1
|
Qi Y, Liu W, Du T, Wang J, Jiao S. Red/near-infrared (NIR) difluoroboron β-diketonate derivatives with reversible mechanochromism for cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:124986. [PMID: 39217960 DOI: 10.1016/j.saa.2024.124986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Near-infrared (NIR) fluorophores have promoted the development of materials for bioimaging, but traditional NIR dyes usually suffer from aggregation-caused quenching (ACQ), impeding their applications. Herein, we propose two difluoroboron β-diketonate complexes TBO and TBS, consisting a donor-acceptor (D-A) structure with triphenylamine (TPA) moiety as an electron donors and difluoroboron as well as furan or thiophene building block as an electron acceptor. The theoretical calculation and optical data shows that both of them have intramolecular charge transfer (ICT) characteristics. Such ICT characteristics endow them with both solvatochromism and dual-state emission (DSE) properties. In the solvent CH2Cl2, the emission wavelength of TBO ranges from 550 nm to 750 nm, with a low fluorescence quantum yield (Φ = 7.0 %). However, in the less polar solvent hexane, the emission wavelength blue-shifts, with an increased Φ reaching up to 18 %. Moreover, TBO and TBS exhibit mechanochromic characteristics and rare multi-channel fluorescence emission phenomena at solid-state. Their solid-state samples can emit fluorescence in four spectral bands with maximum emission wavelengths at 300 nm, 400 nm, 600 nm, and 770 nm under excitation at 240 nm. These unique optical properties are expected to be utilized for detecting polarity of system and deformation. Moreover, according to the results of cell imaging and flow cytometry, TBO molecular were easily internalized into Hela cells and distributed in the cytoplasm with strong red fluorescence. Therefore, this research inspires more insight into development of NIR luminogens for biomedical imaging.
Collapse
Affiliation(s)
- Yunpeng Qi
- School of Chemistry and Chemical Engineering, University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, PR China.
| | - Wei Liu
- School of Chemistry and Chemical Engineering, University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, PR China
| | - Tao Du
- School of Chemistry and Chemical Engineering, University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, PR China
| | - Junlong Wang
- School of Chemistry and Chemical Engineering, University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, PR China
| | - Songlin Jiao
- School of Chemistry and Chemical Engineering, University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, PR China
| |
Collapse
|
2
|
Sheng A, Zhang H, Li Q, Chen S, Wang Q. Application of Intelligent Response Fluorescent Probe in Breast Cancer. Molecules 2024; 29:4294. [PMID: 39339288 PMCID: PMC11434508 DOI: 10.3390/molecules29184294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
As one of the leading cancers threatening women's lives and health, breast cancer is challenging to treat and often irreversible in advanced cases, highlighting the critical importance of early detection and intervention. In recent years, fluorescent probe technology, a revolutionary in vivo imaging tool, has gained attention in medical research for its ability to improve tumor visualization significantly. This review focuses on recent advances in intelligent, responsive fluorescent probes, particularly in the field of breast cancer, which are divided into five categories, near-infrared responsive, fluorescein-labeled, pH-responsive, redox-dependent, and enzyme-triggered fluorescent probes, each of which has a different value for application based on its unique biological response mechanism. In addition, this review also covers the strategy of combining fluorescent probes with various anti-tumor drugs, aiming to reveal the possibility of synergistic effects between the two in breast cancer treatment and provide a solid theoretical platform for the clinical translation of fluorescent probe technology, which is expected to promote the expansion of cancer treatment technology.
