1
|
Hou Y, Kong F, Tang Z, Zhang R, Li D, Ge J, Yu Z, Wahab A, Zhang Y, Iqbal MZ, Kong X. Nitroxide radical conjugated ovalbumin theranostic nanosystem for enhanced dendritic cell-based immunotherapy and T 1 magnetic resonance imaging. J Control Release 2024; 373:547-563. [PMID: 39059501 DOI: 10.1016/j.jconrel.2024.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Melanoma, known for its aggressive metastatic nature, presents a formidable challenge in cancer treatment, where conventional therapies often fall short. This study introduces a pioneering approach utilizing metal-free nanosystem as tumor vaccines, spotlighting their potential in revolutionizing melanoma treatment. This work employed organic nitroxides, specifically 4-carboxy-TEMPO, in combination with chitosan (CS), to create a novel nanocomposite material - the CS-TEMPO-OVA nanovaccines. This composition not only improves biocompatibility and extends blood circulation time of TEMPO but also marks a significant departure from traditional gadolinium-based contrast agents in MRI technology, addressing safety concerns. CS-TEMPO-OVA nanovaccines demonstrate excellent biocompatibility at both the cellular and organoid level. They effectively stimulate bone marrow-derived dendritic cells (BMDCs), which in turn promote the maturation and activation of T cells. This ultimately leads to a strong production of essential cytokines. These nanovaccines serve a dual purpose as both therapeutic and preventive. By inducing an immune response, activating cytotoxic T cells, and promoting macrophage M1 polarization, they effectively inhibit melanoma growth and enhance survival in mouse models. When combined with αPD-1, the CS-TEMPO-OVA nanovaccines significantly bolster the infiltration of cytotoxic T lymphocytes (CTLs) within tumors, sparking a powerful systemic antitumor response that effectively curbs tumor metastasis. The ability of these nanovaccines to control both primary (subcutaneous) and metastatic B16-OVA tumors highlights their remarkable efficacy. Furthermore, the CS-TEMPO-OVA nanovaccine can be administered in vivo via both intravenous and intramuscular routes, both of which effectively enhance the T1 contrast of magnetic resonance imaging in tumor tissue. This study offers invaluable insights into the integrated application of these nanovaccines in both clinical diagnostics and treatment, marking a significant stride in cancer research and patient care.
Collapse
Affiliation(s)
- Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Fei Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Zhe Tang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, PR China
| | - Rui Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Dan Li
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jian Ge
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou 310018, Zhejiang, PR China
| | - Zhangsen Yu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province 312000, PR China
| | - Abdul Wahab
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yunyang Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Ozaki N, Sakamoto N, Horikami D, Tachibana Y, Nagata N, Kobayashi K, Arai YT, Sone M, Hirayama K, Murata T. 15-Hydroxyeicosatrienoic acid induces nasal congestion by changing vascular functions in mice. Allergol Int 2024; 73:464-472. [PMID: 38286715 DOI: 10.1016/j.alit.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Nasal congestion in allergic rhinitis (AR) is caused by vascular hyperpermeability and vascular relaxation of the nasal mucosa. We previously detected high levels of a lipoxygenation metabolite of dihomogammalinolenic acid, 15-hydroxy-8Z,11Z,13E-eicosatrienoic acid (15-HETrE) in the nasal lavage fluid of AR model mice. Here, we investigated the effects of 15-HETrE on vascular functions associated with nasal congestion. METHODS We measured 15-HETrE levels in the nasal lavage fluid of ovalbumin-induced AR model mice and nasal discharge of patients with AR. We also assessed nasal congestion and vascular relaxation in mice. Vascular contractility was investigated using isolated mouse aortas. RESULTS Five ovalbumin challenges increased 15-HETrE levels in AR model mice. 15-HETrE was also detected in patients who exhibiting AR-related symptoms. Intranasal administration of 15-HETrE elicited dyspnea-related behavior and decreased the nasal cavity volume in mice. Miles assay and whole-mount immunostaining revealed that 15-HETrE administration caused vascular hyperpermeability and relaxation of the nasal mucosa. Intravital imaging demonstrated that 15-HETrE relaxed the ear vessels that were precontracted via thromboxane receptor stimulation. Moreover, 15-HETrE dilated the isolated mouse aortas, and this effect was attenuated by K+ channel inhibitors and prostaglandin D2 (DP) and prostacyclin (IP) receptor antagonists. Additionally, vasodilatory effects of 15-HETrE were accompanied by an increase in intracellular cAMP levels. CONCLUSIONS Our results indicate that 15-HETrE, whose levels are elevated in the nasal cavity upon AR, can be a novel lipid mediator that exacerbates nasal congestion. Moreover, it can stimulate DP and IP receptors and downstream K+ channels to dilate the nasal mucosal vasculature.
