1
|
Molina E, Tejero M, Duzenli OF, Kuoch H, Caine C, Krotova K, Paulaitis M, Aslanidi G. Insights in AAV-mediated antigen-specific immunity and a strategy for AAV vaccine dose reduction through AAV-extracellular vesicle association. Mol Ther Methods Clin Dev 2024; 32:101358. [PMID: 39559560 PMCID: PMC11570487 DOI: 10.1016/j.omtm.2024.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
We previously showed therapeutic advantages of using a capsid-modified and encoded antigen-optimized AAV-based cancer vaccine to initiate strong antigen-specific immune responses and increase survival in a syngeneic mouse model of melanoma. In this study, we further explore AAV vaccine dose reduction and possible mechanisms of the immune response. Immunization with extracellular vesicle (EV)-associated AAV6-S663V encoded ovalbumin (OVA) or tyrosinase-related protein 1 (TRP-1) induced significantly higher levels of antigen-specific CD8+ T cells compared with standard AAV in mice. Importantly, a higher number of specific CD8+ T cells was achieved with EV-AAV several logs lower than optAAV-based doses. EV-optAAV-OVA was used in a dose 100 times lower, and EV-optTRP-1 10 times lower than optOVA and optTRP-1 correspondingly. Our data suggest that significant dose reduction for optimized AAV-based vaccines is possible without sacrificing efficiency. In addition, we studied the role of conventional type 1 dendritic cells (cDC1) in optimized AAV-based immunization using a C57BL/6-Irf8em1Kmm (Irf8 + 32-/-) mouse model lacking cDC1. Interestingly, we found that cDC1 are not essential for conveying effector T cell responses to AAV-encoded tumor antigens.
Collapse
Affiliation(s)
- Ester Molina
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Marcos Tejero
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | | - Hisae Kuoch
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Colin Caine
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Karina Krotova
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Michael Paulaitis
- Department of Ophthalmology, Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - George Aslanidi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 5455, USA
| |
Collapse
|
2
|
Zhou X, Liu J, Xiao S, Liang X, Li Y, Mo F, Xin X, Yang Y, Gao C. Adeno-Associated Virus Engineering and Load Strategy for Tropism Modification, Immune Evasion and Enhanced Transgene Expression. Int J Nanomedicine 2024; 19:7691-7708. [PMID: 39099791 PMCID: PMC11296317 DOI: 10.2147/ijn.s459905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024] Open
Abstract
Gene therapy aims to add, replace or turn off genes to help treat disease. To date, the US Food and Drug Administration (FDA) has approved 14 gene therapy products. With the increasing interest in gene therapy, feasible gene delivery vectors are necessary for inserting new genes into cells. There are different kinds of gene delivery vectors including viral vectors like lentivirus, adenovirus, retrovirus, adeno-associated virus et al, and non-viral vectors like naked DNA, lipid vectors, polymer nanoparticles, exosomes et al, with viruses being the most commonly used. Among them, the most concerned vector is adeno-associated virus (AAV) because of its safety, natural ability to efficiently deliver gene into cells and sustained transgene expression in multiple tissues. In addition, the AAV genome can be engineered to generate recombinant AAV (rAAV) containing transgene sequences of interest and has been proven to be a safe gene vector. Recently, rAAV vectors have been approved for the treatment of various rare diseases. Despite these approvals, some major limitations of rAAV remain, namely nonspecific tissue targeting and host immune response. Additional problems include neutralizing antibodies that block transgene delivery, a finite transgene packaging capacity, high viral titer used for per dose and high cost. To deal with these challenges, several techniques have been developed. Based on differences in engineering methods, this review proposes three strategies: gene engineering-based capsid modification (capsid modification), capsid surface tethering through chemical conjugation (surface tethering), and other formulations loaded with AAV (virus load). In addition, the major advantages and limitations encountered in rAAV engineering strategies are summarized.