Collapse
Affiliation(s)
- Anqi Sheng
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130013, China
- Technology Innovation Institute of Jilin Province, Changchun 130012, China
| | - Hao Zhang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130013, China
| | - Qing Li
- Technology Innovation Institute of Jilin Province, Changchun 130012, China
| | - Shu Chen
- Technology Innovation Institute of Jilin Province, Changchun 130012, China
| | - Qingshuang Wang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130013, China
| |
Collapse
|
3
|
Solidoro R, Centonze A, Miciaccia M, Baldelli OM, Armenise D, Ferorelli S, Perrone MG, Scilimati A. Fluorescent imaging probes for in vivo ovarian cancer targeted detection and surgery. Med Res Rev 2024; 44:1800-1866. [PMID: 38367227 DOI: 10.1002/med.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Ovarian cancer is the most lethal gynecological cancer, with a survival rate of approximately 40% at five years from the diagno. The first-line treatment consists of cytoreductive surgery combined with chemotherapy (platinum- and taxane-based drugs). To date, the main prognostic factor is related to the complete surgical resection of tumor lesions, including occult micrometastases. The presence of minimal residual diseases not detected by visual inspection and palpation during surgery significantly increases the risk of disease relapse. Intraoperative fluorescence imaging systems have the potential to improve surgical outcomes. Fluorescent tracers administered to the patient may support surgeons for better real-time visualization of tumor lesions during cytoreductive procedures. In the last decade, consistent with the discovery of an increasing number of ovarian cancer-specific targets, a wide range of fluorescent agents were identified to be employed for intraoperatively detecting ovarian cancer. Here, we present a collection of fluorescent probes designed and developed for fluorescence-guided ovarian cancer surgery. Original articles published between 2011 and November 2022 focusing on fluorescent probes, currently under preclinical and clinical investigation, were searched in PubMed. The keywords used were targeted detection, ovarian cancer, fluorescent probe, near-infrared fluorescence, fluorescence-guided surgery, and intraoperative imaging. All identified papers were English-language full-text papers, and probes were classified based on the location of the biological target: intracellular, membrane, and extracellular.
Collapse
Affiliation(s)
- Roberta Solidoro
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Antonella Centonze
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Olga Maria Baldelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Domenico Armenise
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | | | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| |
Collapse
|
4
|
Gong S, Zhang J, Zheng X, Li G, Xing C, Li P, Yuan J. Recent design strategies and applications of organic fluorescent probes for food freshness detection. Food Res Int 2023; 174:113641. [PMID: 37986540 DOI: 10.1016/j.foodres.2023.113641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Food spoilage poses a significant risk to human health, making the assessment of food freshness essential for ensuring food safety and quality. In recent years, there has been rapid progress in the development of fast detection technologies for food freshness. Among them, organic fluorescent probes have garnered significant attention in the field of food safety and sensing due to their easy functionalization, high sensitivity, and user-friendly nature. To comprehensively examine the latest advancements in organic fluorescent probes for food freshness detection, this review summarized their applications within the past five years. Initially, the fundamental detection principles of organic fluorescent probes are outlined. Subsequently, the recent research progress in utilizing organic fluorescent probes to detect various chemical indicators of freshness are discussed. Finally, the challenges and future directions for organic fluorescent probes in food freshness detection are elaborated upon. While, organic fluorescent probes have demonstrated their effectiveness in evaluating food freshness and possess great potential for practical applications, further research is still needed to enable their widespread commercial utilization. With continued advancements in synthesis and functionalization techniques, organic fluorescent probes will contribute to enhancing the efficiency of food safety detection.
Collapse
Affiliation(s)
- Shiyu Gong
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jingyi Zhang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xin Zheng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guanglei Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Changrui Xing
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Peng Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jian Yuan
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
5
|
Feng B, Chu F, Bi A, Huang X, Fang Y, Liu M, Chen F, Li Y, Zeng W. Fidelity-oriented fluorescence imaging probes for beta-galactosidase: From accurate diagnosis to precise treatment. Biotechnol Adv 2023; 68:108244. [PMID: 37652143 DOI: 10.1016/j.biotechadv.2023.108244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Beta-galactosidase (β-gal), a typical glycosidase catalyzing the hydrolysis of glycosidic bonds, is regarded as a vital biomarker for cell senescence and cancer occurrence. Given the advantages of high spatiotemporal resolution, high sensitivity, non-invasiveness, and being free of ionizing radiations, fluorescent imaging technology provides an excellent choice for in vivo imaging of β-gal. In this review, we detail the representative biotech advances of fluorescence imaging probes for β-gal bearing diverse fidelity-oriented improvements to elucidate their future potential in preclinical research and clinical application. Next, we propose the comprehensive design strategies of imaging probes for β-gal with respect of high fidelity. Considering the systematic implementation approaches, a range of high-fidelity imaging-guided theragnostic are adopted for the individual β-gal-associated biological scenarios. Finally, current challenges and future trends are proposed to promote the next development of imaging agents for individual and specific application scenarios.