Collapse
Affiliation(s)
- Noriko Ozaki
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoaki Sakamoto
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Horikami
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuri Tachibana
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nanae Nagata
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Kobayashi
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Kazuhiro Hirayama
- Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahisa Murata
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Weng J, Yang J, Wang W, Wen J, Fang M, Zheng G, Xie J, Zheng X, Feng L, Yan Q. Application of microneedles combined with dendritic cell-targeted nanovaccine delivery system in percutaneous immunotherapy for triple-negative breast cancer. NANOTECHNOLOGY 2023; 34:475101. [PMID: 37478829 DOI: 10.1088/1361-6528/ace97b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/21/2023] [Indexed: 07/23/2023]
Abstract
This work aims at developing a strategy to activate the antigen-presenting cells to enhance the effect of immunotherapy in triple-negative breast cancer (TNBC) through the dissolving microneedle patch (DMNP). In present study, mannosylated chitosan (MCS) nanoparticles (NPs) were designed to target dendritic cells (DCs), and the immunotherapy effect was enhanced by the adjuvant Bacillus Calmette-Guerin polysaccharide (BCG-PSN), achieving the purpose of transdermal immunotherapy for TNBC. Vaccination studies with mice demonstrated that MCS NPs effectively induce DCs maturation in the tumor-draining lymph nodes to stimulate strong immune responses in TNBC. Overall, chitosan-based DMNPs with complex adjuvant constituted a new potent transdermal vaccine delivery platform capable of exploiting more DCs in the skin for effective immunization.
Collapse
Affiliation(s)
- Jiaqi Weng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jing Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Weiwei Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jiaoli Wen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Min Fang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Gensuo Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jing Xie
- Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Xi Zheng
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lili Feng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Qinying Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
4
|
Peng S, Yan Y, Ngai T, Li J, Ogino K, Xia Y. Development and Optimal Immune Strategy of an Alum-Stabilized Pickering emulsion for Cancer Vaccines. Vaccines (Basel) 2023; 11:1169. [PMID: 37514985 PMCID: PMC10383433 DOI: 10.3390/vaccines11071169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Therapeutic cancer vaccines are considered as one of the most cost-effective ways to eliminate cancer cells. Although many efforts have been invested into improving their therapeutic effect, transient maturation and activations of dendritic cells (DCs) cause weak responses and hamper the subsequent T cell responses. Here, we report on an alum-stabilized Pickering emulsion (APE) that can load a high number of antigens and continue to release them for extensive maturation and activations of antigen-presenting cells (APCs). After two vaccinations, APE/OVA induced both IFN-γ-secreting T cells (Th1) and IL-4-secreting T cells (Th2), generating effector CD8+ T cells against tumor growth. Additionally, although they boosted the cellular immune responses in the spleen, we found that multiple administrations of cancer vaccines (three or four times in 3-day intervals) may increase the immunosuppression with more PD-1+ CD8+ and LAG-3+ CD8+ T cells within the tumor environment, leading to the diminished overall anti-tumor efficacy. Combining this with anti-PD-1 antibodies evidently hindered the suppressive effect of multiple vaccine administrations, leading to the amplified tumor regression in B16-OVA-bearing mice.
Collapse
Affiliation(s)
- Sha Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Tokyo 184-8588, Japan
| | - Yumeng Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Tokyo 184-8588, Japan
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Dobrovolskaia MA. Lessons learned from immunological characterization of nanomaterials at the Nanotechnology Characterization Laboratory. Front Immunol 2022; 13:984252. [PMID: 36304452 PMCID: PMC9592561 DOI: 10.3389/fimmu.2022.984252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology carriers have become common in pharmaceutical products because of their benefits to drug delivery, including reduced toxicities and improved efficacy of active pharmaceutical ingredients due to targeted delivery, prolonged circulation time, and controlled payload release. While available examples of reduced drug toxicity through formulation using a nanocarrier are encouraging, current data also demonstrate that nanoparticles may change a drug’s biodistribution and alter its toxicity profile. Moreover, individual components of nanoparticles and excipients commonly used in formulations are often not immunologically inert and contribute to the overall immune responses to nanotechnology-formulated products. Said immune responses may be beneficial or adverse depending on the indication, dose, dose regimen, and route of administration. Therefore, comprehensive toxicology studies are of paramount importance even when previously known drugs, components, and excipients are used in nanoformulations. Recent data also suggest that, despite decades of research directed at hiding nanocarriers from the immune recognition, the immune system’s inherent property of clearing particulate materials can be leveraged to improve the therapeutic efficacy of drugs formulated using nanoparticles. Herein, I review current knowledge about nanoparticles’ interaction with the immune system and how these interactions contribute to nanotechnology-formulated drug products’ safety and efficacy through the lens of over a decade of nanoparticle characterization at the Nanotechnology Characterization Laboratory.
Collapse
|