|
Gomes CP, Lopes CDF, Leitner M, Ebner A, Hinterdorfer P, Pêgo AP. Atomic Force Microscopy as a Tool to Assess the Specificity of Targeted Nanoparticles in Biological Models of High Complexity. Adv Healthc Mater 2017; 6. [PMID: 28752592 DOI: 10.1002/adhm.201700597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/19/2017] [Indexed: 12/28/2022]
Abstract
The ability to design nanoparticle delivery systems capable of selectively target their payloads to specific cell populations is still a major caveat in nanomedicine. One of the main hurdles is the fact that each nanoparticle formulation needs to be precisely tuned to match the specificities of the target cell and route of administration. In this work, molecular recognition force spectroscopy (MRFS) is presented as a tool to evaluate the specificity of neuron-targeted trimethyl chitosan nanoparticles to neuronal cell populations in biological samples of different complexity. The use of atomic force microscopy tips functionalized with targeted or non-targeted nanoparticles made it possible to assess the specific interaction of each formulation with determined cell surface receptors in a precise fashion. More importantly, the combination of MRFS with fluorescent microscopy allowed to probe the nanoparticles vectoring capacity in models of high complexity, such as primary mixed cultures, as well as specific subcellular regions in histological tissues. Overall, this work contributes for the establishment of MRFS as a powerful alternative technique to animal testing in vector design and opens new avenues for the development of advanced targeted nanomedicines.
Collapse
Affiliation(s)
- Carla P. Gomes
- INEB – Instituto de Engenharia Biomédica i3S – Instituto de Investigação e Inovação em Saúde Rua Alfredo Allen 208 4200‐135 Porto Portugal
- Faculdade de Engenharia da Universidade do Porto R. Dr. Roberto Frias 4200‐465 Porto Portugal
| | - Cátia D. F. Lopes
- INEB – Instituto de Engenharia Biomédica i3S – Instituto de Investigação e Inovação em Saúde Rua Alfredo Allen 208 4200‐135 Porto Portugal
- Faculdade de Medicina da Universidade do Porto Alameda Prof. Hernâni Monteiro 4200‐319 Porto Portugal
| | - Michael Leitner
- Institute of Biophysics Johannes Kepler University Gruberstraße 40 4020 Linz Austria
| | - Andreas Ebner
- Institute of Biophysics Johannes Kepler University Gruberstraße 40 4020 Linz Austria
| | - Peter Hinterdorfer
- Institute of Biophysics Johannes Kepler University Gruberstraße 40 4020 Linz Austria
| | - Ana P. Pêgo
- INEB – Instituto de Engenharia Biomédica i3S – Instituto de Investigação e Inovação em Saúde Rua Alfredo Allen 208 4200‐135 Porto Portugal
- Faculdade de Engenharia da Universidade do Porto R. Dr. Roberto Frias 4200‐465 Porto Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar Universidade do Porto Rua de Jorge Viterbo Ferreira 228 4050‐313 Porto Portugal
| |
Collapse
|
19
|
Smith J, Sprenger KG, Liao R, Joseph A, Nance E, Pfaendtner J. Determining dominant driving forces affecting controlled protein release from polymeric nanoparticles. Biointerphases 2017; 12:02D412. [PMID: 28525957 PMCID: PMC5648550 DOI: 10.1116/1.4983154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 11/17/2022] Open
Abstract
Enzymes play a critical role in many applications in biology and medicine as potential therapeutics. One specific area of interest is enzyme encapsulation in polymer nanostructures, which have applications in drug delivery and catalysis. A detailed understanding of the mechanisms governing protein/polymer interactions is crucial for optimizing the performance of these complex systems for different applications. Using a combined computational and experimental approach, this study aims to quantify the relative importance of molecular and mesoscale driving forces to protein release from polymeric nanoparticles. Classical molecular dynamics (MD) simulations have been performed on bovine serum albumin (BSA) in aqueous solutions with oligomeric surrogates of poly(lactic-co-glycolic acid) copolymer, poly(styrene)-poly(lactic acid) copolymer, and poly(lactic acid). The simulated strength and location of polymer surrogate binding to the surface of BSA have been compared to experimental BSA release rates from nanoparticles formulated with these same polymers. Results indicate that the self-interaction tendencies of the polymer surrogates and other macroscale properties may play governing roles in protein release. Additional MD simulations of BSA in solution with poly(styrene)-acrylate copolymer reveal the possibility of enhanced control over the enzyme encapsulation process by tuning polymer self-interaction. Last, the authors find consistent protein surface binding preferences across simulations performed with polymer surrogates of varying lengths, demonstrating that protein/polymer interactions can be understood in part by studying the interactions and affinity of proteins with small polymer surrogates in solution.
