1
|
ter Linden E, Abels ER, van Solinge TS, Neefjes J, Broekman MLD. Overcoming Barriers in Glioblastoma-Advances in Drug Delivery Strategies. Cells 2024; 13:998. [PMID: 38920629 PMCID: PMC11201826 DOI: 10.3390/cells13120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The world of cancer treatment is evolving rapidly and has improved the prospects of many cancer patients. Yet, there are still many cancers where treatment prospects have not (or hardly) improved. Glioblastoma is the most common malignant primary brain tumor, and even though it is sensitive to many chemotherapeutics when tested under laboratory conditions, its clinical prospects are still very poor. The blood-brain barrier (BBB) is considered at least partly responsible for the high failure rate of many promising treatment strategies. We describe the workings of the BBB during healthy conditions and within the glioblastoma environment. How the BBB acts as a barrier for therapeutic options is described as well as various approaches developed and tested for passing or opening the BBB, with the ultimate aim to allow access to brain tumors and improve patient perspectives.
Collapse
Affiliation(s)
- Esther ter Linden
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Erik R. Abels
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Thomas S. van Solinge
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jacques Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Marike L. D. Broekman
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands
| |
Collapse
|
2
|
Pegoraro C, Domingo-Ortí I, Conejos-Sánchez I, Vicent MJ. Unlocking the Mitochondria for Nanomedicine-based Treatments: Overcoming Biological Barriers, Improving Designs, and Selecting Verification Techniques. Adv Drug Deliv Rev 2024; 207:115195. [PMID: 38325562 DOI: 10.1016/j.addr.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Enhanced targeting approaches will support the treatment of diseases associated with dysfunctional mitochondria, which play critical roles in energy generation and cell survival. Obstacles to mitochondria-specific targeting include the presence of distinct biological barriers and the need to pass through (or avoid) various cell internalization mechanisms. A range of studies have reported the design of mitochondrially-targeted nanomedicines that navigate the complex routes required to influence mitochondrial function; nonetheless, a significant journey lies ahead before mitochondrially-targeted nanomedicines become suitable for clinical use. Moving swiftly forward will require safety studies, in vivo assays confirming effectiveness, and methodologies to validate mitochondria-targeted nanomedicines' subcellular location/activity. From a nanomedicine standpoint, we describe the biological routes involved (from administration to arrival within the mitochondria), the features influencing rational design, and the techniques used to identify/validate successful targeting. Overall, rationally-designed mitochondria-targeted-based nanomedicines hold great promise for precise subcellular therapeutic delivery.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inés Domingo-Ortí
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
3
|
Zhi Chen B, Ting He Y, Qiang Zhao Z, Hao Feng Y, Liang L, Peng J, Yu Yang C, Uyama H, Shahbazi MA, Dong Guo X. Strategies to develop polymeric microneedles for controlled drug release. Adv Drug Deliv Rev 2023; 203:115109. [PMID: 39492421 DOI: 10.1016/j.addr.2023.115109] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
The remarkable appeal of microneedle controlled-release systems has captivated both the academic community and pharmaceutical industry due to their great potential for achieving spatiotemporally controlled release, coupled with their the minimally invasive nature and ease of application. Over the years, scientists have dedicated their efforts to advancing microneedle systems by manipulating the physicochemical properties of matrix materials, refining microneedle designs, and interfacing with external devices to provide tailored drug release profiles in a spatiotemporally controllable manner. Expanding upon our understanding of drug release mechanisms from polymeric microneedles, which include diffusion, swelling, degradation, triggering, and targeting, there is a growing focus on manipulating the location and rate of drug release through innovative microneedle designs. This burgeoning field of microneedle-based drug delivery systems offers further prospects for precise control over drug release. The design strategies of polymeric microneedle systems for temporally controlled and locally targeted release, as well as the delivery mechanisms by which drugs can be released from a microneedle system are critically reviewed in this work. Furthermore, this review also puts forward some perspectives on the potential and challenges involved in translating these microneedle-based delivery systems into the next generation therapies.
