1
|
Kadarwati LV, Lin IH, Huang YS, Lee YY, Chen SC, Chung CL, Chen IJ, Wang JY, Yougbaré S, Cheng TM, Kuo TR. Exploring Label-Free Imaging Techniques with Copper Sulfide Microspheres for Observing Breast Cancer Cells. ACS OMEGA 2024; 9:37882-37890. [PMID: 39281899 PMCID: PMC11391449 DOI: 10.1021/acsomega.4c04154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
A single breast cancer is a prevalent form of cancer, affecting over 2.3 million women worldwide, as reported by the World Health Organization. Recently, researchers have extensively explored the utilization of biomaterials in breast cancer theranostics. One notable biomaterial being investigated is various structures of copper sulfide (CuS). In this work, a microsphere (MS) structure composed of CuS was employed for label-free imaging of MCF-7 breast cancer cells and normal Vero cells, respectively. Various label-free imaging techniques, such as bright field, dark field, phase contrast (PC), and differential interference contrast (DIC), were employed to capture images of CuS MSs, cell, and intact CuS MSs within a cell. The study compared the outcomes of each imaging technique and determined that DIC imaging provided the highest resolution for cells incubated with CuS MSs. Furthermore, the combination of PC and DIC techniques proved to be effective for imaging breast cancer cells in conjunction with CuS MSs. This research underscores the potential of CuS MSs for label-free cell detection and emphasizes the significance of selecting appropriate imaging techniques to attain high-quality images in the field of cell observation.
Collapse
Affiliation(s)
- Lutvi Vitria Kadarwati
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - I-Hsin Lin
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Shan Huang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Yang Lee
- Southport Corporation, New Taipei City 22175, Taiwan
| | | | | | - I-Jan Chen
- Southport Corporation, New Taipei City 22175, Taiwan
| | - Jia-Yeh Wang
- Southport Corporation, New Taipei City 22175, Taiwan
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de La Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso
| | - Tsai-Mu Cheng
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Stanford Byers Center for Biodesign, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Wang Q, Zhang Y, Yang B. Development status of novel spectral imaging techniques and application to traditional Chinese medicine. J Pharm Anal 2023; 13:1269-1280. [PMID: 38174122 PMCID: PMC10759257 DOI: 10.1016/j.jpha.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 01/05/2024] Open
Abstract
Traditional Chinese medicine (TCM) is a treasure of the Chinese nation, providing effective solutions to current medical requisites. Various spectral techniques are undergoing continuous development and provide new and reliable means for evaluating the efficacy and quality of TCM. Because spectral techniques are noninvasive, convenient, and sensitive, they have been widely applied to in vitro and in vivo TCM evaluation systems. In this paper, previous achievements and current progress in the research on spectral technologies (including fluorescence spectroscopy, photoacoustic imaging, infrared thermal imaging, laser-induced breakdown spectroscopy, hyperspectral imaging, and surface enhanced Raman spectroscopy) are discussed. The advantages and disadvantages of each technology are also presented. Moreover, the future applications of spectral imaging to identify the origins, components, and pesticide residues of TCM in vitro are elucidated. Subsequently, the evaluation of the efficacy of TCM in vivo is presented. Identifying future applications of spectral imaging is anticipated to promote medical research as well as scientific and technological explorations.
Collapse
Affiliation(s)
- Qi Wang
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yong Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150086, China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, 150081, China
- Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
3
|
Zhang HJ, Zhou HR, Pan W, Wang C, Liu YY, Yang L, Tsz-Ki Tsui M, Miao AJ. Accumulation of nanoplastics in human cells as visualized and quantified by hyperspectral imaging with enhanced dark-field microscopy. ENVIRONMENT INTERNATIONAL 2023; 179:108134. [PMID: 37595538 DOI: 10.1016/j.envint.2023.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Nanoplastic (NP) pollution is receiving increasing attention regarding its potential effects on human health. The identification and quantification of intracellular NPs are prerequisites for an accurate risk assessment, but appropriate methods are lacking. Here we present a label-free technique to simultaneously visualize and quantify the bioaccumulation of NPs based on hyperspectral imaging with enhanced dark-field microscopy (HSI-DFM). Using polystyrene NPs (PS NPs) as representative particles, the construction of a hyperspectral library was optimized first with more accurate NP identification achieved when the library was based on intracellular instead of extracellular PS NPs. The PS NPs used herein were labeled with a green fluorescent dye so that the accuracy of HSI-DFM in identifying and quantifying intracellular NPs can be evaluated, by comparing the results with those obtained by fluorescence microscopy and flow cytometry. The validation of HSI-DFM for use in determinations of the NP concentration at the single-cell level allows analyses of the accumulation kinetics of NPs in single living cells. The utility of HSI-DFM in different cell lines and with NPs differing in their chemical composition was also demonstrated. HSI-DFM therefore provides a new approach to studies of the accumulation and distribution of NPs in human cells.
