1
|
Zhao Z, Satarifard V, Lipowsky R, Dimova R. Membrane nanotubes transform into double-membrane sheets at condensate droplets. Proc Natl Acad Sci U S A 2024; 121:e2321579121. [PMID: 38900795 PMCID: PMC11214096 DOI: 10.1073/pnas.2321579121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Cellular membranes exhibit a multitude of highly curved morphologies such as buds, nanotubes, cisterna-like sheets defining the outlines of organelles. Here, we mimic cell compartmentation using an aqueous two-phase system of dextran and poly(ethylene glycol) encapsulated in giant vesicles. Upon osmotic deflation, the vesicle membrane forms nanotubes, which undergo surprising morphological transformations at the liquid-liquid interfaces inside the vesicles. At these interfaces, the nanotubes transform into cisterna-like double-membrane sheets (DMS) connected to the mother vesicle via short membrane necks. Using super-resolution (stimulated emission depletion) microscopy and theoretical considerations, we construct a morphology diagram predicting the tube-to-sheet transformation, which is driven by a decrease in the free energy. Nanotube knots can prohibit the tube-to-sheet transformation by blocking water influx into the tubes. Because both nanotubes and DMSs are frequently formed by cellular membranes, understanding the formation and transformation between these membrane morphologies provides insight into the origin and evolution of cellular organelles.
Collapse
Affiliation(s)
- Ziliang Zhao
- Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
- Leibniz Institute of Photonic Technology e.V., Jena07745, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Jena07743, Germany
| | - Vahid Satarifard
- Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
- Yale Institute for Network Science, Yale University, New Haven, CT06520
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| |
Collapse
|
2
|
Janssen M, Liese S, Al-Izzi SC, Carlson A. Stability of a biomembrane tube covered with proteins. Phys Rev E 2024; 109:044403. [PMID: 38755805 DOI: 10.1103/physreve.109.044403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/29/2024] [Indexed: 05/18/2024]
Abstract
Membrane tubes are essential structural features in cells that facilitate biomaterial transport and inter- and intracellular signaling. The shape of these tubes can be regulated by the proteins that surround and adhere to them. We study the stability of a biomembrane tube coated with proteins by combining linear stability analysis, out-of-equilibrium hydrodynamic calculations, and numerical solutions of a Helfrich-like membrane model. Our analysis demonstrates that both long- and short-wavelength perturbations can destabilize the tubes. Numerical simulations confirm the derived linear stability criteria and yield the nonlinearly perturbed vesicle shapes. Our study highlights the interplay between membrane shape and protein density, where the shape instability concurs with a redistribution of proteins into a banded pattern.
Collapse
Affiliation(s)
- Mathijs Janssen
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0315 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
- Norwegian University of Life Sciences, Faculty of Science and Technology, 1433 Ås, Norway
| | - Susanne Liese
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Sami C Al-Izzi
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0315 Oslo, Norway
| | - Andreas Carlson
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
3
|
Budinger D, Baker V, Heneka MT. Tunneling Nanotubes in the Brain. Results Probl Cell Differ 2024; 73:203-227. [PMID: 39242381 DOI: 10.1007/978-3-031-62036-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Tunneling nanotubes (TNTs) have emerged as intriguing structures facilitating intercellular communications across diverse cell types, which are integral to several biological processes, as well as participating in various disease progression. This review provides an in-depth analysis of TNTs, elucidating their structural characteristics and functional roles, with a particular focus on their significance within the brain environment and their implications in neurological and neurodegenerative disorders. We explore the interplay between TNTs and neurological diseases, offering potential mechanistic insights into disease progression, while also highlighting their potential as viable therapeutic targets. Additionally, we address the significant challenges associated with studying TNTs, from technical limitations to their investigation in complex biological systems. By addressing some of these challenges, this review aims to pave the way for further exploration into TNTs, establishing them as a central focus in advancing our understanding of neurodegenerative disorders.
Collapse
Affiliation(s)
- Dimitri Budinger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Vivian Baker
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
4
|
Ceran Y, Ergüder H, Ladner K, Korenfeld S, Deniz K, Padmanabhan S, Wong P, Baday M, Pengo T, Lou E, Patel CB. TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images. Cancers (Basel) 2022; 14:4958. [PMID: 36230881 PMCID: PMC9562025 DOI: 10.3390/cancers14194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes and mediating intercellular communication. TNTs are manually identified and counted by a trained investigator; however, this process is time-intensive. We therefore sought to develop an automated approach for quantitative analysis of TNTs. METHODS We used a convolutional neural network (U-Net) deep learning model to segment phase contrast microscopy images of both cancer and non-cancer cells. Our method was composed of preprocessing and model development. We developed a new preprocessing method to label TNTs on a pixel-wise basis. Two sequential models were employed to detect TNTs. First, we identified the regions of images with TNTs by implementing a classification algorithm. Second, we fed parts of the image classified as TNT-containing into a modified U-Net model to estimate TNTs on a pixel-wise basis. RESULTS The algorithm detected 49.9% of human expert-identified TNTs, counted TNTs, and calculated the number of TNTs per cell, or TNT-to-cell ratio (TCR); it detected TNTs that were not originally detected by the experts. The model had 0.41 precision, 0.26 recall, and 0.32 f-1 score on a test dataset. The predicted and true TCRs were not significantly different across the training and test datasets (p = 0.78). CONCLUSIONS Our automated approach labeled and detected TNTs and cells imaged in culture, resulting in comparable TCRs to those determined by human experts. Future studies will aim to improve on the accuracy, precision, and recall of the algorithm.
Collapse
Affiliation(s)
- Yasin Ceran
- School of Information Systems and Technology, San José State University, San José, CA 95192, USA
- Department of Management Information Systems, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hamza Ergüder
- Department of Electronics and Communication Engineering, Yildiz Technical University, 34349 Istanbul, Turkey
| | - Katherine Ladner
- Department of Medicine Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sophie Korenfeld
- Department of Medicine Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Karina Deniz
- Department of Medicine Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sanyukta Padmanabhan
- Department of Medicine Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Phillip Wong
- Department of Medicine Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Murat Baday
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Precision Health and Integrated Diagnostics Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Pengo
- Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emil Lou
- Department of Medicine Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Chirag B. Patel
- Department of Neuro-Oncology, MD Anderson Cancer Center, The University of Texas System, Houston, TX 77030, USA
- Neuroscience Graduate Program, MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Cancer Biology Graduate Program, MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
5
|
Marchais M, Gilbert I, Bastien A, Macaulay A, Robert C. Mammalian cumulus-oocyte complex communication: a dialog through long and short distance messaging. J Assist Reprod Genet 2022; 39:1011-1025. [PMID: 35499777 PMCID: PMC9107539 DOI: 10.1007/s10815-022-02438-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Communications are crucial to ovarian follicle development and to ovulation, and while both folliculogenesis and oogenesis are distinct processes, they share highly interdependent signaling pathways. Signals from distant organs such as the brain must be processed and compartments within the follicle have to be synchronized. The hypothalamic–pituitary–gonadal (HPG) axis relies on long-distance signalling analogous to wireless communication by which data is disseminated in the environment and cells equipped with the appropriate receptors receive and interpret the messages. In contrast, direct cell-to-cell transfer of molecules is a very targeted, short distance messaging system. Numerous signalling pathways have been identified and proven to be essential for the production of a developmentally competent egg. The development of the cumulus-oocyte complex relies largely on short distance communications or direct transfer type via extensions of corona radiata cells through the zona pellucida. The type of information transmitted through these transzonal projections is still largely uncharacterized. This review provides an overview of current understanding of the mechanisms by which the gamete receives and transmits information within the follicle. Moreover, it highlights the fact that in addition to the well-known systemic long-distance based communications from the HPG axis, these mechanisms acting more locally should also be considered as important targets for controlling/optimizing oocyte quality.
Collapse
Affiliation(s)
- Mathilde Marchais
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Alexandre Bastien
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Angus Macaulay
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Chen J, Cao J. Astrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires F-actin dependent tunneling nanotubes. Sci Rep 2021; 11:16798. [PMID: 34408233 PMCID: PMC8373867 DOI: 10.1038/s41598-021-96332-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Tunneling nanotube (TNT), a dynamic cell–cell contact, is dependent on actin polymerization. TNTs are efficient in transporting ions, proteins and organelles intercellularly, which are important mechanisms in physiological and pathological processes. Reported studies on the existence and function of TNTs among neural cells focus on cultured cell for the convenience in detecting TNTs’ ultrastructure. In this study, the adeno-associated virus (AAV-GFAP-EGFP-p2A-cre) was injected into the cerebral cortex of knock-in mice ROSA26 GNZ. GFAP promoter initiated the expression of enhanced green fluorescent protein (EGFP) in infected astrocytes. At 10 days post injection (10 DPI), EGFP transferred from astrocytes in layer I–III to neurons in layer V. The dissemination of EGFP was not through endocytosis or exosome. Applying microscopes, we found that the intercellular transportation of EGFP through contact connection was F-actin dependent. Therefore, we concluded that EGFP transported from astrocytes to neurons in cortex via F-actin dependent TNTs. This study first proved that proteins transported intercellularly via TNTs in brain.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China. .,Key Lab of Organ Development and Regeneration of Zhejiang Province, Hangzhou, Zhejiang, China. .,Key Lab of GEM Resource and Model Research of Hangzhou, Hangzhou, Zhejiang, China.
| | - Junyan Cao
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Lab of Organ Development and Regeneration of Zhejiang Province, Hangzhou, Zhejiang, China.,Key Lab of GEM Resource and Model Research of Hangzhou, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Liese S, Carlson A. Membrane shape remodeling by protein crowding. Biophys J 2021; 120:2482-2489. [PMID: 34023296 DOI: 10.1016/j.bpj.2021.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
The steric repulsion between proteins on biological membranes is one of the most generic mechanisms that cause membrane shape changes. We present a minimal model in which a spontaneous curvature is induced by asymmetric protein crowding. Our results show that the interplay between the induced spontaneous curvature and the membrane tension determines the energy-minimizing shapes, which describes the wide range of experimentally observed membrane shapes, i.e., flat membranes, spherical vesicles, elongated tubular protrusions, and pearling structures. Moreover, the model gives precise predictions on how membrane shape changes by protein crowding can be tuned by controlling the protein size, the density of proteins, and the size of the crowded domain.