Collapse
Affiliation(s)
- Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China; Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410078, China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Meihui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Yanbing Li
- Department of Clinical Laboratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China.
| |
Collapse
|
6
|
Xu D, Ge J, An Y, Bai S, Wang Z, Wu S, Dai Q, Lu Z, Liu G. Molecular Engineering of NIR-II/IIb Emitting AIEgen for Multimodal Imaging-Guided Photo-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300859. [PMID: 37066745 DOI: 10.1002/smll.202300859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Indexed: 06/19/2023]
Abstract
In view of the great challenges related to the complexity and heterogeneity of tumors, efficient combination therapy is an ideal strategy for eliminating primary tumors and inhibiting distant tumors. A novel aggregation-induced emission (AIE) phototherapeutic agent called T-TBBTD is developed, which features a donor-acceptor-donor (D-A-D) structure, enhanced twisted molecule conformation, and prolonged second near-infrared window (NIR-II) emission. The multimodal imaging function of the molecule has significance for its treatment time window and excellent photothermal/photodynamic performance for multimode therapy. The precise molecular structure and versatility provide prospects for molecular therapy for anti-tumor applications. Fluorescence imaging in the NIR-II window offers advantages with enhanced spatial resolution, temporal resolution, and penetration depth. The prepared AIE@R837 NPs also have controllable performance for antitumor photo-immunotherapy. Following local photo-irradiation, AIE@R837 NPs generate abundant heat, and 1 O2 directly kills tumor cells, induces immunogenic cell death (ICD) as a photo-therapeutic effect, and releases R837, which enhances the synergistic effect of antigen presentation and contributes to the long-lasting protective antitumor immunity. A bilateral 4T1 tumor model revealed that this photo-immunotherapy can eliminate primary tumors. More importantly, it has a significant inhibitory effect on distant tumor growth. Therefore, this method can provide a new strategy for tumor therapy.
Collapse
Affiliation(s)
- Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianlin Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ziying Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Shuaiying Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhixiang Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
7
|
Chiti LE, Park B, d'Orchymont F, Holland JP, Nolff MC. Impact of Surgical Lights on the Performance of Fluorescence-Guided Surgery Systems: A Pilot Study. Animals (Basel) 2023; 13:2363. [PMID: 37508142 PMCID: PMC10376740 DOI: 10.3390/ani13142363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Fluorescence-guided surgery can aid in the intraoperative visualization of target tissues, with promising applications in human and veterinary surgical oncology. The aim of this study was to evaluate the performances of two fluoresce camera systems, IC-FlowTM and VisionsenseTM VS3 Iridum, for the detection of two non-targeted (ICG and IRDye-800) and two targeted fluorophores (AngiostampTM and FAP-Cyan) under different room light conditions, including ambient light, new generation LED, and halogen artificial light sources, which are commonly used in operating theaters. Six dilutions of the fluorophores were imaged in phantom kits using the two camera systems. The limit of detection (LOD) and mean signal-to-background ratio (mSBR) were determined. The highest values of mSBR and a lower LOD were obtained in dark conditions for both systems. Under room lights, the capabilities decreased, but the mSBR remained greater than 3 (=clearly detectable signal). LOD and mSBR worsened under surgical lights for both camera systems, with a greater impact from halogen bulbs on VisionsenseTM VS3 Iridium and of the LED lights on IC-Flow due to a contribution of these lights in the near-infrared spectrum. When considering implementing FGS into the clinical routine, surgeons should cautiously evaluate the spectral contribution of the lights in the operating theater.