Collapse
Affiliation(s)
- Xun Zhou
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Jingzhou Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Shuang Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
- School of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Xiaoqing Liang
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Fengzhen Mo
- School of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Xin Xin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Chunsheng Gao
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
4
|
Jin L, Mao Z. Living virus-based nanohybrids for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1923. [PMID: 37619605 DOI: 10.1002/wnan.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Wang L, Wei X. Exosome-based crosstalk in glaucoma pathogenesis: a focus on oxidative stress and neuroinflammation. Front Immunol 2023; 14:1202704. [PMID: 37529047 PMCID: PMC10388248 DOI: 10.3389/fimmu.2023.1202704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Exosomes are membrane-bound tiny particles that are released by all live cells that contain multiple signal molecules and extensively participate in numerous normal physical activities and pathologies. In glaucoma, the crucial role of exosome-based crosstalk has been primarily revealed in animal models and ex vivo cell studies in the recent decade. In the aqueous drainage system, exosomes derived from non-pigment ciliary epithelium act in an endocrine manner and specifically regulate the function of the trabecular meshwork to cope with persistent oxidative stress challenges. In the retina, a more complicated regulatory network among microglia, retinal neurons, retinal ganglial cells, retinal pigment epithelium, and other immune effector cells by exosomes are responsible for the elaborate modulation of tissue homeostasis under physical state and the widespread propagation of neuroinflammation and its consequent neurodegeneration in glaucoma pathogenesis. Accumulating evidence indicates that exosome-based crosstalk depends on numerous factors, including the specific cargos they carried (particularly micro RNA), concentration, size, and ionization potentials, which largely remain elusive. In this narrative review, we summarize the latest research focus of exosome-based crosstalk in glaucoma pathogenesis, the current research progress of exosome-based therapy for glaucoma and provide in-depth perspectives on its current research gap.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Ophthalmology, ShangjinNanfu Hospital, Chengdu, China
| |
Collapse
|
6
|
Kovács ÁF. Gene Therapy of Extracellular Vesicles in Cardiovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:207-228. [PMID: 37603282 DOI: 10.1007/978-981-99-1443-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The ultimate and most complex form of treating human diseases is embodied by gene therapy. For an effective gene therapeutic product we need to hack the cellular plasma membrane entry-system, then escaping degradation in the cytosol and in most cases, we need an efficient hacking of the nuclear membrane-system, achieving the delivery of genetic construct into the central stage of the target cells: nucleoplasm or chromosomal DNA found in this highly controlled space. These steps need to be performed in a targeted, ordered, and efficient way. Possessing intrinsic ability of nucleic acid and protein delivery, extracellular vesicles can bypass biological barriers and may be able to deliver a next-generation platform for gene therapy. Fine-tuned genetic constructs included in (synthetic) extracellular vesicles may provide an upgraded approach to the current gene therapeutical technologies by significantly upgrading and improving biosafety, versatility, and delivery, thus evoking the desired therapeutic response. This chapter addresses the main types, vectors, challenges, and safety issues of gene therapy. Afterwards, a brief introduction and beneficial roles of extracellular vesicles are given. The concept of engineering vesicles for gene therapy is also discussed. A snapshot of most relevant clinical trials in the field of cardiovascular and metabolic diseases is shown. Finally, a wrap-up and outlook about gene therapy are presented.
Collapse
Affiliation(s)
- Árpád Ferenc Kovács
- Department of Paediatrics, Semmelweis University, Budapest, Hungary.
- For Human Genome Foundation, Budapest, Hungary.
| |
Collapse
|
7
|
Varillas-Delgado D, Del Coso J, Gutiérrez-Hellín J, Aguilar-Navarro M, Muñoz A, Maestro A, Morencos E. Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. Eur J Appl Physiol 2022; 122:1811-1830. [PMID: 35428907 PMCID: PMC9012664 DOI: 10.1007/s00421-022-04945-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/29/2022] [Indexed: 12/19/2022]
Abstract
The impact of genetics on physiology and sports performance is one of the most debated research aspects in sports sciences. Nearly 200 genetic polymorphisms have been found to influence sports performance traits, and over 20 polymorphisms may condition the status of the elite athlete. However, with the current evidence, it is certainly too early a stage to determine how to use genotyping as a tool for predicting exercise/sports performance or improving current methods of training. Research on this topic presents methodological limitations such as the lack of measurement of valid exercise performance phenotypes that make the study results difficult to interpret. Additionally, many studies present an insufficient cohort of athletes, or their classification as elite is dubious, which may introduce expectancy effects. Finally, the assessment of a progressively higher number of polymorphisms in the studies and the introduction of new analysis tools, such as the total genotype score (TGS) and genome-wide association studies (GWAS), have produced a considerable advance in the power of the analyses and a change from the study of single variants to determine pathways and systems associated with performance. The purpose of the present study was to comprehensively review evidence on the impact of genetics on endurance- and power-based exercise performance to clearly determine the potential utility of genotyping for detecting sports talent, enhancing training, or preventing exercise-related injuries, and to present an overview of recent research that has attempted to correct the methodological issues found in previous investigations.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain.