Collapse
Affiliation(s)
- Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ze Qiang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Hao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Liang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Juan Peng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Yu Yang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Lérida-Viso A, Estepa-Fernández A, García-Fernández A, Martí-Centelles V, Martínez-Máñez R. Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv Drug Deliv Rev 2023; 201:115049. [PMID: 37573951 DOI: 10.1016/j.addr.2023.115049] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) have attracted the attention of chemists, who have developed numerous systems for the encapsulation of a plethora of molecules, allowing the use of mesoporous silica nanoparticles for biomedical applications. MSNs have been extensively studied for their use in nanomedicine, in applications such as drug delivery, diagnosis, and bioimaging, demonstrating significant in vivo efficacy in different preclinical models. Nevertheless, for the transition of MSNs into clinical trials, it is imperative to understand the characteristics that make MSNs effective and safe. The biosafety properties of MSNs in vivo are greatly influenced by their physicochemical characteristics such as particle shape, size, surface modification, and silica framework. In this review, we compile the most relevant and recent progress in the literature up to the present by analyzing the contributions on biodistribution, biodegradability, and clearance of MSNs. Furthermore, the ongoing clinical trials and the potential challenges related to the administration of silica materials for advanced therapeutics are discussed. This approach aims to provide a solid overview of the state-of-the-art in this field and to encourage the translation of MSNs to the clinic.
Collapse
Affiliation(s)
- Araceli Lérida-Viso
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alejandra Estepa-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Ramón Martínez-Máñez
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
5
|
Ramasubramanian B, Reddy VS, Chellappan V, Ramakrishna S. Emerging Materials, Wearables, and Diagnostic Advancements in Therapeutic Treatment of Brain Diseases. BIOSENSORS 2022; 12:1176. [PMID: 36551143 PMCID: PMC9775999 DOI: 10.3390/bios12121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Among the most critical health issues, brain illnesses, such as neurodegenerative conditions and tumors, lower quality of life and have a significant economic impact. Implantable technology and nano-drug carriers have enormous promise for cerebral brain activity sensing and regulated therapeutic application in the treatment and detection of brain illnesses. Flexible materials are chosen for implantable devices because they help reduce biomechanical mismatch between the implanted device and brain tissue. Additionally, implanted biodegradable devices might lessen any autoimmune negative effects. The onerous subsequent operation for removing the implanted device is further lessened with biodegradability. This review expands on current developments in diagnostic technologies such as magnetic resonance imaging, computed tomography, mass spectroscopy, infrared spectroscopy, angiography, and electroencephalogram while providing an overview of prevalent brain diseases. As far as we are aware, there hasn't been a single review article that addresses all the prevalent brain illnesses. The reviewer also looks into the prospects for the future and offers suggestions for the direction of future developments in the treatment of brain diseases.
Collapse
Affiliation(s)
- Brindha Ramasubramanian
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| | - Vijila Chellappan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
6
|
Awad R, Avital A, Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm Sin B 2022; 13:1866-1886. [DOI: 10.1016/j.apsb.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/01/2022] Open
|
7
|
Zhang L, Sun H, Zhao J, Lee J, Ee Low L, Gong L, Chen Y, Wang N, Zhu C, Lin P, Liang Z, Wei M, Ling D, Li F. Dynamic nanoassemblies for imaging and therapy of neurological disorders. Adv Drug Deliv Rev 2021; 175:113832. [PMID: 34146626 DOI: 10.1016/j.addr.2021.113832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
The past decades have witnessed an increased incidence of neurological disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, ischemic stroke, and epilepsy, which significantly lower patients' life quality and increase the economic and social burden. Recently, nanomedicines composed of imaging and/or therapeutic agents have been explored to diagnose and/or treat NDs due to their enhanced bioavailability, blood-brain barrier (BBB) permeability, and targeting capacity. Intriguingly, dynamic nanoassemblies self-assembled from functional nanoparticles to simultaneously interfere with multiple pathogenic substances and pathological changes, have been regarded as one of the foremost candidates to improve the diagnostic and therapeutic efficacy of NDs. To help readers better understand this emerging field, in this review, the pathogenic mechanism of different types of NDs is briefly introduced, then the functional nanoparticles used as building blocks in the construction of dynamic nanoassemblies for NDs theranostics are summarized. Furthermore, dynamic nanoassemblies that can actively cross the BBB to target brain lesions, sensitively and efficiently diagnose or treat NDs, and effectively promote neuroregeneration are highlighted. Finally, we conclude with our perspectives on the future development in this field.
