1
|
Sun X, Tian T, Lian Y, Cui Z. Current Advances in Viral Nanoparticles for Biomedicine. ACS NANO 2024; 18:33827-33863. [PMID: 39648920 DOI: 10.1021/acsnano.4c13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Viral nanoparticles (VNPs) have emerged as crucial tools in the field of biomedicine. Leveraging their biological and physicochemical properties, VNPs exhibit significant advantages in the prevention, diagnosis, and treatment of human diseases. Through techniques such as chemical bioconjugation, infusion, genetic engineering, and encapsulation, these VNPs have been endowed with multifunctional capabilities, including the display of functional peptides or proteins, encapsulation of therapeutic drugs or inorganic particles, integration with imaging agents, and conjugation with bioactive molecules. This review provides an in-depth analysis of VNPs in biomedicine, elucidating their diverse types, distinctive features, production methods, and complex design principles behind multifunctional VNPs. It highlights recent innovative research and various applications, covering their roles in imaging, drug delivery, therapeutics, gene delivery, vaccines, immunotherapy, and tissue regeneration. Additionally, the review provides an assessment of their safety and biocompatibility and discusses challenges and future opportunities in the field, underscoring the vast potential and evolving nature of VNP research.
Collapse
Affiliation(s)
- Xianxun Sun
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Tao Tian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yindong Lian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
2
|
Lozano-Sanchez E, Daròs JA, Merwaiss F. Production of Plant Virus-Derived Hybrid Nanoparticles Decorated with Different Nanobodies. ACS NANO 2024; 18:33890-33906. [PMID: 39622501 DOI: 10.1021/acsnano.4c07066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Viral nanoparticles (VNPs) are self-assembled nanometric complexes whose size and shape are similar to those of the virus from which they are derived. VNPs are arousing great attention due to potential biotechnological applications in fields like nanomedicine and nanotechnology because they allow the presentation of polypeptides of choice linked to the virus structural proteins. Starting from tobacco etch virus (TEV), a plant plus-strand RNA virus that belongs to the genus Potyvirus (family Potyviridae), here we describe the development of recombinant hybrid VNPs in Nicotiana benthamiana plants able of exposing simultaneously different proteins on their surface. This system is based on the synergic coinfection of TEV and potato virus X (PVX; Potexvirus), in which PVX provides a second TEV CP in trans allowing a mixed assembly. We first generated genetically modified hybrid VNPs simultaneously displaying green and red fluorescent proteins on their surface. A population of decorated and nondecorated CPs resulting from the insertion of the picornavirus F2A ribosomal escape peptide was required for viral particle assembly. Correct assembly of the recombinant mosaic VNPs presenting the exogenous peptides was successfully observed by immunoelectron microscopy. We next achieved the production of hybrid VNPs expressing a nanobody against SARS-CoV-2 and a fluorescent reporter protein, whose functionality was demonstrated by ELISA and dot-blot assay. Finally, we engineered the production of hybrid multivalent VNPs carrying two different nanobodies against distinct epitopes of the same SARS-CoV-2 antigenic protein, emulating a nanobody cocktail. These plant-produced recombinant mosaic VNPs, which are filamentous and flexuous in shape, presenting two different fused proteins on the surface, represent a molecular tool with several potential applications in biotechnology.
Collapse
Affiliation(s)
- Enrique Lozano-Sanchez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), 46022 Valencia, Spain
| | - Fernando Merwaiss
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
3
|
Wendlandt T, Britz B, Kleinow T, Hipp K, Eber FJ, Wege C. Getting Hold of the Tobamovirus Particle-Why and How? Purification Routes over Time and a New Customizable Approach. Viruses 2024; 16:884. [PMID: 38932176 PMCID: PMC11209083 DOI: 10.3390/v16060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
This article develops a multi-perspective view on motivations and methods for tobamovirus purification through the ages and presents a novel, efficient, easy-to-use approach that can be well-adapted to different species of native and functionalized virions. We survey the various driving forces prompting researchers to enrich tobamoviruses, from the search for the causative agents of mosaic diseases in plants to their increasing recognition as versatile nanocarriers in biomedical and engineering applications. The best practices and rarely applied options for the serial processing steps required for successful isolation of tobamoviruses are then reviewed. Adaptations for distinct particle species, pitfalls, and 'forgotten' or underrepresented technologies are considered as well. The article is topped off with our own development of a method for virion preparation, rooted in historical protocols. It combines selective re-solubilization of polyethylene glycol (PEG) virion raw precipitates with density step gradient centrifugation in biocompatible iodixanol formulations, yielding ready-to-use particle suspensions. This newly established protocol and some considerations for perhaps worthwhile further developments could serve as putative stepping stones towards preparation procedures appropriate for routine practical uses of these multivalent soft-matter nanorods.