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, 28933, Madrid, Spain
| | - Jorge Gutiérrez-Hellín
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Millán Aguilar-Navarro
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Alejandro Muñoz
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | | | - Esther Morencos
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
8
|
Becirovic E. Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications. Cell Mol Life Sci 2022; 79:130. [PMID: 35152318 PMCID: PMC8840918 DOI: 10.1007/s00018-022-04175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
AbstractSince the revolutionary discovery of the CRISPR-Cas technology for programmable genome editing, its range of applications has been extended by multiple biotechnological tools that go far beyond its original function as “genetic scissors”. One of these further developments of the CRISPR-Cas system allows genes to be activated in a targeted and efficient manner. These gene-activating CRISPR-Cas modules (CRISPRa) are based on a programmable recruitment of transcription factors to specific loci and offer several key advantages that make them particularly attractive for therapeutic applications. These advantages include inter alia low off-target effects, independence of the target gene size as well as the potential to develop gene- and mutation-independent therapeutic strategies. Herein, I will give an overview on the currently available CRISPRa modules and discuss recent developments, future potentials and limitations of this approach with a focus on therapeutic applications and in vivo delivery.
Collapse
Affiliation(s)
- Elvir Becirovic
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
9
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
10
|
Duncan GA. Integrative approaches to enhance adeno-associated viral gene delivery. J Control Release 2021; 341:44-50. [PMID: 34785314 DOI: 10.1016/j.jconrel.2021.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
To meet the present and future challenges in achieving therapeutic in vivo gene delivery using adeno-associated virus (AAV), new innovations are required that integrate knowledge from disciplines ranging from biomaterials science, drug delivery, immunobiology, to tissue engineering. One of the foremost challenges remaining is in addressing pre-existing and therapy induced immune responses to AAV which significantly limit its therapeutic effect. In addition, functional correction of diseased tissues will depend on the ability of AAVs to retain activity after local or systemic administration and broadly distribute in target tissues. In this contribution to the Orations - New Horizons of the Journal of Controlled Release, I will introduce new concepts and potential strategies pursued by our lab and others to better understand and overcome these hurdles to effective AAV gene therapy. These multi-disciplinary approaches may open the door to the creation of precision gene therapies to treat heavily burdensome and often deadly diseases.
Collapse
Affiliation(s)
- Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Biophysics Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
11
|
Zhuang P, Phung S, Warnecke A, Arambula A, St Peter M, He M, Staecker H. Isolation of sensory hair cell specific exosomes in human perilymph. Neurosci Lett 2021; 764:136282. [PMID: 34619343 PMCID: PMC9171839 DOI: 10.1016/j.neulet.2021.136282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
Evaluation of hearing loss patients using clinical audiometry has been unable to give a definitive cellular or molecular diagnosis, hampering the development of treatments of sensorineural hearing loss. However, biopsy of inner ear tissue without losing residual hearing function for pathologic diagnosis is extremely challenging. In a clinical setting, perilymph can be accessed, potentially allowing the development of fluid based diagnostic tests. Recent approaches to improving inner ear diagnostics have been focusing on the evaluation of the proteomic or miRNA profiles of perilymph. Inspired by recent characterization and classification of many neurodegenerative diseases using exosomes which not only are produced in locally in diseased tissue but are transported beyond the blood brain barrier, we demonstrate the isolation of human inner ear specific exosomes using a novel ultrasensitive immunomagnetic nano pom-poms capture-release approach. Using perilymph samples harvested from surgical procedures, we were able to isolate exosomes from sensorineural hearing loss patients in only 2-5 μL of perilymph. By isolating sensory hair cell derived exosomes through their expression level of myosin VIIa, we for the first-time sample material from hair cells in the living human inner ear. This work sets up the first demonstration of immunomagnetic capture-release nano pom-pom isolated exosomes for liquid biopsy diagnosis of sensorineural hearing loss. With the ability to isolate exosomes derived from different cell types for molecular characterization, this method also can be developed for analyzing exosomal biomarkers from more accessible patient tissue fluids such as plasma.