Collapse
Affiliation(s)
- Susanne Liese
- Department of Mathematics, Mechanics Division, University of Oslo, Oslo, Norway.
| | - Andreas Carlson
- Department of Mathematics, Mechanics Division, University of Oslo, Oslo, Norway.
| |
Collapse
|
8
|
Cordero Cervantes D, Zurzolo C. Peering into tunneling nanotubes-The path forward. EMBO J 2021; 40:e105789. [PMID: 33646572 PMCID: PMC8047439 DOI: 10.15252/embj.2020105789] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
The identification of Tunneling Nanotubes (TNTs) and TNT-like structures signified a critical turning point in the field of cell-cell communication. With hypothesized roles in development and disease progression, TNTs' ability to transport biological cargo between distant cells has elevated these structures to a unique and privileged position among other mechanisms of intercellular communication. However, the field faces numerous challenges-some of the most pressing issues being the demonstration of TNTs in vivo and understanding how they form and function. Another stumbling block is represented by the vast disparity in structures classified as TNTs. In order to address this ambiguity, we propose a clear nomenclature and provide a comprehensive overview of the existing knowledge concerning TNTs. We also discuss their structure, formation-related pathways, biological function, as well as their proposed role in disease. Furthermore, we pinpoint gaps and dichotomies found across the field and highlight unexplored research avenues. Lastly, we review the methods employed to date and suggest the application of new technologies to better understand these elusive biological structures.
Collapse
Affiliation(s)
| | - Chiara Zurzolo
- Institut PasteurMembrane Traffic and PathogenesisParisFrance
| |
Collapse
|
9
|
Wang S, Li Y, Zhao Y, Lin F, Qu J, Liu L. Investigating tunneling nanotubes in ovarian cancer based on two-photon excitation FLIM-FRET. BIOMEDICAL OPTICS EXPRESS 2021; 12:1962-1973. [PMID: 33996210 PMCID: PMC8086450 DOI: 10.1364/boe.418778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 05/13/2023]
Abstract
Precise and efficient cell-to-cell communication is critical to the growth and differentiation of organisms, the formation of various organism, the maintenance of tissue function and the coordination of their various physiological activities, especially to the growth and invasion of cancer cells. Tunneling nanotubes (TNTs) were discovered as a new method of cell-to-cell communication in many cell lines. In this paper, we investigated TNTs-like structures in ovarian cancer cells and proved their elements by fluorescent staining, which showed that TNTs are comprised of natural lipid bilayers with microtubules as the skeleton that can transmit ions and organelles between adjacent cells. We then used fluorescence resonance energy transfer (FRET) based on two-photon excitation fluorescence lifetime imaging microscopy (FLIM) (TP-FLIM-FRET) to detect material transport in TNTs. The experimental results showed that the number of TNTs have an impact on the drug treatment of cancer cells, which provided a new perspective for TNTs involvement in cancer treatment. Our results also showed that TP-FLIM-FRET would potentially become a new optical method for TNTs study.
Collapse
|
10
|
Mesarec L, Drab M, Penič S, Kralj-Iglič V, Iglič A. On the Role of Curved Membrane Nanodomains, and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding. Int J Mol Sci 2021; 22:2348. [PMID: 33652934 PMCID: PMC7956631 DOI: 10.3390/ijms22052348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/03/2023] Open
Abstract
Biological membranes are composed of isotropic and anisotropic curved nanodomains. Anisotropic membrane components, such as Bin/Amphiphysin/Rvs (BAR) superfamily protein domains, could trigger/facilitate the growth of membrane tubular protrusions, while isotropic curved nanodomains may induce undulated (necklace-like) membrane protrusions. We review the role of isotropic and anisotropic membrane nanodomains in stability of tubular and undulated membrane structures generated or stabilized by cyto- or membrane-skeleton. We also describe the theory of spontaneous self-assembly of isotropic curved membrane nanodomains and derive the critical concentration above which the spontaneous necklace-like membrane protrusion growth is favorable. We show that the actin cytoskeleton growth inside the vesicle or cell can change its equilibrium shape, induce higher degree of segregation of membrane nanodomains or even alter the average orientation angle of anisotropic nanodomains such as BAR domains. These effects may indicate whether the actin cytoskeleton role is only to stabilize membrane protrusions or to generate them by stretching the vesicle membrane. Furthermore, we demonstrate that by taking into account the in-plane orientational ordering of anisotropic membrane nanodomains, direct interactions between them and the extrinsic (deviatoric) curvature elasticity, it is possible to explain the experimentally observed stability of oblate (discocyte) shapes of red blood cells in a broad interval of cell reduced volume. Finally, we present results of numerical calculations and Monte-Carlo simulations which indicate that the active forces of membrane skeleton and cytoskeleton applied to plasma membrane may considerably influence cell shape and membrane budding.
Collapse
Affiliation(s)
- Luka Mesarec
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
| | - Mitja Drab
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
| | - Samo Penič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
| | - Veronika Kralj-Iglič
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Institute of Biosciences and Bioresources, National Research Council, 80131 Napoli, Italy
| | - Aleš Iglič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
- Institute of Biosciences and Bioresources, National Research Council, 80131 Napoli, Italy
| |
Collapse
|
11
|
|
12
|
Zhu C, Shi Y, You J. Immune Cell Connection by Tunneling Nanotubes: The Impact of Intercellular Cross-Talk on the Immune Response and Its Therapeutic Applications. Mol Pharm 2021; 18:772-786. [PMID: 33529022 DOI: 10.1021/acs.molpharmaceut.0c01248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Direct intercellular communication is an important prerequisite for the development of multicellular organisms, the regeneration of tissue, and the maintenance of various physiological activities. Tunnel nanotubes (TNTs), which have diameters of approximately 50-1500 nm and lengths of up to several cell diameters, can connect cells over long distances and have emerged as one of the most important recently discovered types of efficient communication between cells. Moreover, TNTs can also directly transfer organelles, vehicles, proteins, genetic material, ions, and small molecules from one cell to adjacent and even distant cells. However, the mechanism of intercellular communication between various immune cells within the complex immune system has not been fully elucidated. Studies in the past decades have confirmed the existence of TNTs in many types of cells, especially in various kinds of immune cells. TNTs display different structural and functional characteristics between and within different immunocytes, playing a major role in the transmission of signals across various kinds of immune cells. In this review, we introduce the discovery and structure of TNTs, as well as their different functional properties within different immune cells. We also discuss the roles of TNTs in potentiating the immune response and their potential therapeutic applications.
Collapse
Affiliation(s)
- Chunqi Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
13
|
Subramaniam MD, Iyer M, Nair AP, Venkatesan D, Mathavan S, Eruppakotte N, Kizhakkillach S, Chandran MK, Roy A, Gopalakrishnan AV, Vellingiri B. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes Dis 2020; 9:610-637. [PMID: 35782976 PMCID: PMC9243399 DOI: 10.1016/j.gendis.2020.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/18/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ocular cells like, retinal pigment epithelium (RPE) is a highly specialized pigmented monolayer of post-mitotic cells, which is located in the posterior segment of the eye between neuro sensory retina and vascular choroid. It functions as a selective barrier and nourishes retinal visual cells. As a result of high-level oxygen consumption of retinal cells, RPE cells are vulnerable to chronic oxidative stress and an increased level of reactive oxygen species (ROS) generated from mitochondria. These oxidative stress and ROS generation in retinal cells lead to RPE degeneration. Various sources including mtDNA damage could be an important factor of oxidative stress in RPE. Gene therapy and mitochondrial transfer studies are emerging fields in ocular disease research. For retinal degenerative diseases stem cell-based transplantation methods are developed from basic research to preclinical and clinical trials. Translational research contributions of gene and cell therapy would be a new strategy to prevent, treat and cure various ocular diseases. This review focuses on the effect of oxidative stress in ocular cell degeneration and recent translational researches on retinal degenerative diseases to cure blindness.