Collapse
Affiliation(s)
- Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Beate Britz
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Tatjana Kleinow
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany;
| | - Fabian J. Eber
- Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany;
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| |
Collapse
|
4
|
Grübel J, Wendlandt T, Urban D, Jauch CO, Wege C, Tovar GEM, Southan A. Soft Sub-Structured Multi-Material Biosensor Hydrogels with Enzymes Retained by Plant Viral Scaffolds. Macromol Biosci 2024; 24:e2300311. [PMID: 37922890 DOI: 10.1002/mabi.202300311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/13/2023] [Indexed: 11/07/2023]
Abstract
An all-soft multi-material combination consisting of a hydrogel based on poly(ethylene glycol) (PEG) coated with spatially defined spots of gelatin methacryloyl (GM) containing selectively addressable viral nanorods is presented, and its basic application as a qualitative biosensor with reporter enzymes displayed on the tobacco mosaic virus (TMV) bioscaffolds within the GM is demonstrated. Biologically inert PEG supports are equipped with GM spots serving as biological matrix for enzymes clustered on TMV particles preventing diffusion out of the gel. For this multi-material combination, i) the PEG-based hydrogel surface is modified to achieve a clear boundary between coated and non-coated regions by introducing either isothiouronium or thiol groups. ii) Cross-linking of the GM spots is studied to achieve anchoring to the hydrogel surface. iii) The enzymes horseradish peroxidase or penicillinase (Pen) are conjugated to TMV and integrated into the GM matrix. In contrast to free enzymes, enzyme-decorated TMVs persist in GM spots and show sustained enzyme activity as evidenced by specific color reaction after 7 days of washing, and for Pen after 22 months after dry storage. Therefore, the integration of enzyme-coupled TMV into hydrogel matrices is a promising and versatile approach to obtaining reusable and analyte-specific sensor components.
Collapse
Affiliation(s)
- Jana Grübel
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Daniela Urban
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Corinna O Jauch
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| |
Collapse
|
5
|
Wendlandt T, Koch C, Britz B, Liedek A, Schmidt N, Werner S, Gleba Y, Vahidpour F, Welden M, Poghossian A, Schöning MJ, Eber FJ, Jeske H, Wege C. Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System. Viruses 2023; 15:1951. [PMID: 37766357 PMCID: PMC10536799 DOI: 10.3390/v15091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.
Collapse
Affiliation(s)
- Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| | - Claudia Koch
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| | - Beate Britz
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| | - Anke Liedek
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| | - Nora Schmidt
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| | - Stefan Werner
- Nambawan Biotech GmbH/Now at Icon Genetics GmbH, Weinbergweg 22, 06120 Halle, Germany;
| | - Yuri Gleba
- Nomad Bioscience GmbH, Weinbergweg 22, 06120 Halle, Germany;
| | - Farnoosh Vahidpour
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; (F.V.); (M.W.); (M.J.S.)
| | - Melanie Welden
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; (F.V.); (M.W.); (M.J.S.)
| | | | - Michael J. Schöning
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; (F.V.); (M.W.); (M.J.S.)
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Fabian J. Eber
- Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, 77652 Offenburg, Germany;
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (C.K.); (N.S.)