Collapse
Affiliation(s)
- Pei Zhuang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32608, USA
| | - Suiching Phung
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32608, USA
| | - Athanasia Warnecke
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Alexandra Arambula
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Madeleine St Peter
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32608, USA
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
12
|
Perocheau D, Touramanidou L, Gurung S, Gissen P, Baruteau J. Clinical applications for exosomes: Are we there yet? Br J Pharmacol 2021; 178:2375-2392. [PMID: 33751579 PMCID: PMC8432553 DOI: 10.1111/bph.15432] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a subset of extracellular vesicles essential for cell-cell communication in health and disease with the ability to transport nucleic acids, functional proteins and other metabolites. Their clinical use as diagnostic biomarkers and therapeutic carriers has become a major field of research over recent years, generating rapidly expanding scientific interest and financial investment. Their reduced immunogenicity compared to liposomes or viral vectors and their ability to cross major physiological barriers like the blood-brain barrier make them an appealing and innovative option as biomarkers and therapeutic agents. Here, we review the latest clinical developments of exosome biotechnology for diagnostic and therapeutic purposes, including the most recent COVID-19-related exosome-based clinical trials. We present current exosome engineering strategies for optimal clinical safety and efficacy, and assess the technology developed for good manufacturing practice compliant scaling up and storage approaches along with their limitations in pharmaceutical industry.
Collapse
Affiliation(s)
- Dany Perocheau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Loukia Touramanidou
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sonam Gurung
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul Gissen
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK.,Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK.,Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Abstract
Extracellular vesicles (EVs) have received considerable attention in biological and clinical research due to their ability to mediate cell-to-cell communication. Based on their size and secretory origin, EVs are categorized as exosomes, microvesicles, and apoptotic bodies. Increasing number of studies highlight the contribution of EVs in the regulation of a wide range of normal cellular physiological processes, including waste scavenging, cellular stress reduction, intercellular communication, immune regulation, and cellular homeostasis modulation. Altered circulating EV level, expression pattern, or content in plasma of patients with cardiovascular disease (CVD) may serve as diagnostic and prognostic biomarkers in diverse cardiovascular pathologies. Due to their inherent characteristics and physiological functions, EVs, in turn, have become potential candidates as therapeutic agents. In this review, we discuss the evolving understanding of the role of EVs in CVD, summarize the current knowledge of EV-mediated regulatory mechanisms, and highlight potential strategies for the diagnosis and therapy of CVD. We also attempt to look into the future that may advance our understanding of the role of EVs in the pathogenesis of CVD and provide novel insights into the field of translational medicine.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
14
|
Mao L, Liang P, Li W, Zhang S, Liu M, Yang L, Li J, Li H, Hao F, Sun M, Zhang W, Wang L, Cai X, Luo X. Exosomes promote caprine parainfluenza virus type 3 infection by inhibiting autophagy. J Gen Virol 2021; 101:717-734. [PMID: 32427096 DOI: 10.1099/jgv.0.001424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Caprine parainfluenza virus type 3 (CPIV3) is a novel important pathogen causing respiratory disease in goats, but the pathogenic mechanism is not clear yet. Evidence suggests that exosomes transfer biologically active molecules between cells. Viral infections can cause profound changes in exosome components, and exosomes have been involved in viral transmission and pathogenicity. In this study, we explored the characteristics and functions of exosomes purified from the supernatant of Madin-Darby bovine kidney (MDBK) cells inoculated with CPIV3. Infection of CPIV3 showed increased exosome secretion and the loading of viral proteins and RNA into exosomes. These exosomes were capable of transferring CPIV3 genetic materials to recipient cells to establish a productive infection and promote the viral replication. To explore the potential mechanism, small RNA deep sequencing revealed that CPIV3 exosomes contained a diverse range of RNA species, including miRNA and piRNA, in proportions different from exosomes isolated from mock-infected cells. Expression patterns of 11 differentially expressed miRNAs were subsequently validated by quantitative reverse transcriptase PCR (qRT-PCR). Targets of miRNAs were predicted and functional annotation analysis showed that the main pathways involved were autophagy signalling ways. Autophagy inhibited by the CPIV3-exosome was further verified, and miR-126-3 p_2 packaged in the vesicles was an important regulation factor in this process. Inhibition of autophagy may be one of the responsible reasons for promoting efficient replication of exosome-mediated CPIV3 infection. The study suggests that exosomes are key in pathogenesis or protection against CPIV3. Further understating of their role in CPIV3 infection may bring novel insight to the development of protection measures.