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
- Corresponding author.
| | - Mahalaxmi Iyer
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Aswathy P. Nair
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sinnakaruppan Mathavan
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
| | - Nimmisha Eruppakotte
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Soumya Kizhakkillach
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Manoj kumar Chandran
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Punjab 144411, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 600127, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
- Corresponding author. Human Molecular Cytogenetics and Stem Cell, Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.Fax: +91 422 2422387.
| |
Collapse
|
14
|
Lou E. A Ticket to Ride: The Implications of Direct Intercellular Communication via Tunneling Nanotubes in Peritoneal and Other Invasive Malignancies. Front Oncol 2020; 10:559548. [PMID: 33324545 PMCID: PMC7727447 DOI: 10.3389/fonc.2020.559548] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
It is well established that the role of the tumor microenvironment (TME) in cancer progression and therapeutic resistance is crucial, but many of the underlying mechanisms are still being elucidated. Even with better understanding of molecular oncology and identification of genomic drivers of these processes, there has been a relative lag in identifying and appreciating the cellular drivers of both invasion and resistance. Intercellular communication is a vital process that unifies and synchronizes the diverse components of the tumoral infrastructure. Elucidation of the role of extracellular vesicles (EVs) over the past decade has cast a brighter light on this field. And yet even with this advance, in addition to diffusible soluble factor-mediated paracrine and endocrine cell communication as well as EVs, additional niches of intratumoral communication are filled by other modes of intercellular transfer. Tunneling nanotubes (TNTs), tumor microtubes (TMs), and other similar intercellular channels are long filamentous actin-based cellular conduits (in most epithelial cancer cell types, ~15-500 µm in length; 50–1000+ nm in width). They extend and form direct connections between distant cells, serving as conduits for direct intercellular transfer of cell cargo, such as mitochondria, exosomes, and microRNAs; however, many of their functional roles in mediating tumor growth remain unknown. These conduits literally create a physical bridge to create a syncytial network of dispersed cells amidst the intercellular stroma-rich matrix. Emerging evidence suggests that they provide a cellular mechanism for induction and emergence of drug resistance and contribute to increased invasive and metastatic potential. They have been imaged in vitro and also in vivo and ex vivo in tumors from human patients as well as animal models, thus not only proving their existence in the TME, but opening further speculation about their exact role in the dynamic niche of tumor ecosystems. TNT cellular networks are upregulated between cancer and stromal cells under hypoxic and other conditions of physiologic and metabolic stress. Furthermore, they can connect malignant cells to benign cells, including vascular endothelial cells. The field of investigation of TNT-mediated tumor-stromal, and tumor-tumor, cell-cell communication is gaining momentum. The mixture of conditions in the microenvironment exemplified by hypoxia-induced ovarian cancer TNTs playing a crucial role in tumor growth, as just one example, is a potential avenue of investigation that will uncover their role in relation to other known factors, including EVs. If the role of cancer heterocellular signaling via TNTs in the TME is proven to be crucial, then disrupting formation and maintenance of TNTs represents a novel therapeutic approach for ovarian and other similarly invasive peritoneal cancers.
Collapse
Affiliation(s)
- Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Franco S, Noureddine A, Guo J, Keth J, Paffett ML, Brinker CJ, Serda RE. Direct Transfer of Mesoporous Silica Nanoparticles between Macrophages and Cancer Cells. Cancers (Basel) 2020; 12:cancers12102892. [PMID: 33050177 PMCID: PMC7600949 DOI: 10.3390/cancers12102892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages line the walls of microvasculature, extending processes into the blood flow to capture foreign invaders, including nano-scale materials. Using mesoporous silica nanoparticles (MSNs) as a model nano-scale system, we show the interplay between macrophages and MSNs from initial uptake to intercellular trafficking to neighboring cells along microtubules. The nature of cytoplasmic bridges between cells and their role in the cell-to-cell transfer of nano-scale materials is examined, as is the ability of macrophages to function as carriers of nanomaterials to cancer cells. Both direct administration of nanoparticles and adoptive transfer of nanoparticle-loaded splenocytes in mice resulted in abundant localization of nanomaterials within macrophages 24 h post-injection, predominately in the liver. While heterotypic, trans-species nanomaterial transfer from murine macrophages to human HeLa cervical cancer cells or A549 lung cancer cells was robust, transfer to syngeneic 4T1 breast cancer cells was not detected in vitro or in vivo. Cellular connections and nanomaterial transfer in vivo were rich among immune cells, facilitating coordinated immune responses.
Collapse
Affiliation(s)
- Stefan Franco
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (S.F.); (J.G.); (J.K.)
| | - Achraf Noureddine
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
| | - Jimin Guo
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (S.F.); (J.G.); (J.K.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
| | - Jane Keth
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (S.F.); (J.G.); (J.K.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
| | - Michael L. Paffett
- Fluorescence Microscopy Shared Resource, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA;
| | - C. Jeffrey Brinker
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
| | - Rita E. Serda
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (S.F.); (J.G.); (J.K.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
- Correspondence: ; Tel.: +1-505−272−7698
| |
Collapse
|
16
|
Abstract
Using tunneling nanotubes (TNTs), various pathological molecules and viruses disseminate to adjacent cells intercellularly. Here, we show that the intracellular invasion of Mycoplasma hyorhinis induces the formation of actin- and tubulin-based TNTs in various mammalian cell lines. M. hyorhinis was found in TNTs generated by M. hyorhinis infection in NIH3T3 cells. Because mycoplasma-free recipient cells received mycoplasmas from M. hyorhinis-infected donor cells in a mixed co-culture system and not a spatially separated co-culture system, direct cell-to-cell contact via TNTs was necessary for the intracellular dissemination of M. hyorhinis. The activity of Rac1, which is a small GTP binding protein, was increased by the intracellular invasion of M. hyorhinis, and its pharmacological and genetic inhibition prevented M. hyorhinis infection-induced TNT generation in NIH3T3 cells. The pharmacological and genetic inhibition of Rac1 also reduced the cell-to-cell dissemination of M. hyorhinis. Based on these data, we conclude that intracellular invasion of M. hyorhinis induces the formation of TNTs, which are used for the cell-to-cell dissemination of M. hyorhinis.
Collapse
Affiliation(s)
- Bong-Woo Kim
- Tunneling Nanotube Research Center, Korea University, Seoul 02841; Skin Innovation R&D Centre, HnB9 Co., Ltd. Cheongju 28161, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Young-Gyu Ko
- Tunneling Nanotube Research Center, Korea University, Seoul 02841; Division of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
17
|
Korenkova O, Pepe A, Zurzolo C. Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges? Cell Stress 2020; 4:30-43. [PMID: 32043076 PMCID: PMC6997949 DOI: 10.15698/cst2020.02.212] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intercellular communication is a fundamental property of multicellular organisms, necessary for their adequate responses to changing environment. Tunneling nanotubes (TNTs) represent a novel means of intercellular communication being a long cell-to-cell conduit. TNTs are actively formed under a broad range of stresses and are also proposed to exist under physiological conditions. Development is a physiological condition of particular interest, as it requires fine coordination. Here we discuss whether protrusions shown to exist during embryonic development of different species could be TNTs or if they represent other types of cell structure, like cytonemes or intercellular bridges, that are suggested to play an important role in development.
Collapse
Affiliation(s)
- Olga Korenkova
- Unit of Membrane Traffic and Pathogenesis, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.,Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Anna Pepe
- Unit of Membrane Traffic and Pathogenesis, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Chiara Zurzolo
- Unit of Membrane Traffic and Pathogenesis, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
18
|
Imam ZI, Bachand GD. Multicomponent and Multiphase Lipid Nanotubes Formed by Gliding Microtubule-Kinesin Motility and Phase-Separated Giant Unilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16281-16289. [PMID: 31730350 DOI: 10.1021/acs.langmuir.9b02637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytoskeletal filaments and motor proteins are critical components in the transport and reorganization of membrane-based organelles in eukaryotic cells. Previous studies have recapitulated the microtubule-kinesin transport system in vitro to dynamically assemble large-scale nanotube networks from multilamellar liposomes and polymersomes. Moving toward more biologically relevant systems, the present work examines whether lipid nanotube (LNT) networks can be generated from giant unilamellar vesicles (GUVs) and subsequently characterizes how the lipid composition may be tuned to alter the dynamics, structure, and fluidity of networks. Here, we describe a two-step process in which microtubule motility (i) drives the transport and aggregation of GUVs to form structures with a decreased energy barrier for LNT formation and (ii) extrudes LNTs without destroying parent GUVs, allowing for the formation of large LNT networks. We further show that the lipid composition of the GUV influences formation and morphology of the extruded LNTs and associated networks. For example, LNTs formed from phase-separated GUVs (e.g., liquid-solid phase-separated and coexisting liquid-ordered and liquid-disordered phase-separated) display morphologies related to the specific phase behavior reflective of the parent GUVs. Overall, the ability to form nanotubes from compositionally complex vesicles opens the door to generating lipid networks that more closely mimic the structure and function of those found in cellular systems.
Collapse
Affiliation(s)
- Zachary I Imam
- Center for Integrated Nanotechnologies , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| | - George D Bachand
- Center for Integrated Nanotechnologies , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| |
Collapse
|
19
|
Matejka N, Reindl J. Perspectives of cellular communication through tunneling nanotubes in cancer cells and the connection to radiation effects. Radiat Oncol 2019; 14:218. [PMID: 31796110 PMCID: PMC6889217 DOI: 10.1186/s13014-019-1416-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Direct cell-to-cell communication is crucial for the survival of cells in stressful situations such as during or after radiation exposure. This communication can lead to non-targeted effects, where non-treated or non-infected cells show effects induced by signal transduction from non-healthy cells or vice versa. In the last 15 years, tunneling nanotubes (TNTs) were identified as membrane connections between cells which facilitate the transfer of several cargoes and signals. TNTs were identified in various cell types and serve as promoter of treatment resistance e.g. in chemotherapy treatment of cancer. Here, we discuss our current understanding of how to differentiate tunneling nanotubes from other direct cellular connections and their role in the stress reaction of cellular networks. We also provide a perspective on how the capability of cells to form such networks is related to the ability to surpass stress and how this can be used to study radioresistance of cancer cells.