Collapse
Affiliation(s)
- Lavinia E Chiti
- Klinik für Kleintierchirurgie, Vetsuisse-Fakultät, University of Zurich, Wintherturerstrasse 260, CH-8057 Zurich, Switzerland
| | - Brian Park
- Klinik für Kleintierchirurgie, Vetsuisse-Fakultät, University of Zurich, Wintherturerstrasse 260, CH-8057 Zurich, Switzerland
| | - Faustine d'Orchymont
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mirja C Nolff
- Klinik für Kleintierchirurgie, Vetsuisse-Fakultät, University of Zurich, Wintherturerstrasse 260, CH-8057 Zurich, Switzerland
| |
Collapse
|
8
|
An imidazole-derived polarity sensitive probe for lipid droplet target and in vivo tumor imaging. Talanta 2023; 252:123903. [DOI: 10.1016/j.talanta.2022.123903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022]
|
9
|
Chiti LE, Husi B, Park B, Beer P, D'Orchymont F, Holland JP, Nolff MC. Performance of two clinical fluorescence imaging systems with different targeted and non-targeted near-infrared fluorophores: a cadaveric explorative study. Front Vet Sci 2023; 10:1091842. [PMID: 37138917 PMCID: PMC10149874 DOI: 10.3389/fvets.2023.1091842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Near-infrared (NIR) fluorescence-guided surgery is increasingly utilized in humans and pets. As clinical imaging systems are optimized for Indocyanine green (ICG) detection, the usage of targeted dyes necessitates the validation of these systems for each dye. We investigated the impact of skin pigmentation and tissue overlay on the sensitivity of two NIR cameras (IC-FlowTM, VisionsenseTM VS3 Iridum) for the detection of non-targeted (ICG, IRDye800) and targeted (AngiostampTM, FAP-Cyan) NIR fluorophores in an ex vivo big animal model. Methods We quantitatively measured the limit of detection (LOD) and signal-to-background ratio (SBR) and implemented a semi-quantitative visual score to account for subjective interpretation of images by the surgeon. Results VisionsenseTM VS3 Iridum outperformed IC-FlowTM in terms of LOD and SBR for the detection of all dyes except FAP-Cyan. Median SBR was negatively affected by skin pigmentation and tissue overlay with both camera systems. Level of agreement between quantitative and semi-quantitative visual score and interobserver agreement were better with VisionsenseTM VS3 Iridum. Conclusion The overlay of different tissue types and skin pigmentation may negatively affect the ability of the two tested camera systems to identify nanomolar concentrations of targeted-fluorescent dyes and should be considered when planning surgical applications.
Collapse
Affiliation(s)
- Lavinia E. Chiti
- Klinik für Kleintierchirurgie, Vetsuisse-Fakultät, University of Zurich, Zurich, Switzerland
- *Correspondence: Lavinia E. Chiti
| | - Benjamin Husi
- Klinik für Kleintierchirurgie, Vetsuisse-Fakultät, University of Zurich, Zurich, Switzerland
| | - Brian Park
- Klinik für Kleintierchirurgie, Vetsuisse-Fakultät, University of Zurich, Zurich, Switzerland
| | - Patricia Beer
- Klinik für Kleintierchirurgie, Vetsuisse-Fakultät, University of Zurich, Zurich, Switzerland
| | | | - Jason P. Holland
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Mirja C. Nolff
- Klinik für Kleintierchirurgie, Vetsuisse-Fakultät, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
The multifaceted roles of peptides in “always-on” near-infrared fluorescent probes for tumor imaging. Bioorg Chem 2022; 129:106182. [DOI: 10.1016/j.bioorg.2022.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/20/2022]
|
11
|
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022; 190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Malignant brain tumors, a heterogeneous group of primary and metastatic neoplasms in the central nervous system (CNS), are notorious for their highly invasive and devastating characteristics, dismal prognosis and low survival rate. Recently, near-infrared (NIR) optical imaging modalities including fluorescence imaging (FLI) and photoacoustic imaging (PAI) have displayed bright prospect in innovation of brain tumor diagnoses, due to their merits, like noninvasiveness, high spatiotemporal resolution, good sensitivity and large penetration depth. Importantly, these imaging techniques have been widely used to vividly guide diverse brain tumor therapies in a real-time manner with high accuracy and efficiency. Herein, we provide a systematic summary of the state-of-the-art NIR contrast agents (CAs) for brain tumors single-modal imaging (e.g., FLI and PAI), dual-modal imaging (e.g., FLI/PAI, FLI/magnetic resonance imaging (MRI) and PAI/MRI) and triple-modal imaging (e.g., MRI/FLI/PAI and MRI/PAI/computed tomography (CT) imaging). In addition, we update the most recent progress on the NIR optical imaging-guided therapies, like single-modal (e.g., photothermal therapy (PTT), chemotherapy, surgery, photodynamic therapy (PDT), gene therapy and gas therapy), dual-modal (e.g., PTT/chemotherapy, PTT/surgery, PTT/PDT, PDT/chemotherapy, PTT/chemodynamic therapy (CDT) and PTT/gene therapy) and triple-modal (e.g., PTT/PDT/chemotherapy, PTT/PDT/surgery, PTT/PDT/gene therapy and PTT/gene/chemotherapy). Finally, we discuss the opportunities and challenges of the CAs and nanotheranostics for future clinic translation.