Collapse
|
8
|
Pascual M, Calvo-Rodriguez M, Núñez L, Villalobos C, Ureña J, Guerri C. Toll-like receptors in neuroinflammation, neurodegeneration, and alcohol-induced brain damage. IUBMB Life 2021; 73:900-915. [PMID: 34033211 DOI: 10.1002/iub.2510] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) or pattern recognition receptors respond to pathogen-associated molecular patterns (PAMPs) or internal damage-associated molecular patterns (DAMPs). TLRs are integral membrane proteins with both extracellular leucine-rich and cytoplasmic domains that initiate downstream signaling through kinases by activating transcription factors like AP-1 and NF-κB, which lead to the release of various inflammatory cytokines and immune modulators. In the central nervous system, different TLRs are expressed mainly in microglia and astroglial cells, although some TLRs are also expressed in oligodendroglia and neurons. Activation of TLRs triggers signaling cascades by the host as a defense mechanism against invaders to repair damaged tissue. However, overactivation of TLRs disrupts the sustained immune homeostasis-induced production of pro-inflammatory molecules, such as cytokines, miRNAs, and inflammatory components of extracellular vesicles. These inflammatory mediators can, in turn, induce neuroinflammation, and neural tissue damage associated with many neurodegenerative diseases. This review discusses the critical role of TLRs response in Alzheimer's disease, Parkinson's disease, ischemic stroke, amyotrophic lateral sclerosis, and alcohol-induced brain damage and neurodegeneration.
Collapse
Affiliation(s)
- María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Maria Calvo-Rodriguez
- Alzheimer's Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Lucía Núñez
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain.,Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, Valladolid, Spain
| | - Carlos Villalobos
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain
| | - Juan Ureña
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| |
Collapse
|
9
|
Cuesta CM, Ibañez F, Lopez-Hidalgo R, Ureña J, Duro-Castano A, Armiñán A, Vicent MJ, Pascual M, Guerri C. A targeted polypeptide-based nanoconjugate as a nanotherapeutic for alcohol-induced neuroinflammation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102376. [PMID: 33667725 DOI: 10.1016/j.nano.2021.102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Alcohol abuse induces the expression of inflammatory mediators by activating the immune receptors to trigger neuroinflammation and brain damage; however, therapies that reduce neuroimmune system activation may protect against alcohol's damaging effects. Curcuminoids possess anti-inflammatory properties but suffer from low bioavailability; therefore, we designed a new receptor-targeted biodegradable star-shaped crosslinked polypeptide polymer that bears propargylamine moieties and bisdemethoxycurcumin (StClPr-BDMC-ANG) as an enhanced anti-inflammatory therapeutic that penetrates the blood-brain-barrier and ameliorates alcohol-induced neuroinflammation. StClPr-BDMC-ANG administration maintains the viability of primary glia and inhibits the ethanol-induced upregulation of crucial inflammatory mediators in the prefrontal and medial cortex in a mouse model of chronic ethanol consumption. StClPr-BDMC-ANG treatment also suppresses the ethanol-mediated downregulation of microRNAs known to negatively modulate neuroinflammation in the brain cortex (miRs 146a-5p and let-7b-5p). In summary, our results demonstrate the attenuation of alcohol-induced neuroinflammation by an optimized and targeted polypeptide-based nanoconjugate of a curcuminoid.