Collapse
Affiliation(s)
- Josh Smith
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, 3781 Okanogan Lane NE, Seattle, Washington 98195
| | - Kayla G Sprenger
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, 3781 Okanogan Lane NE, Seattle, Washington 98195
| | - Rick Liao
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, 3781 Okanogan Lane NE, Seattle, Washington 98195
| | - Andrea Joseph
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, 3781 Okanogan Lane NE, Seattle, Washington 98195
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, 3781 Okanogan Lane NE, Seattle, Washington 98195
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, 3781 Okanogan Lane NE, Seattle, Washington 98195
| |
Collapse
|
20
|
Suñé-Pou M, Prieto-Sánchez S, Boyero-Corral S, Moreno-Castro C, El Yousfi Y, Suñé-Negre JM, Hernández-Munain C, Suñé C. Targeting Splicing in the Treatment of Human Disease. Genes (Basel) 2017; 8:genes8030087. [PMID: 28245575 PMCID: PMC5368691 DOI: 10.3390/genes8030087] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 02/07/2023] Open
Abstract
The tightly regulated process of precursor messenger RNA (pre-mRNA) alternative splicing (AS) is a key mechanism in the regulation of gene expression. Defects in this regulatory process affect cellular functions and are the cause of many human diseases. Recent advances in our understanding of splicing regulation have led to the development of new tools for manipulating splicing for therapeutic purposes. Several tools, including antisense oligonucleotides and trans-splicing, have been developed to target and alter splicing to correct misregulated gene expression or to modulate transcript isoform levels. At present, deregulated AS is recognized as an important area for therapeutic intervention. Here, we summarize the major hallmarks of the splicing process, the clinical implications that arise from alterations in this process, and the current tools that can be used to deliver, target, and correct deficiencies of this key pre-mRNA processing event.
Collapse
Affiliation(s)
- Marc Suñé-Pou
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
- Drug Development Service, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII, s/n 08028 Barcelona, Spain.
| | - Silvia Prieto-Sánchez
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Sofía Boyero-Corral
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Cristina Moreno-Castro
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Younes El Yousfi
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Josep Mª Suñé-Negre
- Drug Development Service, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII, s/n 08028 Barcelona, Spain.
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain.
| |
Collapse
|
21
|
Zhang F, Trent Magruder J, Lin YA, Crawford TC, Grimm JC, Sciortino CM, Wilson MA, Blue ME, Kannan S, Johnston MV, Baumgartner WA, Kannan RM. Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model. J Control Release 2017; 249:173-182. [PMID: 28137632 DOI: 10.1016/j.jconrel.2017.01.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/03/2017] [Accepted: 01/26/2017] [Indexed: 11/28/2022]
Abstract
Hypothermic circulatory arrest (HCA) provides neuroprotection during cardiac surgery but entails an ischemic period that can lead to excitotoxicity, neuroinflammation, and subsequent neurologic injury. Hydroxyl polyamidoamine (PAMAM) dendrimers target activated microglia and damaged neurons in the injured brain, and deliver therapeutics in small and large animal models. We investigated the effect of dendrimer size on brain uptake and explored the pharmacokinetics in a clinically-relevant canine model of HCA-induced brain injury. Generation 6 (G6, ~6.7nm) dendrimers showed extended blood circulation times and increased accumulation in the injured brain compared to generation 4 dendrimers (G4, ~4.3nm), which were undetectable in the brain by 48h after final administration. High levels of G6 dendrimers were found in cerebrospinal fluid (CSF) of injured animals with a CSF/serum ratio of ~20% at peak, a ratio higher than that of many neurologic pharmacotherapies already in clinical use. Brain penetration (measured by drug CSF/serum level) of G6 dendrimers correlated with the severity of neuroinflammation observed. G6 dendrimers also showed decreased renal clearance rate, slightly increased liver and spleen uptake compared to G4 dendrimers. These results, in a large animal model, may offer insights into the potential clinical translation of dendrimers.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Nanomedicine/Wilmer Eye Institute, Department of Ophthalmology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, United States; Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD, 21218, United States
| | - J Trent Magruder
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Yi-An Lin
- Center for Nanomedicine/Wilmer Eye Institute, Department of Ophthalmology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, United States
| | - Todd C Crawford
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Joshua C Grimm
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Christopher M Sciortino
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Mary Ann Wilson
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD 21205, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Mary E Blue
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD 21205, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Sujatha Kannan
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD 21205, United States; Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Michael V Johnston
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD 21205, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - William A Baumgartner
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| | - Rangaramanujam M Kannan
- Center for Nanomedicine/Wilmer Eye Institute, Department of Ophthalmology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|