Collapse
Affiliation(s)
- Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, PR China.,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Etiological Biology, Lanzhou 730046, PR China
| | - Panhong Liang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Etiological Biology, Lanzhou 730046, PR China
| | - Wenliang Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, PR China
| | - Shaohua Zhang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Etiological Biology, Lanzhou 730046, PR China
| | - Maojun Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, PR China
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, PR China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, PR China
| | - Huixia Li
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Etiological Biology, Lanzhou 730046, PR China
| | - Fei Hao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, PR China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, PR China
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, PR China
| | - Liqun Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Etiological Biology, Lanzhou 730046, PR China
| | - Xuepeng Cai
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Etiological Biology, Lanzhou 730046, PR China
| | - Xuenong Luo
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Veterinary Etiological Biology, Lanzhou 730046, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
15
|
Lugin ML, Lee RT, Kwon YJ. Synthetically Engineered Adeno-Associated Virus for Efficient, Safe, and Versatile Gene Therapy Applications. ACS NANO 2020; 14:14262-14283. [PMID: 33073995 DOI: 10.1021/acsnano.0c03850] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Gene therapy directly targets mutations causing disease, allowing for a specific treatment at a molecular level. Adeno-associated virus (AAV) has been of increasing interest as a gene delivery vehicle, as AAV vectors are safe, effective, and capable of eliciting a relatively contained immune response. With the recent FDA approval of two AAV drugs for treating rare genetic diseases, AAV vectors are now on the market and are being further explored for other therapies. While showing promise in immune privileged tissue, the use of AAV for systemic delivery is still limited due to the high prevalence of neutralizing antibodies (nAbs). To avoid nAb-mediated inactivation, engineered AAV vectors with modified protein capsids, materials tethered to the capsid surface, or fully encapsulated in a second, larger carrier have been explored. Many of these engineered AAVs have added benefits, including avoided immune response, overcoming the genome size limit, targeted and stimuli-responsive delivery, and multimodal therapy of two or more therapeutic modalities in one platform. Native and engineered AAV vectors have been tested to treat a broad range of diseases, including spinal muscular atrophy, retinal diseases, cancers, and tissue damage. This review will cover the benefits of AAV as a promising gene vector by itself, the progress and advantages of engineered AAV vectors, particularly synthetically engineered ones, and the current state of their clinical translation in therapy.
Collapse
|
16
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
17
|
Orefice NS. Development of New Strategies Using Extracellular Vesicles Loaded with Exogenous Nucleic Acid. Pharmaceutics 2020; 12:E705. [PMID: 32722622 PMCID: PMC7464422 DOI: 10.3390/pharmaceutics12080705] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is a therapeutic strategy of delivering foreign genetic material (encoding for an important protein) into a patient's target cell to replace a defective gene. Nucleic acids are embedded within the adeno-associated virus (AAVs) vectors; however, preexisting immunity to AAVs remains a significant concern that impairs their clinical application. Extracellular vesicles (EVs) hold great potential for therapeutic applications as vectors of nucleic acids due to their endogenous intercellular communication functions through their cargo delivery, including lipids and proteins. So far, small RNAs (siRNA and micro (mi)RNA) have been mainly loaded into EVs to treat several diseases, but the potential use of EVs to load and deliver exogenous plasmid DNA has not been thoroughly described. This review provides a comprehensive overview of the principal methodologies currently employed to load foreign genetic material into EVs, highlighting the need to find the most effective strategies for their successful clinical translations.
Collapse
Affiliation(s)
- Nicola Salvatore Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; or ; Tel.: +1-608-262-21-89
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
18
|
Abstract
The misuse of sport-related gene transfer methods in elite athletes is a real and growing concern. The success of gene therapy in the treatment of hereditary diseases has been most evident since targets in gene therapy products can be used in healthy individuals to improve sports performance. Performing these practices threatens the sporting character of competitions and may pose potential health hazards. Since the World Anti-Doping Agency pronouncement on the prohibition of such practices in 2003, several researchers have been trying to address the challenge of developing an effective method for the detection of genetic doping. This review presents an overview of the published methods developed for this purpose, the advantages and limitations of technologies and the putative target genes. At last, we present the perspective related to the application of the detection methods in the doping control field.