Collapse
Affiliation(s)
- Hong-Jie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Hao-Ran Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China; Bureau of Hydrology, Changjiang Water Resources Commission, Ministry of Water Resources of People's Republic of China, Wuhan 430010, China
| | - Wei Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Chuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Yue-Yue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Martin Tsz-Ki Tsui
- School of Life Sciences, Earth and Environmental Sciences Programme, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
4
|
Zhao Y, Kusama S, Furutani Y, Huang WH, Luo CW, Fuji T. High-speed scanless entire bandwidth mid-infrared chemical imaging. Nat Commun 2023; 14:3929. [PMID: 37402722 DOI: 10.1038/s41467-023-39628-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Mid-infrared spectroscopy probes molecular vibrations to identify chemical species and functional groups. Therefore, mid-infrared hyperspectral imaging is one of the most powerful and promising candidates for chemical imaging using optical methods. Yet high-speed and entire bandwidth mid-infrared hyperspectral imaging has not been realized. Here we report a mid-infrared hyperspectral chemical imaging technique that uses chirped pulse upconversion of sub-cycle pulses at the image plane. This technique offers a lateral resolution of 15 µm, and the field of view is adjustable between 800 µm × 600 µm to 12 mm × 9 mm. The hyperspectral imaging produces a 640 × 480 pixel image in 8 s, which covers a spectral range of 640-3015 cm-1, comprising 1069 wavelength points and offering a wavenumber resolution of 2.6-3.7 cm-1. For discrete frequency mid-infrared imaging, the measurement speed reaches a frame rate of 5 kHz, the repetition rate of the laser. As a demonstration, we effectively identified and mapped different components in a microfluidic device, plant cell, and mouse embryo section. The great capacity and latent force of this technique in chemical imaging promise to be applied to many fields such as chemical analysis, biology, and medicine.
Collapse
Affiliation(s)
- Yue Zhao
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, 468-8511, Japan.
- Graduate School of Engineering College of Design and Manufacturing Technology, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585, Japan.
| | - Shota Kusama
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, 468-8511, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-Ku, Nagoya, 466-8555, Japan
- Optobiotechnology Research Center, Nagoya Institute of Technology, Showa-Ku, Nagoya, 466-8555, Japan
| | - Wei-Hong Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chih-Wei Luo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Takao Fuji
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, 468-8511, Japan.
| |
Collapse
|
5
|
Yunus G, Singh R, Raveendran S, Kuddus M. Electrochemical biosensors in healthcare services: bibliometric analysis and recent developments. PeerJ 2023; 11:e15566. [PMID: 37397018 PMCID: PMC10312160 DOI: 10.7717/peerj.15566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Biosensors are nowadays being used in various fields including disease diagnosis and clinical analysis. The ability to detect biomolecules associated with disease is vital not only for accurate diagnosis of disease but also for drug discovery and development. Among the different types of biosensors, electrochemical biosensor is most widely used in clinical and health care services especially in multiplex assays due to its high susceptibility, low cost and small in size. This article includes comprehensive review of biosensors in medical field with special emphasis on electrochemical biosensors for multiplex assays and in healthcare services. Also, the publications on electrochemical biosensors are increasing rapidly; therefore, it is crucial to be aware of any latest developments or trends in this field of research. We used bibliometric analyses to summarize the progress of this research area. The study includes global publication counts on electrochemical biosensors for healthcare along with various bibliometric data analyses by VOSviewer software. The study also recognizes the top authors and journals in the related area, and determines proposal for monitoring research.