Collapse
Affiliation(s)
- Nicole Matejka
- Institut für angewandte Physik und Messtechnik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Judith Reindl
- Institut für angewandte Physik und Messtechnik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| |
Collapse
|
20
|
Drab M, Stopar D, Kralj-Iglič V, Iglič A. Inception Mechanisms of Tunneling Nanotubes. Cells 2019; 8:cells8060626. [PMID: 31234435 PMCID: PMC6627088 DOI: 10.3390/cells8060626] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/13/2023] Open
Abstract
Tunneling nanotubes (TNTs) are thin membranous tubes that interconnect cells, representing a novel route of cell-to-cell communication and spreading of pathogens. TNTs form between many cell types, yet their inception mechanisms remain elusive. We review in this study general concepts related to the formation and stability of membranous tubular structures with a focus on a deviatoric elasticity model of membrane nanodomains. We review experimental evidence that tubular structures initiate from local membrane bending facilitated by laterally distributed proteins or anisotropic membrane nanodomains. We further discuss the numerical results of several theoretical and simulation models of nanodomain segregation suggesting the mechanisms of TNT inception and stability. We discuss the coupling of nanodomain segregation with the action of protruding cytoskeletal forces, which are mostly provided in eukaryotic cells by the polymerization of f-actin, and review recent inception mechanisms of TNTs in relation to motor proteins.
Collapse
Affiliation(s)
- Mitja Drab
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana,1000 Ljubljana, Slovenia.
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - David Stopar
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana,1000 Ljubljana, Slovenia.
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
21
|
Pergu R, Dagar S, Kumar H, Kumar R, Bhattacharya J, Mylavarapu SVS. The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec. J Biol Chem 2019; 294:7177-7193. [PMID: 30877198 DOI: 10.1074/jbc.ra118.005659] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/14/2019] [Indexed: 01/23/2023] Open
Abstract
Tunneling nanotubes (TNTs) are membrane conduits that mediate long-distance intercellular cross-talk in several organisms and play vital roles during development, pathogenic transmission, and cancer metastasis. However, the molecular mechanisms of TNT formation and function remain poorly understood. The protein MSec (also known as TNFα-induced protein 2 (TNFAIP2) and B94) is essential for TNT formation in multiple cell types. Here, using affinity protein purification, mass spectrometric identification, and confocal immunofluorescence microscopy assays, we found that MSec interacts with the endoplasmic reticulum (ER) chaperone ERp29. siRNA-mediated ERp29 depletion in mammalian cells significantly reduces TNT formation, whereas its overexpression induces TNT formation, but in a strictly MSec-dependent manner. ERp29 stabilized MSec protein levels, but not its mRNA levels, and the chaperone activity of ERp29 was required for maintaining MSec protein stability. Subcellular ER fractionation and subsequent limited proteolytic treatment suggested that MSec is associated with the outer surface of the ER. The ERp29-MSec interaction appeared to require the presence of other bridging protein(s), perhaps triggered by post-translational modification of ERp29. Our study implicates MSec as a target of ERp29 and reveals an indispensable role for the ER in TNT formation, suggesting new modalities for regulating TNT numbers in cells and tissues.
Collapse
Affiliation(s)
- Rajaiah Pergu
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and
| | - Sunayana Dagar
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Kalinga Institute of Industrial Technology, Bhubaneswar Odisha 751024, India
| | - Harsh Kumar
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and
| | - Rajesh Kumar
- the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad Haryana 121001
| | - Jayanta Bhattacharya
- the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad Haryana 121001
| | - Sivaram V S Mylavarapu
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and .,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and.,the Kalinga Institute of Industrial Technology, Bhubaneswar Odisha 751024, India
| |
Collapse
|
22
|
Daniels DR. Transport of solid bodies along tubular membrane tethers. PLoS One 2019; 14:e0210259. [PMID: 30650122 PMCID: PMC6334941 DOI: 10.1371/journal.pone.0210259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/19/2018] [Indexed: 11/18/2022] Open
Abstract
We study the crucial role of membrane fluctuations in maintaining a narrow gap between a fluid membrane tube and an enclosed solid particle. Solvent flows can occur in this gap, hence giving rise to a finite particle mobility along the tube. While our study has relevance for how cells are able to transport large organelles or other cargo along connecting membrane tubes, known as tunneling nanotubes, our calculations are also framed so that they can be tested by a specific in vitro experiment: A tubular membrane tether can be pulled from a membrane reservoir, such as an aspirated Giant Unilamellar Vesicle (GUV), e.g. using a conjugated bead that binds to the membrane and is held in a laser trap. We compute the subsequent mobility of colloidal particles trapped in the tube, focusing on the case when the particle is large compared to the equilibrium tube radius. We predict that the particle mobility should scale as ∼ σ−2/3, with σ the membrane tension.
Collapse
Affiliation(s)
- D. R. Daniels
- College of Engineering, Swansea University, Bay Campus, Swansea, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Resnik N, Prezelj T, De Luca GMR, Manders E, Polishchuk R, Veranič P, Kreft ME. Helical organization of microtubules occurs in a minority of tunneling membrane nanotubes in normal and cancer urothelial cells. Sci Rep 2018; 8:17133. [PMID: 30459350 PMCID: PMC6244236 DOI: 10.1038/s41598-018-35370-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Tunneling membrane nanotubes (TnTs) are membrane protrusions connecting nearby or distant cells in vitro and in vivo. Functions of TnTs in cellular processes are various and rely on TnT structure, which also depends on cytoskeletal composition. In the present study, we focused on the organization of microtubules (MTs) and intermediate filaments (IFs) in TnTs of urothelial cells. We analysed TnTs of normal porcine urothelial cells, which morphologically and physiologically closely resemble normal human urothelial cells, and of cancer cells derived from invasive human urothelial neoplasm. Wide-field fluorescence, confocal and super-resolution microscopy techniques, together with image analyses and 3D reconstructions enlightened specific MT-IF organization in TnTs, and for the first time revealed that MTs and IFs co-occur in the majority of normal and cancer urothelial cell TnTs. Our findings show that in the initiation segment of TnTs, MTs are cross-linked with each other into filamentous network, however in the middle and the attaching segment of TnT, MTs can helically enwrap IFs, the phenomenon that has not been shown before within the TnTs. In this study, we assess MT-IF co-occurrence in TnTs and present evidence that such helical organization of MTs enwrapping IFs is only occurring in a minority of the TnTs. We also discuss the possible cell-biological and physiological reasons for helical organization of MTs in TnTs.
Collapse
Affiliation(s)
- Nataša Resnik
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Tim Prezelj
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | | | - Erik Manders
- University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Peter Veranič
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia.
| |
Collapse
|
24
|
Tunneling Nanotubes as a Novel Route of Cell-to-Cell Spread of Herpesviruses. J Virol 2018; 92:JVI.00090-18. [PMID: 29491165 DOI: 10.1128/jvi.00090-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/12/2018] [Indexed: 12/21/2022] Open
Abstract
Various types of intercellular connections that are essential for communication between cells are often utilized by pathogens. Recently, a new type of cellular connection, consisting of long, thin, actin-rich membrane extensions named tunneling nanotubes (TNTs), has been shown to play an important role in cell-to-cell spread of HIV and influenza virus. In the present report, we show that TNTs are frequently formed by cells infected by an alphaherpesvirus, bovine herpesvirus 1 (BoHV-1). Viral proteins, such as envelope glycoprotein E (gE), capsid protein VP26, and tegument protein Us3, as well as cellular organelles (mitochondria) were detected by immunofluorescence and live-cell imaging of nanotubes formed by bovine primary fibroblasts and oropharynx cells (KOP cells). Time-lapse confocal studies of live cells infected with fluorescently labeled viruses showed that viral particles were transmitted via TNTs. This transfer also occurred in the presence of neutralizing antibodies, which prevented free entry of BoHV-1. We conclude that TNT formation contributes to successful cell-to-cell spread of BoHV-1 and demonstrate for the first time the participation of membrane nanotubes in intercellular transfer of a herpesvirus in live cells.IMPORTANCE Efficient transmission of viral particles between cells is an important factor in successful infection by herpesviruses. Herpesviruses can spread by the free-entry mode or direct cell-to-cell transfer via cell junctions and long extensions of neuronal cells. In this report, we show for the first time that an alphaherpesvirus can also spread between various types of cells using tunneling nanotubes, intercellular connections that are utilized by HIV and other viruses. Live-cell monitoring revealed that viral transmission occurs between the cells of the same type as well as between epithelial cells and fibroblasts. This newly discovered route of herpesviruses spread may contribute to efficient transmission despite the presence of host immune responses, especially after reactivation from latency that developed after primary infection. Long-range communication provided by TNTs may facilitate the spread of herpesviruses between many tissues and organs of an infected organism.
Collapse
|
25
|
Baidya AK, Bhattacharya S, Dubey GP, Mamou G, Ben-Yehuda S. Bacterial nanotubes: a conduit for intercellular molecular trade. Curr Opin Microbiol 2018; 42:1-6. [DOI: 10.1016/j.mib.2017.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/01/2022]
|
26
|
Nussenzveig HM. Cell membrane biophysics with optical tweezers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:499-514. [PMID: 29164289 DOI: 10.1007/s00249-017-1268-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 11/13/2017] [Indexed: 10/24/2022]
Abstract
Membrane elastic properties play important roles in regulating cell shape, motility, division and differentiation. Here I review optical tweezer (OT) investigations of membrane surface tension and bending modulus, emphasizing didactic aspects and insights provided for cell biology. OT measurements employ membrane-attached microspheres to extract long cylindrical nanotubes named tethers. The Helfrich-Canham theory yields elastic parameters in terms of tether radius and equilibrium extraction force. It assumes initial point-like microsphere attachment and no cytoskeleton content within tethers. Experimental force-displacement curves reveal violations of those assumptions, and I discuss proposed explanations of such discrepancies, as well as recommended OT protocols. Measurements of elastic parameters for predominant cell types in the central nervous system yield correlations between their values and cell function. Micro-rheology OT experiments extend these correlations to viscoelastic parameters. The results agree with a quasi-universal phenomenological scaling law and are interpreted in terms of the soft glass rheology model. Spontaneously-generated cell nanotube protrusions are also briefly reviewed, emphasizing common features with tethers. Filopodia as well as tunneling nanotubes (TNT), which connect distant cells and allow transfers between their cytoplasms, are discussed, including OT tether pulling from TNTs which mediate communication among bacteria, even of different species. Pathogens, including bacteria, viruses and prions, opportunistically exploit TNTs for cell-to-cell transmission of infection, indicating that TNTs have an ancient evolutionary origin.