| |
Collapse
|
6
|
Knödler M, Opdensteinen P, Sankaranarayanan RA, Morgenroth A, Buhl EM, Mottaghy FM, Buyel JF. Simple plant-based production and purification of the assembled human ferritin heavy chain as a nanocarrier for tumor-targeted drug delivery and bioimaging in cancer therapy. Biotechnol Bioeng 2023; 120:1038-1054. [PMID: 36539373 DOI: 10.1002/bit.28312] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Nanoparticles are used as carriers for the delivery of drugs and imaging agents. Proteins are safer than synthetic nanocarriers due to their greater biocompatibility and the absence of toxic degradation products. In this context, ferritin has the additional benefit of inherently targeting the membrane receptor transferrin 1, which is overexpressed by most cancer cells. Furthermore, this self-assembling multimeric protein can be loaded with more than 2000 iron atoms, as well as drugs, contrast agents, and other cargos. However, recombinant ferritin currently costs ~3.5 million € g-1 , presumably because the limited number of producers cannot meet demand, making it generally unaffordable as a nanocarrier. Because plants can produce proteins at very-large-scale, we developed a simple, proof-of-concept process for the production of the human ferritin heavy chain by transient expression in Nicotiana benthamiana. We optimized the protein yields by screening different compartments and 5'-untranslated regions in PCPs, and selected the best-performing construct for production in differentiated plants. We then established a rapid and scalable purification protocol by combining pH and heat treatment before extraction, followed by an ultrafiltration/diafiltration size-based separation process. The optimized process achieved ferritin levels of ~40 mg kg-1 fresh biomass although depth filtration limited product recovery to ~7%. The purity of the recombinant product was >90% at costs ~3% of the current sales price. Our method therefore allows the production of affordable ferritin heavy chain as a carrier for therapeutic and diagnostic agents, which is suitable for further stability and functionality testing in vitro and in vivo.
Collapse
Affiliation(s)
- Matthias Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Patrick Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute for Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Johannes Felix Buyel
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| |
Collapse
|
7
|
Geiger F, Wendlandt T, Berking T, Spatz JP, Wege C. Convenient site-selective protein coupling from bacterial raw lysates to coenzyme A-modified tobacco mosaic virus (TMV) by Bacillus subtilis Sfp phosphopantetheinyl transferase. Virology 2023; 578:61-70. [PMID: 36473278 DOI: 10.1016/j.virol.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
A facile enzyme-mediated strategy enables site-specific covalent one-step coupling of genetically tagged luciferase molecules to coenzyme A-modified tobacco mosaic virus (TMV-CoA) both in solution and on solid supports. Bacillus subtilis surfactin phosphopantetheinyl transferase Sfp produced in E. coli mediated the conjugation of firefly luciferase N-terminally extended by eleven amino acids forming a 'ybbR tag' as Sfp-selective substrate, which even worked in bacterial raw lysates. The enzymes displayed on the protein coat of the TMV nanocarriers exhibited high activity. As TMV has proven a beneficial high surface-area adapter template stabilizing enzymes in different biosensing layouts in recent years, the use of TMV-CoA for fishing ybbR-tagged proteins from complex mixtures might become an advantageous concept for the versatile equipment of miniaturized devices with biologically active proteins. It comes along with new opportunities for immobilizing multiple functionalities on TMV adapter coatings, as desired, e.g., in handheld systems for point-of-care detection.
Collapse
Affiliation(s)
- Fania Geiger
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120, Heidelberg, Germany; Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Tim Wendlandt
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Tim Berking
- University of Stuttgart, Institute of Organic Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120, Heidelberg, Germany; Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany; Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christina Wege
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, Pfaffenwaldring 57, 70569, Stuttgart, Germany.
| |
Collapse
|
8
|
Plug-and-Display Photo-Switchable Systems on Plant Virus Nanoparticles. BIOTECH (BASEL (SWITZERLAND)) 2022; 11:biotech11040049. [PMID: 36278561 PMCID: PMC9589989 DOI: 10.3390/biotech11040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Light can be used to regulate protein interactions with a high degree of spatial and temporal precision. Photo-switchable systems therefore allow the development of controllable protein complexes that can influence various cellular and molecular processes. Here, we describe a plant virus-based nanoparticle shuttle for the distribution of proteins that can be released when exposed to light. Potato virus X (PVX) is often used as a presentation system for heterologous proteins and epitopes, and has ideal properties for biomedical applications such as good tissue penetration and the ability to form hydrogels that present signaling molecules and promote cell adhesion. In this study, we describe three different systems attached to the surface of PVX particles: LOVTRAP, BphP1/QPAS1 and Dronpa145N. We demonstrated the functionality of all three photo-switchable protein complexes in vitro and the successful loading and unloading of PVX particles. The new systems provide the basis for promising applications in the biomedical and biomaterial sciences.