Collapse
Affiliation(s)
- Ghazala Yunus
- Department of Basic Science, University of Hail, Hail, Saudi Arabia
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, Uttar Pradesh, India
| | - Sindhu Raveendran
- Department of Food Technology, TKM Institute of Technology, Kollam, Kerala, India
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Ha’il, Hail, Saudi Arabia
| |
Collapse
|
6
|
Tang Y, Song S, Gui S, Chao W, Cheng C, Qin R. Active and Low-Cost Hyperspectral Imaging for the Spectral Analysis of a Low-Light Environment. SENSORS (BASEL, SWITZERLAND) 2023; 23:1437. [PMID: 36772477 PMCID: PMC9920345 DOI: 10.3390/s23031437] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Hyperspectral imaging is capable of capturing information beyond conventional RGB cameras; therefore, several applications of this have been found, such as material identification and spectral analysis. However, similar to many camera systems, most of the existing hyperspectral cameras are still passive imaging systems. Such systems require an external light source to illuminate the objects, to capture the spectral intensity. As a result, the collected images highly depend on the environment lighting and the imaging system cannot function in a dark or low-light environment. This work develops a prototype system for active hyperspectral imaging, which actively emits diverse single-wavelength light rays at a specific frequency when imaging. This concept has several advantages: first, using the controlled lighting, the magnitude of the individual bands is more standardized to extract reflectance information; second, the system is capable of focusing on the desired spectral range by adjusting the number and type of LEDs; third, an active system could be mechanically easier to manufacture, since it does not require complex band filters as used in passive systems. Three lab experiments show that such a design is feasible and could yield informative hyperspectral images in low light or dark environments: (1) spectral analysis: this system's hyperspectral images improve food ripening and stone type discernibility over RGB images; (2) interpretability: this system's hyperspectral images improve machine learning accuracy. Therefore, it can potentially benefit the academic and industry segments, such as geochemistry, earth science, subsurface energy, and mining.
Collapse
Affiliation(s)
- Yang Tang
- Geospatial Data Analytics Laboratory, The Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shuang Song
- Geospatial Data Analytics Laboratory, The Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shengxi Gui
- Geospatial Data Analytics Laboratory, The Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Weilun Chao
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Chinmin Cheng
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Rongjun Qin
- Geospatial Data Analytics Laboratory, The Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Alafeef M, Pan D. Diagnostic Approaches For COVID-19: Lessons Learned and the Path Forward. ACS NANO 2022; 16:11545-11576. [PMID: 35921264 PMCID: PMC9364978 DOI: 10.1021/acsnano.2c01697] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/12/2022] [Indexed: 05/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a transmitted respiratory disease caused by the infection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although humankind has experienced several outbreaks of infectious diseases, the COVID-19 pandemic has the highest rate of infection and has had high levels of social and economic repercussions. The current COVID-19 pandemic has highlighted the limitations of existing virological tests, which have failed to be adopted at a rate to properly slow the rapid spread of SARS-CoV-2. Pandemic preparedness has developed as a focus of many governments around the world in the event of a future outbreak. Despite the largely widespread availability of vaccines, the importance of testing has not diminished to monitor the evolution of the virus and the resulting stages of the pandemic. Therefore, developing diagnostic technology that serves as a line of defense has become imperative. In particular, that test should satisfy three criteria to be widely adopted: simplicity, economic feasibility, and accessibility. At the heart of it all, it must enable early diagnosis in the course of infection to reduce spread. However, diagnostic manufacturers need guidance on the optimal characteristics of a virological test to ensure pandemic preparedness and to aid in the effective treatment of viral infections. Nanomaterials are a decisive element in developing COVID-19 diagnostic kits as well as a key contributor to enhance the performance of existing tests. Our objective is to develop a profile of the criteria that should be available in a platform as the target product. In this work, virus detection tests were evaluated from the perspective of the COVID-19 pandemic, and then we generalized the requirements to develop a target product profile for a platform for virus detection.
Collapse
Affiliation(s)
- Maha Alafeef
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
- Biomedical Engineering Department, Jordan
University of Science and Technology, Irbid 22110,
Jordan
| | - Dipanjan Pan
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
| |
Collapse
|
8
|
García-Melero J, López-Mitjavila JJ, García-Celma MJ, Rodriguez-Abreu C, Grijalvo S. Rosmarinic Acid-Loaded Polymeric Nanoparticles Prepared by Low-Energy Nano-Emulsion Templating: Formulation, Biophysical Characterization, and In Vitro Studies. MATERIALS 2022; 15:ma15134572. [PMID: 35806696 PMCID: PMC9267406 DOI: 10.3390/ma15134572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
Rosmarinic acid (RA), a caffeic acid derivative, has been loaded in polymeric nanoparticles made up of poly(lactic-co-glycolic acid) (PLGA) through a nano-emulsion templating process using the phase-inversion composition (PIC) method at room temperature. The obtained RA-loaded nanoparticles (NPs) were colloidally stable exhibiting average diameters in the range of 70–100 nm. RA was entrapped within the PLGA polymeric network with high encapsulation efficiencies and nanoparticles were able to release RA in a rate-controlled manner. A first-order equation model fitted our experimental data and confirmed the prevalence of diffusion mechanisms. Protein corona formation on the surface of NPs was assessed upon incubation with serum proteins. Protein adsorption induced an increase in the hydrodynamic diameter and a slight shift towards more negative surface charges of the NPs. The radical scavenging activity of RA-loaded NPs was also studied using the DPPH·assay and showed a dose–response relationship between the NPs concentration and DPPH inhibition. Finally, RA-loaded NPs did not affect the cellular proliferation of the human neuroblastoma SH-SY5Y cell line and promoted efficient cellular uptake. These results are promising for expanding the use of O/W nano-emulsions in biomedical applications.