Collapse
|
19
|
In vivo engineering of lymphocytes after systemic exosome-associated AAV delivery. Sci Rep 2020; 10:4544. [PMID: 32161326 PMCID: PMC7066196 DOI: 10.1038/s41598-020-61518-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
Ex-vivo gene therapy using stem cells or T cells transduced by retroviral or lentiviral vectors has shown remarkable efficacy in the treatment of immunodeficiencies and cancer. However, the process is expensive, technically challenging, and not readily scalable to large patient populations, particularly in underdeveloped parts of the world. Direct in vivo gene therapy would avoid these issues, and such approaches with adeno-associated virus (AAV) vectors have been shown to be safe and efficacious in clinical trials for diseases affecting differentiated tissues such as the liver and CNS. However, the ability to transduce lymphocytes with AAV in vivo after systemic delivery has not been carefully explored. Here, we show that both standard and exosome-associated preparations of AAV8 vectors can effectively transduce a variety of immune cell populations including CD4+ T cells, CD8+ T cells, B cells, macrophages, and dendritic cells after systemic delivery in mice. We provide direct evidence of T cell transduction through the detection of AAV genomes and transgene mRNA, and show that intracellular and transmembrane proteins can be expressed. These findings establish the feasibility of AAV-mediated in vivo gene delivery to immune cells which will facilitate both basic and applied research towards the goal of direct in vivo gene immunotherapies.
Collapse
|
20
|
Rubio APD, Martínez J, Palavecino M, Fuentes F, López CMS, Marcilla A, Pérez OE, Piuri M. Transcytosis of Bacillus subtilis extracellular vesicles through an in vitro intestinal epithelial cell model. Sci Rep 2020; 10:3120. [PMID: 32080346 PMCID: PMC7033168 DOI: 10.1038/s41598-020-60077-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial EVs have been related to inter-kingdom communication between probiotic/pathogenic bacteria and their hosts. Our aim was to investigate the transcytosis process of B. subtilis EVs using an in vitro intestinal epithelial cell model. In this study, using Confocal Laser Scanning Microscopy, we report that uptake and internalization of CFSE-labeled B. subtilis EVs (115 nm ± 27 nm) by Caco-2 cells are time-dependent. To study the transcytosis process we used a transwell system and EVs were quantified in the lower chamber by Fluorescence and Nanoparticle Tracking Analysis measurements. Intact EVs are transported across a polarized cell monolayer at 60-120 min and increased after 240 min with an estimated average uptake efficiency of 30% and this process is dose-dependent. EVs movement into intestinal epithelial cells was mainly through Z axis and scarcely on X and Y axis. This work demonstrates that EVs could be transported across the gastrointestinal epithelium. We speculate this mechanism could be the first step allowing EVs to reach the bloodstream for further delivery up to extraintestinal tissues and organs. The expression and further encapsulation of bioactive molecules into natural nanoparticles produced by probiotic bacteria could have practical implications in food, nutraceuticals and clinical therapies.
Collapse
Affiliation(s)
- Ana Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Jimena Martínez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marcos Palavecino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Federico Fuentes
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Christian Miquel Sánchez López
- Àrea de Parasitologia, Departament de Farmàcia i TecnologiaFarmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i TecnologiaFarmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Oscar Edgardo Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Anti-ageing gene therapy: Not so far away? Ageing Res Rev 2019; 56:100977. [PMID: 31669577 DOI: 10.1016/j.arr.2019.100977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/31/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Improving healthspan is the main objective of anti-ageing research. Currently, innovative gene therapy-based approaches seem to be among the most promising for preventing and treating chronic polygenic pathologies, including age-related ones. The gene-based therapy allows to modulate the genome architecture using both direct (e.g., by gene editing) and indirect (e.g., by viral or non-viral vectors) approaches. Nevertheless, considering the extraordinary complexity of processes involved in ageing and ageing-related diseases, the effectiveness of these therapeutic options is often unsatisfactory and limited by their side-effects. Thus, clinical implementation of such applications is certainly a long-time process that will require many translation phases for addressing challenges. However, after overcoming these issues, their implementation in clinical practice may obviously provide new possibilities in anti-ageing medicine. Here, we review and discuss recent advances in this rapidly developing research field.