Collapse
Affiliation(s)
- Li Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yue Liu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
12
|
Tang C, Wang X, Jin Y, Wang F. Recent advances in HDAC-targeted imaging probes for cancer detection. Biochim Biophys Acta Rev Cancer 2022; 1877:188788. [PMID: 36049581 DOI: 10.1016/j.bbcan.2022.188788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Histone Deacetylases (HDACs) are abnormally high expressed in various cancers and play a crucial role in regulating gene expression. While HDAC-targeted inhibitors have been rapidly developed and approved in the last twenty years, noninvasive monitoring and visualizing the expression levels of HDACs in tumor tissues might help to early diagnosis in cancer and predict the response to HDAC-targeted cancer therapy. In this review, we summarize the recent advancements in the development of HDAC-targeted probes and their applications in cancer imaging and image-guided surgery. We also discuss the design strategies, advantages and disadvantages of these probes. We hope that this review will provide guidance for the design of HDAC-targeted imaging probes and clinical applications in future.
Collapse
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| | - Xinan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
13
|
Wang H, Picchio ML, Calderón M. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1791. [PMID: 35338603 PMCID: PMC9540470 DOI: 10.1002/wnan.1791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Inspired by the development of nanomedicine and nanotechnology, more and more possibilities in cancer theranostic have been provided in the last few years. Emerging therapeutic modalities like starvation therapy, chemodynamic therapy, and tumor oxygenation have been integrated with diagnosis, giving a plethora of theranostic nanoagents. Among all of them, nanogels (NGs) show superiority benefiting from their unique attributes: high stability, high water-absorption, large specific surface area, mechanical strength, controlled responsiveness, and high encapsulation capacity. There have been a vast number of investigations supporting various NGs combining drug delivery and multiple bioimaging techniques, encompassing photothermal imaging, photoacoustic imaging, fluorescent imaging, ultrasound imaging, magnetic resonance imaging, and computed tomography. This review summarizes recent advances in functional NGs for theranostic nanomedicine and discusses the challenges and future perspectives of this fast-growing field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Huiyi Wang
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| | - Matias L Picchio
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
14
|
Abstract
The authors define molecular imaging, according to the Society of Nuclear Medicine and Molecular Imaging, as the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems. Although practiced for many years clinically in nuclear medicine, expansion to other imaging modalities began roughly 25 years ago and has accelerated since. That acceleration derives from the continual appearance of new and highly relevant animal models of human disease, increasingly sensitive imaging devices, high-throughput methods to discover and optimize affinity agents to key cellular targets, new ways to manipulate genetic material, and expanded use of cloud computing. Greater interest by scientists in allied fields, such as chemistry, biomedical engineering, and immunology, as well as increased attention by the pharmaceutical industry, have likewise contributed to the boom in activity in recent years. Whereas researchers and clinicians have applied molecular imaging to a variety of physiologic processes and disease states, here, the authors focus on oncology, arguably where it has made its greatest impact. The main purpose of imaging in oncology is early detection to enable interception if not prevention of full-blown disease, such as the appearance of metastases. Because biochemical changes occur before changes in anatomy, molecular imaging-particularly when combined with liquid biopsy for screening purposes-promises especially early localization of disease for optimum management. Here, the authors introduce the ways and indications in which molecular imaging can be undertaken, the tools used and under development, and near-term challenges and opportunities in oncology.