Collapse
Affiliation(s)
- Jessica García-Melero
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
| | - Joan-Josep López-Mitjavila
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
| | - María José García-Celma
- Department of Pharmacy, Pharmaceutical Technology, and Physical-Chemistry, R+D Associated Unit to CSIC Pharmaceutical Nanotechnology, IN2UB, University of Barcelona, Joan XXIII 27-31, E-08028 Barcelona, Spain;
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Carlos Rodriguez-Abreu
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: (C.R.-A.); (S.G.)
| | - Santiago Grijalvo
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: (C.R.-A.); (S.G.)
| |
Collapse
|
9
|
Hériché M, Arnould C, Wipf D, Courty PE. Imaging plant tissues: advances and promising clearing practices. TRENDS IN PLANT SCIENCE 2022; 27:601-615. [PMID: 35339361 DOI: 10.1016/j.tplants.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The study of the organ structure of plants and understanding their physiological complexity requires 3D imaging with subcellular resolution. Most plant organs are highly opaque to light, and their study under optical sectioning microscopes is therefore difficult. In animals, many protocols have been developed to make organs transparent to light using clearing protocols (CPs). By contrast, clearing plant tissues is challenging because of the presence of fibers and pigments. We describe progress in the development of plant CPs over the past 20 years through a modified taxonomy of CPs based on their physical and optical parameters that affect tissue properties. We also discuss successful approaches that combine CPs with new microscopy methods and their future applications in plant science research.
Collapse
Affiliation(s)
- Mathilde Hériché
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Université Bourgogne Franche-Comté, Dijon, France
| | - Christine Arnould
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Université Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Université Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Université Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
10
|
Friedrich RP, Kappes M, Cicha I, Tietze R, Braun C, Schneider-Stock R, Nagy R, Alexiou C, Janko C. Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles. Int J Nanomedicine 2022; 17:2139-2163. [PMID: 35599750 PMCID: PMC9115408 DOI: 10.2147/ijn.s355007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/27/2022] [Indexed: 12/01/2022] Open
Abstract
Label-free detection of nanoparticles is essential for a thorough evaluation of their cellular effects. In particular, nanoparticles intended for medical applications must be carefully analyzed in terms of their interactions with cells, tissues, and organs. Since the labeling causes a strong change in the physicochemical properties and thus also alters the interactions of the particles with the surrounding tissue, the use of fluorescently labeled particles is inadequate to characterize the effects of unlabeled particles. Further, labeling may affect cellular uptake and biocompatibility of nanoparticles. Thus, label-free techniques have been recently developed and implemented to ensure a reliable characterization of nanoparticles. This review provides an overview of frequently used label-free visualization techniques and highlights recent studies on the development and usage of microscopy systems based on reflectance, darkfield, differential interference contrast, optical coherence, photothermal, holographic, photoacoustic, total internal reflection, surface plasmon resonance, Rayleigh light scattering, hyperspectral and reflectance structured illumination imaging. Using these imaging modalities, there is a strong enhancement in the reliability of experiments concerning cellular uptake and biocompatibility of nanoparticles, which is crucial for preclinical evaluations and future medical applications.