Collapse
Affiliation(s)
- H Moysés Nussenzveig
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil. .,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil.
| |
Collapse
|
27
|
Mesarec L, Góźdź W, Iglič VK, Kralj S, Iglič A. Closed membrane shapes with attached BAR domains subject to external force of actin filaments. Colloids Surf B Biointerfaces 2016; 141:132-140. [PMID: 26854580 DOI: 10.1016/j.colsurfb.2016.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/02/2016] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Membrane deformations induced by attached BAR superfamily domains could trigger or facilitate the growth of plasma membrane protrusions. The BAR domain family consists of BAR, F-BAR and I-BAR domains, each enforcing a different local curvature when attached to the membrane surface. Our theoretical study mainly focuses on the role of I-BAR in the membrane tubular deformations generated or stabilised by actin filaments. The influence of the area density of membrane attached BAR domains and their intrinsic curvature on the closed membrane shapes (vesicles) was investigated numerically. We derived an analytical approximative expression for the critical relative area density of BARs at which the membrane tubular protrusions on vesicles are most prominent. We have shown that the BARs with a higher intrinsic curvature induce thinner and longer cylindrical protrusions. The average orientation of the membrane attached BARs is altered when the vesicle shape is subjected to external force of growing actin rod-like structure inside a vesicle. The average orientation angle of membrane attached BARs may indicate whether the actin filaments are just stabilising the protrusion or generating it by stretching the vesicle.
Collapse
Affiliation(s)
- Luka Mesarec
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia.
| | - Wojciech Góźdź
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Veronika Kralj Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, SI-1000 Ljubljana, Slovenia
| | - Samo Kralj
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia; Jožef Stefan Institute, P.O. Box 3000, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
28
|
Rimkutė L, Jotautis V, Marandykina A, Sveikatienė R, Antanavičiūtė I, Skeberdis VA. The role of neural connexins in HeLa cell mobility and intercellular communication through tunneling tubes. BMC Cell Biol 2016; 17:3. [PMID: 26758208 PMCID: PMC4710989 DOI: 10.1186/s12860-016-0080-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/08/2016] [Indexed: 01/12/2023] Open
Abstract
Background Membranous tunneling tubes (TTs) are a recently discovered new form of communication between remote cells allowing their electrical synchronization, migration, and transfer of cellular materials. TTs have been identified in the brain and share similarities with neuronal processes. TTs can be open-ended, close-ended or contain functional gap junctions at the membrane interface. Gap junctions are formed of two unapposed hemichannels composed of six connexin (Cx) subunits. There are evidences that Cxs also play channel-independent role in cell adhesion, migration, division, differentiation, formation of neuronal networks and tumorigenicity. These properties of Cxs and TTs may synergetically determine the cellular and intercellular processes. Therefore, we examined the impact of Cxs expressed in the nervous system (Cx36, Cx40, Cx43, Cx45, and Cx47) on: 1) cell mobility; 2) formation and properties of TTs; and 3) transfer of siRNA between remote cells through TTs. Results We have identified two types of TTs between HeLa cells: F-actin rich only and containing F-actin and α-tubulin. The morphology of TTs was not influenced by expression of examined connexins; however, Cx36-EGFP-expressing cells formed more TTs while cells expressing Cx43-EGFP, Cx45, and Cx47 formed fewer TTs between each other compared with wt and Cx40-CFP-expressing cells. Also, Cx36-EGFP and Cx40-CFP-expressing HeLa cells were more mobile compared with wt and other Cxs-expressing cells. TTs containing Cx40-CFP, Cx43-EGFP, or Cx47 gap junctions were capable of transmitting double-stranded small interfering RNA; however, Cx36-EGFP and Cx45 were not permeable to it. In addition, we show that Cx43-EGFP-expressing HeLa cells and laryngeal squamous cell carcinoma cells can couple to the mesenchymal stem cells through TTs. Conclusions Different Cxs may modulate the mobility of cells and formation of TTs in an opposite manner; siRNA transfer through the GJ-containing TTs is Cx isoform-dependent. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0080-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lina Rimkutė
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Vaidas Jotautis
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Alina Marandykina
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Renata Sveikatienė
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Ieva Antanavičiūtė
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Vytenis Arvydas Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| |
Collapse
|
29
|
Yue T, Tian F, Sun M, Zhang X, Huang F. Inter-tube adhesion mediates a new pearling mechanism. Phys Chem Chem Phys 2016; 18:361-74. [PMID: 26616465 DOI: 10.1039/c5cp04579g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A common mechanism for intracellular transport is the controlled shape transformation, also known as pearling, of membrane tubes. Exploring how tube pearling takes place is thus of quite importance to not only understand the bio-functions of tubes, but also promote their potential biomedical applications. While the pearling mechanism of one single tube is well understood, both the pathway and the mechanism of pearling of multiple tubes still remain unclear. Herein, by means of computer simulations we show that the tube pearling can be mediated by the inter-tube adhesion. By increasing the inter-tube adhesion strength, each tube undergoes a discontinuous transition from no pearling to thorough pearling. The discontinuous pearling transition is ascribed to the competitive variation between tube surface tension and the extent of inter-tube adhesion. Besides, the final pearling instability is also affected by tube diameter and inter-tube orientation. Thinner tubes undergo inter-tube lipid diffusion before completion of pearling. The early lipid diffusion reduces the extent of inter-tube adhesion and thus restrains the subsequent pearling. Therefore, only partial or no pearling can take place for two thinner tubes. For two perpendicular tubes, the pearling is also observed, but with different pathways and higher efficiency. The finite size effect is discussed by comparing the pearling of tubes with different lengths. It is expected that this work will not only provide new insights into the mechanism of membrane tube pearling, but also shed light on the potential applications in biomaterials science and nanomedicine.
Collapse
Affiliation(s)
- Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | | | | | | | | |
Collapse
|
30
|
Epperla CP, Mohan N, Chang CW, Chen CC, Chang HC. Nanodiamond-Mediated Intercellular Transport of Proteins through Membrane Tunneling Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6097-105. [PMID: 26479149 DOI: 10.1002/smll.201502089] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/28/2015] [Indexed: 05/20/2023]
Abstract
Recently discovered tunneling nanotubes (TNTs) are capable of creating intercellular communication pathways through which transport of proteins and other cytoplasmic components occurs. Intercellular transport is related to many diseases and nanotubes are potentially useful as drug-delivery channels for cancer therapy. Here, we apply fluorescent nanodiamond (FND) as a photostable tracker, as well as a protein carrier, to illustrate the transport events in TNTs of human cells. Proteins, including bovine serum albumin and green fluorescent protein, are first coated on 100-nm FNDs by physical adsorption and then single-particle tracking of the bioconjugates in the transient membrane connections is carried out by fluorescence microscopy. Stop-and-go and to-and-fro motions mediated by molecular motors are found for the active transport of protein-loaded FNDs trapped in the endosomal vehicles of human embryonic kidney cells (HEK293T). Quantitative analysis of the heterotypical transport between HEK293T and SH-SY5Y neuroblastoma cells by flow cytometry confirm the formation of open-ended nanotubes between them, despite that their TNTs differ in structural components. Our results demonstrate the promising applications of this novel carbon-based nanomaterial for intercellular delivery of biomolecular cargo down to the single-particle level.
Collapse
Affiliation(s)
- Chandra Prakash Epperla
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Taiwan International Graduate Program - Molecular Science and Technology, Academia Sinica, Taipei, 115, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Nitin Mohan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Che-Wei Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Chia-Chun Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Taiwan International Graduate Program - Molecular Science and Technology, Academia Sinica, Taipei, 115, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| |
Collapse
|
31
|
Desantis S, Accogli G, Zizza S, Mastrodonato M, Blasi A, Francioso E, Rossi R, Crovace A, Resta L. Ultrastructural study of cultured ovine bone marrow-derived mesenchymal stromal cells. Ann Anat 2015. [PMID: 26196242 DOI: 10.1016/j.aanat.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ovine bone marrow-derived mesenchymal stromal cells (oBM-MSCs) represent a good animal model for cell-based therapy and tissue engineering. Despite their use as a new therapeutic tool for several clinical applications, the morphological features of oBM-MSCs are yet unknown. Therefore, in this study the ultrastructural phenotype of these cells was analysed by transmission electron microscopy (TEM). The oBM-MSCs were isolated from the iliac crest and cultured until they reached near-confluence. After trypsinization, they were processed to investigate their ultrastructural features as well as specific surface marker proteins by flow cytometry and immunogold electron microscopy. Flow cytometry displayed that all oBM-MSCs lacked expression of CD31, CD34, CD45, HLA-DR whereas they expressed CD44, CD58, HLAI and a minor subset of the cell population (12%) exhibited CD90. TEM revealed the presence of two morphologically distinct cell types: cuboidal electron-lucent cells and spindle-shaped electron-dense cells, both expressing the CD90 antigen. Most of the electron-lucent cells showed glycogen aggregates, dilated cisternae of RER, moderately developed Golgi complex, and secretory activity. The electron-dense cell type was constituted by two different cell-populations: type A cells with numerous endosomes, dense bodies, rod-shaped mitochondria and filopodia; type B cells with elongated mitochondria, thin pseudopodia and cytoplasmic connectivity with electron-lucent cells. These morphological findings could provide a useful support to identify "in situ" the cellular components involved in the cell-therapy when cultured oBM-MSCs are injected.