Collapse
Affiliation(s)
- Carlos Manuel Cuesta
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Valencia, Spain
| | - Francisco Ibañez
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Valencia, Spain
| | - Rosa Lopez-Hidalgo
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Valencia, Spain
| | - Juan Ureña
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Valencia, Spain
| | - Aroa Duro-Castano
- Polymer Therapeutics Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Maria Jesus Vicent
- Polymer Therapeutics Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Maria Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Valencia, Spain.
| |
Collapse
|
10
|
Duro-Castano A, Borrás C, Herranz-Pérez V, Blanco-Gandía MC, Conejos-Sánchez I, Armiñán A, Mas-Bargues C, Inglés M, Miñarro J, Rodríguez-Arias M, García-Verdugo JM, Viña J, Vicent MJ. Targeting Alzheimer's disease with multimodal polypeptide-based nanoconjugates. SCIENCE ADVANCES 2021; 7:7/13/eabf9180. [PMID: 33771874 PMCID: PMC7997513 DOI: 10.1126/sciadv.abf9180] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, remains incurable mainly due to our failings in the search for effective pharmacological strategies. Here, we describe the development of targeted multimodal polypeptide-based nanoconjugates as potential AD treatments. Treatment with polypeptide nanoconjugates bearing propargylamine moieties and bisdemethoxycurcumin or genistein afforded neuroprotection and displayed neurotrophic effects, as evidenced by an increase in dendritic density of pyramidal neurons in organotypic hippocampal culture. The additional conjugation of the Angiopep-2 targeting moiety enhanced nanoconjugate passage through the blood-brain barrier and modulated brain distribution with nanoconjugate accumulation in neurogenic areas, including the olfactory bulb. Nanoconjugate treatment effectively reduced neurotoxic β amyloid aggregate levels and rescued impairments to olfactory memory and object recognition in APP/PS1 transgenic AD model mice. Overall, this study provides a description of a targeted multimodal polyglutamate-based nanoconjugate with neuroprotective and neurotrophic potential for AD treatment.
Collapse
Affiliation(s)
- A Duro-Castano
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - C Borrás
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - V Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, Univ. València, CIBERNED, 46980 Valencia, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Univ. Jaume I, 12071 Castelló de la Plana, Spain
| | - M C Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Univ. Zaragoza, Teruel, Spain
| | - I Conejos-Sánchez
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - A Armiñán
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - C Mas-Bargues
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - M Inglés
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - J Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - M Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - J M García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, Univ. València, CIBERNED, 46980 Valencia, Spain
| | - J Viña
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - M J Vicent
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
11
|
Faouzi A, Roullin VG. Think Big, Start Small: How Nanomedicine Could Alleviate the Burden of Rare CNS Diseases. Pharmaceuticals (Basel) 2021; 14:109. [PMID: 33573213 PMCID: PMC7912386 DOI: 10.3390/ph14020109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
The complexity and organization of the central nervous system (CNS) is widely modulated by the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), which both act as biochemical, dynamic obstacles impeding any type of undesirable exogenous exchanges. The disruption of these barriers is usually associated with the development of neuropathologies which can be the consequence of genetic disorders, local antigenic invasions, or autoimmune diseases. These disorders can take the shape of rare CNS-related diseases (other than Alzheimer's and Parkinson's) which a exhibit relatively low or moderate prevalence and could be part of a potential line of treatments from current nanotargeted therapies. Indeed, one of the most promising therapeutical alternatives in that field comes from the development of nanotechnologies which can be divided between drug delivery systems and diagnostic tools. Unfortunately, the number of studies dedicated to treating these rare diseases using nanotherapeutics is limited, which is mostly due to a lack of interest from industrial pharmaceutical companies. In the present review, we will provide an overview of some of these rare CNS diseases, discuss the physiopathology of these disorders, shed light on how nanotherapies could be of interest as a credible line of treatment, and finally address the major issues which can hinder the development of efficient therapies in that area.