Collapse
|
9
|
Jia Y, Shao JH, Zhang KW, Zou ML, Teng YY, Tian F, Chen MN, Chen WW, Yuan ZD, Wu JJ, Yuan FL. Emerging Effects of Resveratrol on Wound Healing: A Comprehensive Review. Molecules 2022; 27:molecules27196736. [PMID: 36235270 PMCID: PMC9570564 DOI: 10.3390/molecules27196736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
Resveratrol (RSV) is a natural extract that has been extensively studied for its significant anti-inflammatory and antioxidant effects, which are closely associated with a variety of injurious diseases and even cosmetic medicine. In this review, we have researched and summarized the role of resveratrol and its different forms of action in wound healing, exploring its role and mechanisms in promoting wound healing through different modes of action such as hydrogels, fibrous scaffolds and parallel ratio medical devices with their anti-inflammatory, antioxidant, antibacterial and anti-ageing properties and functions in various cells that may play a role in wound healing. This will provide a direction for further understanding of the mechanism of action of resveratrol in wound healing for future research.
Collapse
Affiliation(s)
- Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Jia-Hao Shao
- Wuxi Clinical Medicine Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Ying-Ying Teng
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Fan Tian
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Meng-Nan Chen
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Wei-Wei Chen
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Zheng-Dong Yuan
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Jun-Jie Wu
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Feng-Lai Yuan
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
- Correspondence: ; Tel./Fax: +86-510-82603332
| |
Collapse
|
10
|
González-Gamboa I, Velázquez-Lam E, Lobo-Zegers MJ, Frías-Sánchez AI, Tavares-Negrete JA, Monroy-Borrego A, Menchaca-Arrendondo JL, Williams L, Lunello P, Ponz F, Alvarez MM, Trujillo-de Santiago G. Gelatin-methacryloyl hydrogels containing turnip mosaic virus for fabrication of nanostructured materials for tissue engineering. Front Bioeng Biotechnol 2022; 10:907601. [PMID: 36118588 PMCID: PMC9480610 DOI: 10.3389/fbioe.2022.907601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Current tissue engineering techniques frequently rely on hydrogels to support cell growth, as these materials strongly mimic the extracellular matrix. However, hydrogels often need ad hoc customization to generate specific tissue constructs. One popular strategy for hydrogel functionalization is to add nanoparticles to them. Here, we present a plant viral nanoparticle the turnip mosaic virus (TuMV), as a promising additive for gelatin methacryloyl (GelMA) hydrogels for the engineering of mammalian tissues. TuMV is a flexuous, elongated, tubular protein nanoparticle (700–750 nm long and 12–15 nm wide) and is incapable of infecting mammalian cells. These flexuous nanoparticles spontaneously form entangled nanomeshes in aqueous environments, and we hypothesized that this nanomesh structure could serve as a nanoscaffold for cells. Human fibroblasts loaded into GelMA-TuMV hydrogels exhibited similar metabolic activity to that of cells loaded in pristine GelMA hydrogels. However, cells cultured in GelMA-TuMV formed clusters and assumed an elongated morphology in contrast to the homogeneous and confluent cultures seen on GelMA surfaces, suggesting that the nanoscaffold material per se did not favor cell adhesion. We also covalently conjugated TuMV particles with epidermal growth factor (EGF) using a straightforward reaction scheme based on a Staudinger reaction. BJ cells cultured on the functionalized scaffolds increased their confluency by approximately 30% compared to growth with unconjugated EGF. We also provide examples of the use of GelMA-TuMV hydrogels in different biofabrication scenarios, include casting, flow-based-manufacture of filaments, and bioprinting. We envision TuMV as a versatile nanobiomaterial that can be useful for tissue engineering.