Collapse
Affiliation(s)
- Salvatore Desantis
- Department of Emergency and Organ transplantation, University of Bari "Aldo Moro", Italy.
| | - Gianluca Accogli
- Department of Emergency and Organ transplantation, University of Bari "Aldo Moro", Italy
| | - Sara Zizza
- Department of Emergency and Organ transplantation, University of Bari "Aldo Moro", Italy
| | | | - Antonella Blasi
- Medestea Research and Production Laboratories, Consorzio CARSO, Bari, Italy
| | - Edda Francioso
- Department of Emergency and Organ transplantation, University of Bari "Aldo Moro", Italy
| | - Roberta Rossi
- Department of Emergency and Organ transplantation, University of Bari "Aldo Moro", Italy
| | - Antonio Crovace
- Department of Emergency and Organ transplantation, University of Bari "Aldo Moro", Italy
| | - Leonardo Resta
- Department of Emergency and Organ transplantation, University of Bari "Aldo Moro", Italy
| |
Collapse
|
32
|
Sisakhtnezhad S, Khosravi L. Emerging physiological and pathological implications of tunneling nanotubes formation between cells. Eur J Cell Biol 2015; 94:429-43. [PMID: 26164368 DOI: 10.1016/j.ejcb.2015.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
Cell-to-cell communication is a critical requirement to coordinate behaviors of the cells in a community and thereby achieve tissue homeostasis and conservation of the multicellular organisms. Tunneling nanotubes (TNTs), as a cell-to-cell communication over long distance, allow for bi- or uni-directional transfer of cellular components between cells. Identification of inducing agents and the cell and molecular mechanism underling the formation of TNTs and their structural and functional features may lead to finding new important roles for these intercellular bridges in vivo and in vitro. During the last decade, research has shown TNTs have different structural and functional properties, varying between and within cell systems. In this review, we will focus on TNTs and their cell and molecular mechanism of formation. Moreover, the latest findings into their functional roles in physiological and pathological processes, such as signal transduction, micro and nano-particles delivery, immune responses, embryogenesis, cellular reprogramming, apoptosis, cancer, and neurodegenerative diseases initiation and progression and pathogens transfer, will be discussed.
Collapse
Affiliation(s)
| | - Leila Khosravi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
33
|
Bellingham SA, Guo B, Hill AF. The secret life of extracellular vesicles in metal homeostasis and neurodegeneration. Biol Cell 2015; 107:389-418. [PMID: 26032945 DOI: 10.1111/boc.201500030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
Abstract
Biologically active metals such as copper, zinc and iron are fundamental for sustaining life in different organisms with the regulation of cellular metal homeostasis tightly controlled through proteins that coordinate metal uptake, efflux and detoxification. Many of the proteins involved in either uptake or efflux of metals are localised and function on the plasma membrane, traffic between intracellular compartments depending upon the cellular metal environment and can undergo recycling via the endosomal pathway. The biogenesis of exosomes also occurs within the endosomal system, with several major neurodegenerative disease proteins shown to be released in association with these vesicles, including the amyloid-β (Aβ) peptide in Alzheimer's disease and the infectious prion protein involved in Prion diseases. Aβ peptide and the prion protein also bind biologically active metals and are postulated to play important roles in metal homeostasis. In this review, we will discuss the role of extracellular vesicles in Alzheimer's and Prion diseases and explore their potential contribution to metal homeostasis.
Collapse
Affiliation(s)
- Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Belinda Guo
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Astanina K, Koch M, Jüngst C, Zumbusch A, Kiemer AK. Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells. Sci Rep 2015; 5:11453. [PMID: 26095213 PMCID: PMC4476149 DOI: 10.1038/srep11453] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Intercellular communication is a fundamental process in the development and functioning of multicellular organisms. Recently, an essentially new type of intercellular communication, based on thin membrane channels between cells, has been reported. These structures, termed intercellular or tunnelling nanotubes (TNTs), permit the direct exchange of various components or signals (e.g., ions, proteins, or organelles) between non-adjacent cells at distances over 100 μm. Our studies revealed the presence of tunnelling nanotubes in microvascular endothelial cells (HMEC-1). The TNTs were studied with live cell imaging, environmental scanning electron microscopy (ESEM), and coherent anti-Stokes Raman scattering spectroscopy (CARS). Tunneling nanotubes showed marked persistence: the TNTs could connect cells over long distances (up to 150 μm) for several hours. Several cellular organelles were present in TNTs, such as lysosomes and mitochondria. Moreover, we could identify lipid droplets as a novel type of cargo in the TNTs. Under angiogenic conditions (VEGF treatment) the number of lipid droplets increased significantly. Arachidonic acid application not only increased the number of lipid droplets but also tripled the extent of TNT formation. Taken together, our results provide the first demonstration of lipid droplets as a cargo of TNTs and thereby open a new field in intercellular communication research.
Collapse
Affiliation(s)
- Ksenia Astanina
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Marcus Koch
- Leibniz Institute for New Materials, Saarbrücken, Germany
| | | | | | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
35
|
Kohno T, Ninomiya T, Kikuchi S, Konno T, Kojima T. Staurosporine induces formation of two types of extra-long cell protrusions: actin-based filaments and microtubule-based shafts. Mol Pharmacol 2015; 87:815-24. [PMID: 25680752 DOI: 10.1124/mol.114.096982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Staurosporine (STS) has been known as a classic protein kinase C inhibitor and is a broad-spectrum inhibitor targeting over 250 protein kinases. In this study, we observed that STS treatment induced drastic morphologic changes, such as elongation of a very large number of nonbranched, actin-based long cell protrusions that reached up to 30 µm in an hour without caspase activation or PARP cleavage in fibroblasts and epithelial cells. These cell protrusions were elongated not only from the free cell edge but also from the cell-cell junctions. The elongation of STS-dependent protrusions was required for ATP hydrolysis and was dependent on myosin-X and fascin but independent of Cdc42 and VASP. Interestingly, in the presence of an actin polymerization inhibitor, namely, cytochalasin D, latrunculin A, or jasplakinolide, STS treatment induced excess tubulin polymerization, which resulted in the formation of many extra-long microtubule (MT)-based protrusions toward the outside of the cell. The unique MT-based protrusions were thick and linear compared with the STS-induced filaments or stationary filopodia. These protrusions, which were composed of microtubules, have been scarcely observed in cultured non-neuronal cells. Taken together, our findings revealed that STS-sensitive kinases are essential for the maintenance of normal cell morphology, and a common unidentified molecular mechanism is involved in the formation of the following two different types of protrusions: actin-based filaments and MT-based shafts.
Collapse
Affiliation(s)
- Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Takafumi Ninomiya
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Shin Kikuchi
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| |
Collapse
|
36
|
Gözen I, Jesorka A. Lipid nanotube networks: Biomimetic Cell-to-Cell Communication and Soft-Matter Technology. NANOFABRICATION 2015. [DOI: 10.1515/nanofab-2015-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
37
|
Ranzinger J, Rustom A, Schwenger V. Membrane nanotubes between peritoneal mesothelial cells: functional connectivity and crucial participation during inflammatory reactions. Front Physiol 2014; 5:412. [PMID: 25386144 PMCID: PMC4208614 DOI: 10.3389/fphys.2014.00412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022] Open
Abstract
Peritoneal dialysis (PD) has attained increased relevance as continuous renal replacement therapy over the past years. During this treatment, the peritoneum functions as dialysis membrane to eliminate diffusible waste products from the blood-stream. Success and efficacy of this treatment is dependent on the integrity of the peritoneal membrane. Chronic inflammatory conditions within the peritoneal cavity coincide with elevated levels of proinflammatory cytokines leading to the impairment of tissue integrity. High glucose concentrations and glucose metabolites in PD solutions contribute to structural and functional reorganization processes of the peritoneal membrane during long-term PD. The subsequent loss of ultrafiltration is causal for the treatment failure over time. It was shown that peritoneal mesothelial cells are functionally connected via Nanotubes (NTs) and that a correlation of NT-occurrence and defined pathophysiological conditions exists. Additionally, an important participation of NTs during inflammatory reactions was shown. Here, we will summarize recent developments of NT-related research and provide new insights into NT-mediated cellular interactions under physiological as well as pathophysiological conditions.
Collapse
Affiliation(s)
- Julia Ranzinger
- Department of Nephrology, University of Heidelberg Heidelberg, Germany
| | - Amin Rustom
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems Stuttgart, Germany
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg Heidelberg, Germany
| |
Collapse
|
38
|
Macaulay AD, Gilbert I, Caballero J, Barreto R, Fournier E, Tossou P, Sirard MA, Clarke HJ, Khandjian ÉW, Richard FJ, Hyttel P, Robert C. The gametic synapse: RNA transfer to the bovine oocyte. Biol Reprod 2014; 91:90. [PMID: 25143353 DOI: 10.1095/biolreprod.114.119867] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Even after several decades of quiescent storage in the ovary, the female germ cell is capable of reinitiating transcription to build the reserves that are essential to support early embryonic development. In the current model of mammalian oogenesis, there exists bilateral communication between the gamete and the surrounding cells that is limited to paracrine signaling and direct transfer of small molecules via gap junctions existing at the end of the somatic cells' projections that are in contact with the oolemma. The purpose of this work was to explore the role of cumulus cell projections as a means of conductance of large molecules, including RNA, to the mammalian oocyte. By studying nascent RNA with confocal and transmission electron microscopy in combination with transcript detection, we show that the somatic cells surrounding the fully grown bovine oocyte contribute to the maternal reserves by actively transferring large cargo, including mRNA and long noncoding RNA. This occurrence was further demonstrated by the reconstruction of cumulus-oocyte complexes with transfected cumulus cells transferring a synthetic transcript. We propose selective transfer of transcripts occurs, the delivery of which is supported by a remarkable synapselike vesicular trafficking connection between the cumulus cells and the gamete. This unexpected exogenous contribution to the maternal stores offers a new perspective on the determinants of female fertility.