Collapse
|
22
|
Stanimirovic DB, Sandhu JK, Costain WJ. Emerging Technologies for Delivery of Biotherapeutics and Gene Therapy Across the Blood-Brain Barrier. BioDrugs 2019; 32:547-559. [PMID: 30306341 PMCID: PMC6290705 DOI: 10.1007/s40259-018-0309-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibody, immuno- and gene therapies developed for neurological indications face a delivery challenge posed by various anatomical and physiological barriers within the central nervous system (CNS); most notably, the blood–brain barrier (BBB). Emerging delivery technologies for biotherapeutics have focused on trans-cellular pathways across the BBB utilizing receptor-mediated transcytosis (RMT). ‘Traditionally’ targeted RMT receptors, transferrin receptor (TfR) and insulin receptor (IR), are ubiquitously expressed and pose numerous translational challenges during development, including species differences and safety risks. Recent advances in antibody engineering technologies and discoveries of RMT targets and BBB-crossing antibodies that are more BBB-selective have combined to create a new preclinical pipeline of BBB-crossing biotherapeutics with improved efficacy and safety. Novel BBB-selective RMT targets and carrier antibodies have exposed additional opportunities for re-targeting gene delivery vectors or nanocarriers for more efficient brain delivery. Emergence and refinement of core technologies of genetic engineering and editing as well as biomanufacturing of viral vectors and cell-derived products have de-risked the path to the development of systemic gene therapy approaches for the CNS. In particular, brain-tropic viral vectors and extracellular vesicles have recently expanded the repertoire of brain delivery strategies for biotherapeutics. Whereas protein biotherapeutics and bispecific antibodies enabled for BBB transcytosis are rapidly heading towards clinical trials, systemic gene therapy approaches for CNS will likely remain in research phase for the foreseeable future. The promise and limitations of these emerging cross-BBB delivery technologies are further discussed in this article.
Collapse
Affiliation(s)
- Danica B Stanimirovic
- Human Health Therapeutics Research Centre, Translational Bioscience, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada.
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, Translational Bioscience, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada
| | - Will J Costain
- Human Health Therapeutics Research Centre, Translational Bioscience, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada
| |
Collapse
|
23
|
Volak A, LeRoy SG, Natasan JS, Park DJ, Cheah PS, Maus A, Fitzpatrick Z, Hudry E, Pinkham K, Gandhi S, Hyman BT, Mu D, GuhaSarkar D, Stemmer-Rachamimov AO, Sena-Esteves M, Badr CE, Maguire CA. Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery. J Neurooncol 2018; 139:293-305. [PMID: 29767307 PMCID: PMC6454875 DOI: 10.1007/s11060-018-2889-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Abstract
The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.
Collapse
Affiliation(s)
- Adrienn Volak
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Stanley G LeRoy
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Jeya Shree Natasan
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - David J Park
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Pike See Cheah
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Andreas Maus
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Fitzpatrick
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Eloise Hudry
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Kelsey Pinkham
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Sheetal Gandhi
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Dakai Mu
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Christian E Badr
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.
| | - Casey A Maguire
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Wang L, Kempton JB, Brigande JV. Gene Therapy in Mouse Models of Deafness and Balance Dysfunction. Front Mol Neurosci 2018; 11:300. [PMID: 30210291 PMCID: PMC6123355 DOI: 10.3389/fnmol.2018.00300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Therapeutic strategies to restore hearing and balance in mouse models of inner ear disease aim to rescue sensory function by gene replacement, augmentation, knock down or knock out. Modalities to achieve therapeutic effects have utilized virus-mediated transfer of wild type genes and small interfering ribonucleic acids; systemic and focal administration of antisense oligonucleotides (ASO) and designer small molecules; and lipid-mediated transfer of Cas 9 ribonucleoprotein (RNP) complexes. This work has established that gene or drug administration to the structurally and functionally immature, early neonatal mouse inner ear prior to hearing onset is a prerequisite for the most robust therapeutic responses. These observations may have significant implications for translating mouse inner ear gene therapies to patients. The human fetus hears by gestational week 19, suggesting that a corollary window of therapeutic efficacy closes early in the second trimester of pregnancy. We hypothesize that fetal therapeutics deployed prior to hearing onset may be the most effective approach to preemptively manage genetic mutations that cause deafness and vestibular dysfunction. We assert that gene therapy studies in higher vertebrate model systems with fetal hearing onset and a comparable acoustic range and sensitivity to that of humans are an essential step to safely and effectively translate murine gene therapies to the clinic.