Collapse
Affiliation(s)
- Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Mona Kappes
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Iwona Cicha
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christian Braun
- Institute of Legal Medicine, Ludwig-Maximilians-Universität München, München, 80336, Germany
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Roland Nagy
- Department Elektrotechnik-Elektronik-Informationstechnik (EEI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Correspondence: Christina Janko, Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Glückstrasse 10a, Erlangen, 91054, Germany, Tel +49 9131 85 33142, Fax +49 9131 85 34808, Email
| |
Collapse
|
11
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
12
|
Liu Z, Cai C, Wu W, Cai X, Qi ZM. Spatially Resolved Spectroscopic Characterization of Nanostructured Films by Hyperspectral Dark-Field Microscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43186-43196. [PMID: 34463092 DOI: 10.1021/acsami.1c07840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanostructured films have been widely used for preparing various advanced thin-film devices because of their unique electrical, optical, and plasmonic characteristics associated with the nano-size effect. In situ, nondestructive and high-resolution characterization of nanostructured films is essential for optimizing thin-film device performance. In this work, such thin-film characterization was achieved using a hyperspectral dark-field microscope (HSDFM) that was constructed in our laboratory by integrating a hyperspectral imager with a commercial microscope. The HSDFM allows for high-resolution (Δλ = 0.4 nm) spectral analysis of nanostructured samples in the visible-near-infrared region with a spatial resolution as high as 45 nm × 45 nm (corresponding to a single pixel). Four typical samples were investigated with the HSDFM, including the gold nanoplate array, the self-assembled gold nanoparticle (GNP) sub-monolayer, the sol-gel nanoporous titanium dioxide (TiO2) film, and the layer-stacked molybdenum disulfide (MoS2) sheet. According to the experimental results, the plasmon resonance scattering bands for nanoplate clusters are identical with those for individual gold nanoplates, indicating that the gap between adjacent nanoplates is too large to allow plasmonic coupling between them. A different case was observed with the self-assembled GNP sub-monolayer in which the aggregated clusters with the internal plasmonic interaction show a considerable red-shift of the plasmon resonance band relative to the isolated single GNP. In addition, the protein adsorption on the nanoporous TiO2 film was observed to be inhomogeneous on the microscale, and the stepped boundaries of the MoS2 sheet were clearly observed. A quasi-linear dependence of the single-pixel light intensity on the step height was obtained by combining the HSDFM with atomic force microscopy. The minimum thickness detectable by the present HSDFM is 6.5 nm, corresponding to the 10-layer MoS2 film. The work demonstrated the outstanding applicability of the HSDFM for nanostructured film characterization.
Collapse
Affiliation(s)
- Ziwei Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wengang Wu
- National Key Laboratory of Micro/Nano Fabrication Technology, Department of Micro & Nanoelectronics, Peking University, Beijing 100871, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Mei Qi
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Oladipo AO, Unuofin JO, Iku SI, Nkambule TT, Mamba BB, Msagati TA. Nuclear targeted multimodal 3D-bimetallic Au@Pd nanodendrites promote doxorubicin efficiency in breast cancer therapy. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Oladipo AO, Unuofin JO, Iku SII, Nkambule TTI, Mamba BB, Msagati TAM. Bimetallic Au@Pd nanodendrite system incorporating multimodal intracellular imaging for improved doxorubicin antitumor efficiency. Int J Pharm 2021; 602:120661. [PMID: 33933638 DOI: 10.1016/j.ijpharm.2021.120661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
The sufficient accumulation of drugs is crucial for efficient treatment in a complex tumor microenvironment. Drug delivery systems (DDS) with high surface area and selective cytotoxicity present a novel approach to mitigate insufficient drug loading for improved therapeutic response. Herein, a doxorubicin-conjugated bimetallic gold-core palladium-shell nanocarrier with multiple dense arrays of branches (Au@PdNDs.PEG/DOX) was characterized and its efficacy against breast adenocarcinoma (MCF-7) and lung adenocarcinoma (A549) cells were evaluated. Enhanced darkfield and hyperspectral imaging (HSI) microscopy were used to study the intracellular uptake and accumulation of the DOX-loaded nanodendrites A fascinating data from a 3D-CytoViva fluorescence imaging technique provided information about the dynamics of localization and distribution of the nanocarrier. In vitro cytotoxicity assays indicated that Au@PdNDs.PEG/DOX inhibited the proliferative effects of MCF-7 cells at equivalent IC50 dosage compared to DOX alone. The nanocarrier triggered higher induction of apoptosis proved by a time-dependent phosphatidylserine V release, cell cycle arrest, and flow cytometry analysis. Moreover, the cell cycle phase proportion increase suggests that the enhanced apoptotic effect induced by Au@PdNDs.PEG/DOX was via a G2/M phase arrest. Thus, this study demonstrated the potential of dendritic nanoparticles to improve DOX therapeutic efficiency and plasmonic-mediated intracellular imaging as a suitable theranostic platform for deployment in nanomedicine.
Collapse
Affiliation(s)
- Adewale O Oladipo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa.
| | - Jeremiah O Unuofin
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa
| | - Solange I I Iku
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa.
| |
Collapse
|