Collapse
Affiliation(s)
- Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Zhu J, Chu C, Li D, Zhang Y, Cheng Y, Lin H, Wang X, Liu J, Pang X, Cheng J, Liu G. Superior Fluorescent Nanoemulsion Illuminates Hepatocellular Carcinoma for Surgical Navigation. Front Bioeng Biotechnol 2022; 10:890668. [PMID: 35547157 PMCID: PMC9081524 DOI: 10.3389/fbioe.2022.890668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/08/2022] [Indexed: 01/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the fifth most common cancer worldwide, poses a severe threat to public health. Intraoperative fluorescence imaging provides a golden opportunity for surgeons to visualize tumor-involved margins, thereby implementing precise HCC resection with minimal damage to normal tissues. Here, a novel-acting contrast agent, which facilely bridges indocyanine green (ICG) and lipiodol using self-emulsifying nanotechnology, was developed for optical surgical navigation. Compared to clinically available ICG probe, our prepared nanoemulsion showed obviously red-shifted optical absorption and enhanced fluorescence intensity. Further benefiting from the shielding effect of lipiodol, the fluorescence stability and anti-photobleaching ability of nanoemulsion were highly improved, indicating a great capacity for long-lasting in vivo intraoperative imaging. Under the fluorescence guidance of nanoemulsion, the tumor tissues were clearly delineated with a signal-to-noise ratio above 5-fold, and then underwent a complete surgical resection from orthotopic HCC-bearing mice. Such superior fluorescence performances, ultrahigh tumor-to-liver contrast, as well as great bio-safety, warrants the great translational potential of nanoemulsion in precise HCC imaging and intraoperative navigation.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Chengchao Chu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Dongsheng Li
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yang Zhang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yi Cheng
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Huirong Lin
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xiaoyong Wang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Junxian Liu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xin Pang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Zhou H, Liu Y, Zhang X, Chen K, Li Y, Xu X, Xu B. A Preliminary Study of PSMA Fluorescent Probe for Targeted Fluorescence Imaging of Prostate Cancer. Molecules 2022; 27:2736. [PMID: 35566085 PMCID: PMC9099975 DOI: 10.3390/molecules27092736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose: With the increasing detection rate of early prostate cancer (PCa), the proportion of surgical treatment is increasing. Surgery is the most effective treatment for PCa. Precise targeting of tumors during surgery can reduce the incidence of positive surgical margins (PSMs) and preserve the neurovascular bundles (NVBs) as much as possible. The objective of this study was to synthesize a PSMA fluorescent probe (PSMA-Cy5) and verify the targeting specificity of the probe for prostate cancer, thereby providing a theoretical basis for the development of PSMA fluorescent probes for clinical application in the future. Methods: In this study, a novel water-soluble 3H-indocyanine-type bioluminescent dye-Cy5-labeled prostate-specific membrane antigen (PSMA) ligand (PSMA-Cy5) was synthesized by liquid phase synthesis. The PSMA ligand was developed based on the glutamine-urea-lysine (Glu-urea-Lys) structure. The new fluorescent probe was evaluated in vitro and in vivo, and its safety was evaluated. Confocal microscopy was used to observe the binding uptake of PSMA-Cy5 with PSMA (+) LNCaP cells, PSMA (-) PC3 cells and blocked LNCaP cells. In in vivo optical imaging studies, the targeting specificity of PSMA (+) 22Rv1 tumors to probe binding was validated by tail vein injection of PSMA-Cy5. The safety of the PSMA-Cy5 probe was evaluated by histopathological analysis of mouse