Collapse
Affiliation(s)
- Abdelfattah Faouzi
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63131, USA;
| | - Valérie Gaëlle Roullin
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
12
|
Zhou X, Smith QR, Liu X. Brain penetrating peptides and peptide-drug conjugates to overcome the blood-brain barrier and target CNS diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1695. [PMID: 33470550 DOI: 10.1002/wnan.1695] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nearly one in six people worldwide suffer from disorders of the central nervous system (CNS). There is an urgent need for effective strategies to improve the success rates in CNS drug discovery and development. The lack of effective technologies for delivering drugs and genes to the brain due to the blood-brain barrier (BBB), a structural barrier that effectively blocks most neurotherapeutic agents from reaching the brain, has posed a formidable hurdle for CNS drug development. Brain-homing and brain-penetrating molecular transport vectors, such as brain permeable peptides or BBB shuttle peptides, have shown promise in overcoming the BBB and ferrying the drug molecules to the brain. The BBB shuttle peptides are discovered by phage display technology or derived from natural neurotropic proteins or certain viruses and harness the receptor-mediated transcytosis molecular machinery for crossing the BBB. Brain permeable peptide-drug conjugates (PDCs), composed of BBB shuttle peptides, linkers, and drug molecules, have emerged as a promising CNS drug delivery system by taking advantage of the endogenous transcytosis mechanism and tricking the brain into allowing these bioactive molecules to pass the BBB. Here, we examine the latest development of brain-penetrating peptide shuttles and brain-permeable PDCs as molecular vectors to deliver small molecule drug payloads across the BBB to reach brain parenchyma. Emerging knowledge of the contribution of the peptides and their specific receptors expressed on the brain endothelial cells, choice of drug payloads, the design of PDCs, brain entry mechanisms, and delivery efficiency to the brain are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Quentin R Smith
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| |
Collapse
|
13
|
Zhang L, Sun H, Chen Y, Wei M, Lee J, Li F, Ling D. Functional nanoassemblies for the diagnosis and therapy of Alzheimer's diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1696. [PMID: 33463089 DOI: 10.1002/wnan.1696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects populations around the world. Many therapeutics have been investigated for AD diagnosis and/or therapy, but the efficacy is largely limited by the poor bioavailability of drugs and by the presence of the blood-brain barrier. Recently, the development of nanomedicines enables efficient drug delivery to the brain, but the complex pathological mechanism of AD prevents them from successful treatment. As a type of advanced nanomedicine, multifunctional nanoassemblies self-assembled from nanoscale imaging or therapeutic agents can simultaneously target multiple pathological factors, showing great potential in the diagnosis and therapy of AD. To help readers better understand this emerging field, in this review, we first introduce the pathological mechanisms and the potential drug candidates of AD, as well as the design strategies of nanoassemblies for improving AD targeting efficiency. Moreover, the progress of dynamic nanoassemblies that can diagnose and/or treat AD in response to the endogenous or exogenous stimuli will be described. Finally, we conclude with our perspectives on the future development in this field. The objective of this review is to outline the latest progress of using nanoassemblies to overcome the complex pathological environment of AD for improved diagnosis and therapy, in hopes of accelerating the future development of intelligent AD nanomedicines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heng Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Designing peptide nanoparticles for efficient brain delivery. Adv Drug Deliv Rev 2020; 160:52-77. [PMID: 33031897 DOI: 10.1016/j.addr.2020.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood-brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain: from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain.