Collapse
Affiliation(s)
- Ivonne González-Gamboa
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Edith Velázquez-Lam
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA/CSIC), Madrid, Spain
| | - Matías José Lobo-Zegers
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Ada Itzel Frías-Sánchez
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Jorge Alfonso Tavares-Negrete
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Andrea Monroy-Borrego
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Jorge Luis Menchaca-Arrendondo
- Centro de Investigación en Ciencias Físico Matemáticas (CICFIM), Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | | | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA/CSIC), Madrid, Spain
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
- *Correspondence: Mario Moisés Alvarez, ; Grissel Trujillo-de Santiago,
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
- *Correspondence: Mario Moisés Alvarez, ; Grissel Trujillo-de Santiago,
| |
Collapse
|
11
|
Dickmeis C, Commandeur U. Advanced Fusion Strategies for the Production of Functionalized Potato Virus X Virions. Methods Mol Biol 2022; 2480:215-239. [PMID: 35616866 DOI: 10.1007/978-1-0716-2241-4_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant virions are ideal for nanotechnology applications because they are structurally diverse and can self-assemble naturally, allowing for large-scale production in plants by molecular farming. Potato virus X (PVX) is particularly amenable due to the unique properties of its filamentous and flexible capsid, but efficient strategies are required to adapt the surface properties of PVX, such as the attachment of proteins and peptides. This chapter describes the selection and utilization of 2A ribosomal skip sequences, allowing the presentation of heterologous proteins and peptides as N-terminal fusions to the PVX coat protein at different densities. Another strategy for the rapid modification of PVX capsids is the plug-and-display module of the SpyTag/SpyCatcher system. The SpyTag can be presented on the PVX surface, allowing for the attachment of any protein fused to the SpyCatcher sequence.
Collapse
Affiliation(s)
- Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Frías-Sánchez AI, Quevedo-Moreno DA, Samandari M, Tavares-Negrete JA, Sánchez-Rodríguez VH, González-Gamboa I, Ponz F, Alvarez MM, Trujillo-de Santiago G. Biofabrication of muscle fibers enhanced with plant viral nanoparticles using surface chaotic flows. Biofabrication 2021; 13. [PMID: 33418551 DOI: 10.1088/1758-5090/abd9d7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Multiple human tissues exhibit fibrous nature. Therefore, the fabrication of hydrogel filaments for tissue engineering is a trending topic. Current tissue models are made of materials that often require further enhancement for appropriate cell attachment, proliferation and differentiation. Here we present a simple strategy, based on the use of surface chaotic flows amenable to mathematical modeling, to fabricate continuous, long and thin filaments of gelatin methacryloyl (GelMA). The fabrication of these filaments is achieved by chaotic advection in a finely controlled and miniaturized version of the journal bearing system. A drop of GelMA pregel is injected on a higher-density viscous fluid (glycerin) and a chaotic flow is applied through an iterative process. The millimeter-scale hydrogel drop is exponentially deformed and elongated to generate a meter-scale fiber, which was then polymerized under UV-light exposure. Computational fluid dynamic (CFD) simulations are conducted to determine the characteristics of the flow and design the experimental conditions for fabrication of the fibers. GelMA fibers were effectively used as scaffolds for C2C12 myoblast cells. Experimental results demonstrate an accurate accordance with CFD simulations for the predicted length of the fibers. Plant-based viral nanoparticles (i.e.Turnip mosaic virus; TuMV) were then integrated to the hydrogel fibers as a secondary nano-scaffold for cells for enhanced muscle tissue engineering. The addition of TuMV significantly increased the metabolic activity of the cell-seeded fibers (p* < 0.05), strengthened cell attachment throughout the first 28 d, improved cell alignment, and promoted the generation of structures that resemble natural mammal muscle tissues. Chaotic two-dimensional-printing is proven to be a viable method for the fabrication of hydrogel fibers. The combined use of thin and long GelMA hydrogel fibers enhanced with flexuous virions offers a promising alternative for scaffolding of muscle cells and show potential to be used as cost-effective models for muscle tissue engineering purposes.
Collapse
Affiliation(s)
- Ada I Frías-Sánchez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México.,Mechatronics and Electrical Engineering Department, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Diego A Quevedo-Moreno
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México.,Mechatronics and Electrical Engineering Department, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06030, United States of America
| | - Jorge A Tavares-Negrete
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México.,Mechatronics and Electrical Engineering Department, Tecnológico de Monterrey, 64849 Monterrey, México
| | | | - Ivonne González-Gamboa
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México.,Bioengineering Department, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Mario M Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México.,Bioengineering Department, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México.,Mechatronics and Electrical Engineering Department, Tecnológico de Monterrey, 64849 Monterrey, México
| |
Collapse
|