Collapse
Affiliation(s)
- Lingyan Wang
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, OR, United States
| | - J Beth Kempton
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, OR, United States
| | - John V Brigande
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
25
|
Schiller LT, Lemus-Diaz N, Rinaldi Ferreira R, Böker KO, Gruber J. Enhanced Production of Exosome-Associated AAV by Overexpression of the Tetraspanin CD9. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:278-287. [PMID: 29707602 PMCID: PMC5918177 DOI: 10.1016/j.omtm.2018.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023]
Abstract
Research on cell-free vesicles revealed a multitude of characteristics, in particular of microvesicles and exosomes, that range from their potential as biomarkers to a function in horizontal transfer of genetic information from cell to cell and also include supportive functions in viral infection. Exosome-associated adeno-associated viruses (exo-AAVs) are of particular interest for the past couple of years, because they introduced a new source of highly potent recombinant AAVs with improved features, including accelerated transduction rates and more efficient immune escape. However, key factors like the mode of action, efficiency of production, or engineering of exo-AAVs remain elusive to a large extent. Here, we used the established system of CD9 overexpression to boost the exosome output of AAV producing HEK-AAV cells. The CD9-powered high-exosome environment was established during exo-AAV1 production, and we could demonstrate that the yield of exo-AAVs dramatically increased when compared to standard exo-AAVs. Furthermore, we report that exo-AAV-CD9GFP was more efficient in transduction of cells in the same titer ranges as standard exo-AAVs. Our results provide a technological approach for the generation of exo-AAVs with superior performance.
Collapse
Affiliation(s)
- Lara Timantra Schiller
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Nicolás Lemus-Diaz
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Rafael Rinaldi Ferreira
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Kai Oliver Böker
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.,Department for Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Robert-Koch Straße 40, 37075 Göttingen, Germany
| | - Jens Gruber
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Abstract
In recent years, the number of clinical trials in which adeno-associated virus (AAV) vectors have been used for in vivo gene transfer has steadily increased. The excellent safety profile, together with the high efficiency of transduction of a broad range of target tissues, has established AAV vectors as the platform of choice for in vivo gene therapy. Successful application of the AAV technology has also been achieved in the clinic for a variety of conditions, including coagulation disorders, inherited blindness, and neurodegenerative diseases, among others. Clinical translation of novel and effective "therapeutic products" is, however, a long process that involves several cycles of iterations from bench to bedside that are required to address issues encountered during drug development. For the AAV vector gene transfer technology, several hurdles have emerged in both preclinical studies and clinical trials; addressing these issues will allow in the future to expand the scope of AAV gene transfer as a therapeutic modality for a variety of human diseases. In this review, we will give an overview on the biology of AAV vector, discuss the design of AAV-based gene therapy strategies for in vivo applications, and present key achievements and emerging issues in the field. We will use the liver as a model target tissue for gene transfer based on the large amount of data available from preclinical and clinical studies.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, INSERM U951 INTEGRARE, University of Evry, University Paris-Saclay, 91001 Evry, France
| | - Giuseppe Ronzitti
- Genethon, INSERM U951 INTEGRARE, University of Evry, University Paris-Saclay, 91001 Evry, France
| | - Federico Mingozzi
- Genethon, INSERM U951 INTEGRARE, University of Evry, University Paris-Saclay, 91001 Evry, France
- University Pierre and Marie Curie-Paris 6 and INSERM U974, 75651 Paris, France
| |
Collapse
|
27
|
Bae S, Brumbaugh J, Bonavida B. Exosomes derived from cancerous and non-cancerous cells regulate the anti-tumor response in the tumor microenvironment. Genes Cancer 2018; 9:87-100. [PMID: 30108680 PMCID: PMC6086005 DOI: 10.18632/genesandcancer.172] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/27/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is a unique platform of cancer biology that considers the local cellular environment in which a tumor exists. Increasing evidence points to the TME as crucial for either promoting immune tumor rejection or protecting the tumor. The TME includes surrounding blood vessels, the extracellular matrix (ECM), a variety of immune and regulatory cells, and signaling factors. Exosomes have emerged to be molecular contributors in cancer biology, and to modulate and affect the constituents of the TME. Exosomes are small (40-150 nm) membrane vesicles that are derived from an endocytic nature and are later excreted by cells. Depending on the cells from which they originate, exosomes can play a role in tumor suppression or tumor progression. Tumor-derived exosomes (TDEs) have their own unique phenotypic functions. Evidence points to TDEs as key players involved in tumor growth, tumorigenesis, angiogenesis, dysregulation of immune cells and immune escape, metastasis, and resistance to therapies, as well as in promoting anti-tumor response. General exosomes, TDEs, and their influence on the TME are an area of promising research that may provide potential biomarkers for therapy, potentiation of anti-tumor response, development of exosome-based vaccines, and exosome-derived nanocarriers for drugs.
Collapse
Affiliation(s)
- Susan Bae
- Department of Oral Biology, UCLA School of Dentistry, University of California, Los Angeles, CA, USA
| | - Jeffrey Brumbaugh
- Department of Oral Biology, UCLA School of Dentistry, University of California, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|