Collapse
|
15
|
Spencer AP, Torrado M, Custódio B, Silva-Reis SC, Santos SD, Leiro V, Pêgo AP. Breaking Barriers: Bioinspired Strategies for Targeted Neuronal Delivery to the Central Nervous System. Pharmaceutics 2020; 12:E192. [PMID: 32102252 PMCID: PMC7076453 DOI: 10.3390/pharmaceutics12020192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/01/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
Central nervous system (CNS) disorders encompass a vast spectrum of pathological conditions and represent a growing concern worldwide. Despite the high social and clinical interest in trying to solve these pathologies, there are many challenges to bridge in order to achieve an effective therapy. One of the main obstacles to advancements in this field that has hampered many of the therapeutic strategies proposed to date is the presence of the CNS barriers that restrict the access to the brain. However, adequate brain biodistribution and neuronal cells specific accumulation in the targeted site also represent major hurdles to the attainment of a successful CNS treatment. Over the last few years, nanotechnology has taken a step forward towards the development of therapeutics in neurologic diseases and different approaches have been developed to surpass these obstacles. The versatility of the designed nanocarriers in terms of physical and chemical properties, and the possibility to functionalize them with specific moieties, have resulted in improved neurotargeted delivery profiles. With the concomitant progress in biology research, many of these strategies have been inspired by nature and have taken advantage of physiological processes to achieve brain delivery. Here, the different nanosystems and targeting moieties used to achieve a neuronal delivery reported in the open literature are comprehensively reviewed and critically discussed, with emphasis on the most recent bioinspired advances in the field. Finally, we express our view on the paramount challenges in targeted neuronal delivery that need to be overcome for these promising therapeutics to move from the bench to the bedside.
Collapse
Affiliation(s)
- Ana P. Spencer
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Marília Torrado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Beatriz Custódio
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sara C. Silva-Reis
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sofia D. Santos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P. Pêgo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Paudel YN, Angelopoulou E, Semple B, Piperi C, Othman I, Shaikh MF. Potential Neuroprotective Effect of the HMGB1 Inhibitor Glycyrrhizin in Neurological Disorders. ACS Chem Neurosci 2020; 11:485-500. [PMID: 31972087 DOI: 10.1021/acschemneuro.9b00640] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glycyrrhizin (glycyrrhizic acid), a bioactive triterpenoid saponin constituent of Glycyrrhiza glabra, is a traditional medicine possessing a plethora of pharmacological anti-inflammatory, antioxidant, antimicrobial, and antiaging properties. It is a known pharmacological inhibitor of high mobility group box 1 (HMGB1), a ubiquitous protein with proinflammatory cytokine-like activity. HMGB1 has been implicated in an array of inflammatory diseases when released extracellularly, mainly by activating intracellular signaling upon binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). HMGB1 neutralization strategies have demonstrated disease-modifying outcomes in several preclinical models of neurological disorders. Herein, we reveal the potential neuroprotective effects of glycyrrhizin against several neurological disorders. Emerging findings demonstrate the therapeutic potential of glycyrrhizin against several HMGB1-mediated pathological conditions including traumatic brain injury, neuroinflammation and associated conditions, epileptic seizures, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Glycyrrhizin's effects in neurological disorders are mainly attributed to the attenuation of neuronal damage by inhibiting HMGB1 expression and translocation as well as by downregulating the expression of inflammatory cytokines. A large number of preclinical findings supports the notion that glycyrrhizin might be a promising therapeutic alternative to overcome the shortcomings of the mainstream therapeutic strategies against neurological disorders, mainly by halting disease progression. However, future research is warranted for a deeper exploration of the precise underlying molecular mechanism as well as for clinical translation.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Bridgette Semple
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| |
Collapse
|
17
|
Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev 2020; 160:136-169. [PMID: 33091502 DOI: 10.1016/j.addr.2020.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
The clinical success of polypeptides as polymeric drugs, covered by the umbrella term "polymer therapeutics," combined with related scientific and technological breakthroughs, explain their exponential growth in the development of polypeptide-drug conjugates as therapeutic agents. A deeper understanding of the biology at relevant pathological sites and the critical biological barriers faced, combined with advances regarding controlled polymerization techniques, material bioresponsiveness, analytical methods, and scale up-manufacture processes, have fostered the development of these nature-mimicking entities. Now, engineered polypeptides have the potential to combat current challenges in the advanced drug delivery field. In this review, we will discuss examples of polypeptide-drug conjugates as single or combination therapies in both preclinical and clinical studies as therapeutics and molecular imaging tools. Importantly, we will critically discuss relevant examples to highlight those parameters relevant to their rational design, such as linking chemistry, the analytical strategies employed, and their physicochemical and biological characterization, that will foster their rapid clinical translation.
Collapse
Affiliation(s)
- Tetiana Melnyk
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Snežana Đorđević
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|