organs by a single high-dose tail vein injection of PSMA-Cy5. Results: In vitro fluorescence cell uptake experiments showed that the binding of PSMA-Cy5 to LNCaP cells has targeting specificity. PC3 cells and blocked LNCaP cells showed almost no uptake. The results of in vivo optical imaging studies showed that the tumor-to-background ratio in the 22Rv1 group was 3.39 ± 0.47; in the 22Rv1 blocking group it was 0.78 ± 0.15, and in the PC3 group it was 0.94 ± 0.09, consistent with the in vitro results. After a high-dose injection of PSMA-Cy5, there were no abnormalities in the tissues or organs of the mice. The probe showed good safety. Conclusions: PSMA-Cy5 is a probe with good targeting specificity and low toxicity that can accurately visualize tumors in vivo. This study has an important reference value for the development of PSMA fluorescent probes. In the future, it can be applied to precise tumor imaging during radical prostatectomy to reduce the incidence of postoperative PSM.
Collapse
Affiliation(s)
- Haoxi Zhou
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Yachao Liu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Kuang Chen
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuan Li
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xiaodan Xu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Baixuan Xu
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
17
|
Wang Z, Wang J, Liu G. Bridging the preoperative gap of precision hepatectomy: Superstable homogeneous iodinated formulation technology. J Interv Med 2021; 4:8-10. [PMID: 34805940 PMCID: PMC8562227 DOI: 10.1016/j.jimed.2020.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 11/24/2022] Open
Abstract
The in-situ post-embolization fluorescence-guided hepatectomy for hepatocellular carcinoma (HCC) requires precise embolic formulation that meets both preoperative and intraoperative needs of hepatobiliary surgeons. In this Editorial, we highlight the development of Superstable Homogeneous Iodinated Formulation Technology (SHIFT) for locoregional HCC treatment. It is believed that such an intelligent solution could resolve unmet formulation needs and make a major stride to bridge the preoperative gap of precision hepatectomy.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
18
|
Li S, Cheng D, He L, Yuan L. Recent Progresses in NIR-I/II Fluorescence Imaging for Surgical Navigation. Front Bioeng Biotechnol 2021; 9:768698. [PMID: 34790654 PMCID: PMC8591038 DOI: 10.3389/fbioe.2021.768698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is still one of the main causes of morbidity and death rate around the world, although diagnostic and therapeutic technologies are used to advance human disease treatment. Currently, surgical resection of solid tumors is the most effective and a prior remedial measure to treat cancer. Although medical treatment, technology, and science have advanced significantly, it is challenging to completely treat this lethal disease. Near-infrared (NIR) fluorescence, including the first near-infrared region (NIR-I, 650-900 nm) and the second near-infrared region (NIR-II, 1,000-1,700 nm), plays an important role in image-guided cancer surgeries due to its inherent advantages, such as great tissue penetration, minimal tissue absorption and emission light scattering, and low autofluorescence. By virtue of its high precision in identifying tumor tissue margins, there are growing number of NIR fluorescence-guided surgeries for various living animal models as well as patients in clinical therapy. Herein, this review introduces the basic construction and operation principles of fluorescence molecular imaging technology, and the representative application of NIR-I/II image-guided surgery in biomedical research studies are summarized. Ultimately, we discuss the present challenges and future perspectives in the field of fluorescence imaging for surgical navigation and also put forward our opinions on how to improve the efficiency of the surgical treatment.