Collapse
Affiliation(s)
- Angus D Macaulay
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec City, Québec, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec City, Québec, Canada
| | - Julieta Caballero
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec City, Québec, Canada
| | - Rodrigo Barreto
- Veterinarian Medicine Department, São Paulo University, São Paulo, Brazil
| | - Eric Fournier
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec City, Québec, Canada
| | - Prudencio Tossou
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec City, Québec, Canada
| | - Marc-André Sirard
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec City, Québec, Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montréal, Québec, Canada
| | - Édouard W Khandjian
- Département de Psychiatrie et Neurosciences, Institut universitaire en santé mentale de Québec, Université Laval, Québec City, Québec, Canada
| | - Francois J Richard
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec City, Québec, Canada
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claude Robert
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
39
|
Antanavičiūtė I, Rysevaitė K, Liutkevičius V, Marandykina A, Rimkutė L, Sveikatienė R, Uloza V, Skeberdis VA. Long-distance communication between laryngeal carcinoma cells. PLoS One 2014; 9:e99196. [PMID: 24945745 PMCID: PMC4063716 DOI: 10.1371/journal.pone.0099196] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 01/22/2023] Open
Abstract
Tunneling nanotubes and epithelial bridges are recently discovered new forms of intercellular communication between remote cells allowing their electrical synchronization, transfer of second messengers and even membrane vesicles and organelles. In the present study, we demonstrate for the first time in primary cell cultures prepared from human laryngeal squamous cell carcinoma (LSCC) samples that these cells communicate with each other over long distances (up to 1 mm) through membranous tunneling tubes (TTs), which can be open-ended or contain functional gap junctions formed of connexin 43. We found two types of TTs, containing F-actin alone or F-actin and α-tubulin. In the LSCC cell culture, we identified 5 modes of TT formation and performed quantitative assessment of their electrical properties and permeability to fluorescent dyes of different molecular weight and charge. We show that TTs, containing F-actin and α-tubulin, transport mitochondria and accommodate small DAPI-positive vesicles suggesting possible transfer of genetic material through TTs. We confirmed this possibility by demonstrating that even TTs, containing gap junctions, were capable of transmitting double-stranded small interfering RNA. To support the idea that the phenomenon of TTs is not only typical of cell cultures, we have examined microsections of samples obtained from human LSCC tissues and identified intercellular structures similar to those found in the primary LSCC cell culture.
Collapse
Affiliation(s)
- Ieva Antanavičiūtė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kristina Rysevaitė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vykintas Liutkevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alina Marandykina
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lina Rimkutė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Renata Sveikatienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | |
Collapse
|
40
|
Delage E, Zurzolo C. Exploring the role of lipids in intercellular conduits: breakthroughs in the pipeline. FRONTIERS IN PLANT SCIENCE 2013; 4:504. [PMID: 24368909 PMCID: PMC3857720 DOI: 10.3389/fpls.2013.00504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/25/2013] [Indexed: 05/08/2023]
Abstract
It has been known for more than a century that most of the plant cells are connected to their neighbors through membranous pores perforating the cell wall, namely plasmodesmata (PDs). The recent discovery of tunneling nanotubes (TNTs), thin membrane bridges established between distant mammalian cells, suggests that intercellular communication mediated through cytoplasmic continuity could be a conserved feature of eukaryotic organisms. Although TNTs differ from PDs in their formation and architecture, both are characterized by a continuity of the plasma membrane between two cells, delimiting a nanotubular channel supported by actin-based cytoskeleton. Due to this unusual membrane organization, lipids are likely to play critical roles in the formation and stability of intercellular conduits like TNTs and PDs, but also in regulating the transfer through these structures. While it is crucial for a better understanding of those fascinating communication highways, the study of TNT lipid composition and dynamics turned out to be extremely challenging. The present review aims to give an overview of the recent findings in this context. We will also discuss some of the promising imaging approaches, which might be the key for future breakthroughs in the field and could also benefit the research on PDs.
Collapse
Affiliation(s)
- Elise Delage
- *Correspondence: Elise Delage and Chiara Zurzolo, Unité de Trafic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France e-mail: ;
| | - Chiara Zurzolo
- *Correspondence: Elise Delage and Chiara Zurzolo, Unité de Trafic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France e-mail: ;
| |
Collapse
|
41
|
Ranzinger J, Rustom A, Schwenger V. Potential role of nanotubes in context of clinical treatments? Commun Integr Biol 2013; 6:e22686. [PMID: 23802041 PMCID: PMC3689573 DOI: 10.4161/cib.22686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The recent awareness that eukaryotic cells can be linked and communicate via membranous nanotubes (NTs) has extended previous conceptions of cell-to-cell interaction. Apart from mediating functional connectivity between a broad range of cells, facilitating intercellular transmission of electric signals or various cellular components, there is strong evidence for participation of NTs in pathological processes of particular medical interest. In our recent study, we showed for the first time the existence of nanotubular connections between human primary peritoneal mesothelial cells (HPMCs) and provided insights to their actin/filopodia mediated building mechanism. Furthermore, we showed that tumor necrosis factor (TNF) significantly increased NT formation between HPMCs, pointing to a crucial role of NTs during inflammatory processes. Moreover, our study showed a strong correlation of NT occurrence and cellular cholesterol contents, demonstrating an interdependence of NT mediated cell communication, cytokine action and cholesterol homeostasis. Here, we further provide analysis on NT-formation processes.
Collapse
Affiliation(s)
- Julia Ranzinger
- Department of Nephrology; University of Heidelberg; Heidelberg, Germany
| | | | | |
Collapse
|
42
|
Galkina SI, Fedorova NV, Stadnichuk VI, Sud'ina GF. Membrane tubulovesicular extensions (cytonemes): secretory and adhesive cellular organelles. Cell Adh Migr 2013; 7:174-86. [PMID: 23287580 DOI: 10.4161/cam.23130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this review, we summarized data on the formation and structure of the long and highly adhesive membrane tubulovesicular extensions (TVEs, membrane tethers or cytonemes) observed in human neutrophils and other mammalian cells, protozoan parasites and bacteria. We determined that TVEs are membrane protrusions characterized by a uniform diameter (130-250 nm for eukaryotic cells and 60-90 nm for bacteria) along the entire length, an outstanding length and high rate of development and a high degree of flexibility and capacity for shedding from the cells. This review represents TVEs as protrusions of the cellular secretory process, serving as intercellular adhesive organelles in eukaryotic cells and bacteria. An analysis of the physical and chemical approaches to induce TVEs formation revealed that disrupting the actin cytoskeleton and inhibiting glucose metabolism or vacuolar-type ATPase induces TVE formation in eukaryotic cells. Nitric oxide is represented as a physiological regulator of TVE formation.
Collapse
Affiliation(s)
- Svetlana I Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | | | | | | |
Collapse
|
43
|
Seyed-Razavi Y, Hickey MJ, Kuffová L, McMenamin PG, Chinnery HR. Membrane nanotubes in myeloid cells in the adult mouse cornea represent a novel mode of immune cell interaction. Immunol Cell Biol 2012; 91:89-95. [PMID: 23146944 DOI: 10.1038/icb.2012.52] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane nanotubes (MNTs) are newly discovered cellular extensions that are either blind-ended or can connect widely separated cells. They have predominantly been investigated in cultured isolated cells, however, previously we were the first group to demonstrate the existence of these structures in vivo in intact mammalian tissues. We previously demonstrated the frequency of both cell-cell or bridging MNTs and blind-ended MNTs was greatest between major histocompatibility complex (MHC) class II(+) cells during corneal injury or TLR ligand-mediated inflammation. The present study aimed to further explore the dynamics of MNT formation and their size, presence in another tissue, the dura mater, and response to stress factors and an active local viral infection of the murine cornea. Confocal live cell imaging of myeloid-derived cells in inflamed corneal explants from Cx(3)cr1(GFP) and CD11c(eYFP) transgenic mice revealed that MNTs form de novo at a rate of 15.5 μm/min. This observation contrasts with previous studies that demonstrated that in vitro these structures originate from cell-cell contacts. Conditions that promote formation of MNTs include inflammation in vivo and cell stress due to serum starvation ex vivo. Herpes simplex virus-1 infection did not cause a significant increase in MNT numbers in myeloid cells in the cornea above that observed in injury controls, confirming that corneal epithelium injury alone elicits MNT formation in vivo. These novel observations extend the currently limited understanding of MNTs in live mammalian tissues.