Collapse
Affiliation(s)
- Songjiao Li
- Cancer Research Institute, Department of Pharmacy and Pharmacology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, China
| | - Dan Cheng
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Longwei He
- Cancer Research Institute, Department of Pharmacy and Pharmacology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
19
|
Smyshliaeva LA, Varaksin MV, Fomina EI, Medvedeva MV, Svalova TS, Kozitsina AN, Demidov OP, Borovlev IV, Mensch C, Mampuys P, Maes BUW, Charushin VN, Chupakhin ON. 1,3,7-Triazapyrene-Based ortho-Carborane Fluorophores: Convenient Synthesis, Theoretical Studies, and Aggregation-Induced Emission Properties. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lidia A. Smyshliaeva
- Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russia
| | - Mikhail V. Varaksin
- Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russia
| | | | | | | | | | - Oleg P. Demidov
- North Caucasus Federal University, 1 Pushkin Str., 355009 Stavropol, Russia
| | - Ivan V. Borovlev
- North Caucasus Federal University, 1 Pushkin Str., 355009 Stavropol, Russia
| | - Carl Mensch
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, 171 Groenenborgerlaan, 2020 Antwerp, Belgium
| | - Pieter Mampuys
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, 171 Groenenborgerlaan, 2020 Antwerp, Belgium
| | - Bert U. W. Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, 171 Groenenborgerlaan, 2020 Antwerp, Belgium
| | - Valery N. Charushin
- Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russia
| | - Oleg N. Chupakhin
- Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russia
| |
Collapse
|
20
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
21
|
Cheng H, Yang X, Liu G. Superstable homogeneous iodinated formulation technology: revolutionizing transcatheter arterial chemoembolization. Sci Bull (Beijing) 2020; 65:1685-1687. [PMID: 36659234 DOI: 10.1016/j.scib.2020.06.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoming Yang
- Image-Guided Bio-Molecular Interventions Research and Division of Interventional Radiology, University of Washington, Seattle 98109, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
22
|
Fluksman A, Steinberg E, Orehov N, Shai E, Lahiani A, Katzhendler J, Marcinkiewicz C, Lazarovici P, Benny O. Integrin α 2β 1-Targeted Self-Assembled Nanocarriers for Tumor Bioimaging. ACS APPLIED BIO MATERIALS 2020; 3:6059-6070. [DOI: 10.1021/acsabm.0c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arnon Fluksman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Eliana Steinberg
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Natalie Orehov
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Ela Shai
- Department of Hematology, Coagulation Unit, Hadassah−Hebrew University Medical Center, Jerusalem 91121, Israel
| | - Adi Lahiani
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Jehoshua Katzhendler
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Cezary Marcinkiewicz
- Department of Biology, Temple University College of Science and Technology, Philadelphia, Pennsylvania 19122, United States
| | - Philip Lazarovici
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Ofra Benny
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| |
Collapse
|
23
|
Li H, Sun J, Zhu H, Wu H, Zhang H, Gu Z, Luo K. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1670. [PMID: 32949116 DOI: 10.1002/wnan.1670] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023]
Abstract
Dendritic polymers have highly branched three-dimensional architectures, the fourth type apart from linear, cross-linked, and branched one. They possess not only a large number of terminal functional units and interior cavities, but also a low viscosity with weak or no entanglement. These features endow them with great potential in various biomedicine applications, including drug delivery, gene therapy, tissue engineering, immunoassay and bioimaging. Most review articles related to bio-related applications of dendritic polymers focus on their drug or gene delivery, while very few of them are devoted to their function as cancer diagnosis agents, which are essential for cancer treatment. In this review, we will provide comprehensive insights into various dendritic polymer-based cancer diagnosis agents. Their classification and preparation are presented for readers to have a precise understanding of dendritic polymers. On account of physical/chemical properties of dendritic polymers and biological properties of cancer, we will suggest a few design strategies for constructing dendritic polymer-based diagnosis agents, such as active or passive targeting strategies, imaging reporters-incorporating strategies, and/or internal stimuli-responsive degradable/enhanced imaging strategies. Their recent applications in in vitro diagnosis of cancer cells or exosomes and in vivo diagnosis of primary and metastasis tumor sites with the aid of single/multiple imaging modalities will be discussed in great detail. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging Diagnostic Tools > in vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Haonan Li
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Sun
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California, USA
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|