Collapse
Affiliation(s)
- Yashar Seyed-Razavi
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
44
|
Bastian FO, Elzer PH, Wu X. Spiroplasma spp. biofilm formation is instrumental for their role in the pathogenesis of plant, insect and animal diseases. Exp Mol Pathol 2012; 93:116-28. [PMID: 22552100 DOI: 10.1016/j.yexmp.2012.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 03/20/2012] [Accepted: 04/11/2012] [Indexed: 01/25/2023]
Abstract
Spiroplasma spp. are important phyto and insect pathogens, and candidate causal agent/s of transmissible spongiform encephalopathies (TSE) in man and animals. These filterable wall-less bacteria are widely distributed in nature with an unspecified environmental reservoir. In this study we showed by scanning electron microscopy that spiroplasma form biofilm on an assortment of hard surfaces including mica, nickel and stainless steel. Spiroplasma were stuck to the surfaces by fibrillar threads consistent with curli fibers (an amyloid protein found in bacterial biofilms). After a lengthy time in cultures (6 weeks), spiroplasma in biofilm bound to mica disks lost their spiral shapes and formed coccoid forms interconnected by long (>2 μm) branched membranous nanotubules, therein representing direct conjugate connections between the cells. The affinity of spiroplasma biofilms for mica and nickel, and the membrane communications suggest that soil could be a reservoir for these bacteria. The persistence of clay bound spiroplasma in soil could serve as the mechanism of lateral spread of TSEs by ingestion of soil by ruminants. Spiroplasma binding to stainless steel wire supports bacterial contamination of surgical instruments following surgery on dementia patients as a mechanism of iatrogenic transmission of TSEs, especially with resistance of spiroplasma in biofilms to drying or exposure to 50% glutaraldehyde. The discovery of biofilm formation by spiroplasma addresses questions regarding environmental persistence of these organisms in nature and suggests novel mechanisms of intercellular communication and transmission.
Collapse
Affiliation(s)
- Frank O Bastian
- Department of Veterinary Science, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
45
|
Marzo L, Gousset K, Zurzolo C. Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol 2012; 3:72. [PMID: 22514537 PMCID: PMC3322526 DOI: 10.3389/fphys.2012.00072] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/13/2012] [Indexed: 01/10/2023] Open
Abstract
Cell-to-cell communication and exchange of materials are vital processes in multicellular organisms during cell development, cell repair, and cell survival. In neuronal and immunological cells, intercellular transmission between neighboring cells occurs via different complex junctions or synapses. Recently, long distance intercellular connections in mammalian cells called tunneling nanotubes (TNTs) have been described. These structures have been found in numerous cell types and shown to transfer signals and cytosolic materials between distant cells, suggesting that they might play a prominent role in intercellular trafficking. However, these cellular connections are very heterogeneous in both structure and function, giving rise to more questions than answers as to their nature and role as intercellular conduits. To better understand and characterize the functions of TNTs, we have highlighted here the latest discoveries regarding the formation, structure, and role of TNTs in cell-to-cell spreading of various signals and materials. We first gathered information regarding their formation with an emphasis on the triggering mechanisms observed, such as stress and potentially important proteins and/or signaling pathways. We then describe the various types of transfer mechanisms, in relation to signals and cargoes that have been shown recently to take advantage of these structures for intercellular transfer. Because a number of pathogens were shown to use these membrane bridges to spread between cells we also draw attention to specific studies that point toward a role for TNTs in pathogen spreading. In particular we discuss the possible role that TNTs might play in prion spreading, and speculate on their role in neurological diseases in general.
Collapse
Affiliation(s)
- Ludovica Marzo
- Unité de traffic membranaire et pathogenèse, Institut PasteurParis, France
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico IINapoli, Italy
| | - Karine Gousset
- Unité de traffic membranaire et pathogenèse, Institut PasteurParis, France
| | - Chiara Zurzolo
- Unité de traffic membranaire et pathogenèse, Institut PasteurParis, France
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico IINapoli, Italy
| |
Collapse
|
46
|
Lokar M, Kabaso D, Resnik N, Sepčić K, Kralj-Iglič V, Veranič P, Zorec R, Iglič A. The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes. Int J Nanomedicine 2012; 7:1891-902. [PMID: 22605937 PMCID: PMC3352693 DOI: 10.2147/ijn.s28723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intercellular membrane nanotubes (ICNs) are highly curved tubular structures that connect neighboring cells. The stability of these structures depends on the inner cytoskeleton and the cell membrane composition. Yet, due to the difficulty in the extraction of ICNs, the cell membrane composition remains elusive. In the present study, a raft marker, ostreolysin, revealed the enrichment of cholesterol-sphingomyelin membrane nanodomains along ICNs in a T24 (malignant) urothelial cancer cell line. Cholesterol depletion, due to the addition of methyl-β-cyclodextrin, caused the dispersion of cholesterol-sphingomyelin membrane nanodomains and the retraction of ICNs. The depletion of cholesterol also led to cytoskeleton reorganization and to formation of actin stress fibers. Live cell imaging data revealed the possible functional coupling between the change from polygonal to spherical shape, cell separation, and the disconnection of ICNs. The ICN was modeled as an axisymmetric tubular structure, enabling us to investigate the effects of cholesterol content on the ICN curvature. The removal of cholesterol was predicted to reduce the positive spontaneous curvature of the remaining membrane components, increasing their curvature mismatch with the tube curvature. The mechanisms by which the increased curvature mismatch could contribute to the disconnection of ICNs are discussed.
Collapse
Affiliation(s)
- Maruša Lokar
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wittig D, Wang X, Walter C, Gerdes HH, Funk RHW, Roehlecke C. Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes. PLoS One 2012; 7:e33195. [PMID: 22457742 PMCID: PMC3310865 DOI: 10.1371/journal.pone.0033195] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/06/2012] [Indexed: 01/03/2023] Open
Abstract
Background Tunneling nanotubes (TNTs) may offer a very specific and effective way of intercellular communication. Here we investigated TNTs in the human retinal pigment epithelial (RPE) cell line ARPE-19. Morphology of TNTs was examined by immunostaining and scanning electron microscopy. To determine the function of TNTs between cells, we studied the TNT-dependent intercellular communication at different levels including electrical and calcium signalling, small molecular diffusion as well as mitochondrial re-localization. Further, intercellular organelles transfer was assayed by FACS analysis. Methodology and Principal Findings Microscopy showed that cultured ARPE-19 cells are frequently connected by TNTs, which are not attached to the substratum. The TNTs were straight connections between cells, had a typical diameter of 50 to 300 nm and a length of up to 120 µm. We observed de novo formation of TNTs by diverging from migrating cells after a short time of interaction. Scanning electron microscopy confirmed characteristic features of TNTs. Fluorescence microscopy revealed that TNTs between ARPE-19 cells contain F-actin but no microtubules. Depolymerisation of F-actin, induced by addition of latrunculin-B, led to disappearance of TNTs. Importantly, these TNTs could function as channels for the diffusion of small molecules such as Lucifer Yellow, but not for large molecules like Dextran Red. Further, organelle exchange between cells via TNTs was observed by microscopy. Using Ca2+ imaging we show the intercellular transmission of calcium signals through TNTs. Mechanical stimulation led to membrane depolarisation, which expand through TNT connections between ARPE-19 cells. We further demonstrate that TNTs can mediate electrical coupling between distant cells. Immunolabelling for Cx43 showed that this gap junction protein is interposed at one end of 44% of TNTs between ARPE-19 cells. Conclusions and Significance Our observations indicate that human RPE cell line ARPE-19 cells communicate by tunneling nanotubes and can support different types of intercellular traffic.
Collapse
Affiliation(s)
- Dierk Wittig
- Institute of Anatomy, TU Dresden, Dresden, Germany
| | - Xiang Wang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Cindy Walter
- Institute of Anatomy, TU Dresden, Dresden, Germany
| | | | - Richard H. W. Funk
- Institute of Anatomy, TU Dresden, Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden – Cluster of Excellence, Biotechnology Center, Dresden, Germany
| | - Cora Roehlecke
- Institute of Anatomy, TU Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
48
|
Stepanyants N, Jeffries GDM, Orwar O, Jesorka A. Radial sizing of lipid nanotubes using membrane displacement analysis. NANO LETTERS 2012; 12:1372-1378. [PMID: 22313341 PMCID: PMC3303199 DOI: 10.1021/nl203983e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/30/2012] [Indexed: 05/31/2023]
Abstract
We report a novel method for the measurement of lipid nanotube radii. Membrane translocation is monitored between two nanotube-connected vesicles, during the expansion of a receiving vesicle, by observing a photobleached region of the nanotube. We elucidate nanotube radii, extracted from SPE vesicles, enabling quantification of membrane composition and lamellarity. Variances of nanotube radii were measured, showing a growth of 40-56 nm, upon increasing cholesterol content from 0 to 20%.
Collapse
Affiliation(s)
| | | | | | - Aldo Jesorka
- Tel +46 31-772 6112; fax +46 31-772 2750; e-mail
| |
Collapse
|
49
|
Kabaso D, Bobrovska N, Góźdź W, Gongadze E, Kralj-Iglič V, Zorec R, Iglič A. The transport along membrane nanotubes driven by the spontaneous curvature of membrane components. Bioelectrochemistry 2012; 87:204-10. [PMID: 22502994 DOI: 10.1016/j.bioelechem.2012.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 02/20/2012] [Accepted: 02/28/2012] [Indexed: 12/11/2022]
Abstract
Intercellular membrane nanotubes (ICNs) serve as a very specific transport system between neighboring cells. The underlying mechanisms responsible for the transport of membrane components and vesicular dilations along the ICNs are not clearly understood. The present study investigated the spatial distribution of anisotropic membrane components of tubular shapes and isotropic membrane components of spherical shapes. Experimental results revealed the preferential distribution of CTB (cholera toxin B)-GM1 complexes mainly on the spherical cell membrane, and cholesterol-sphingomyelin at the membrane leading edge and ICNs. In agreement with previous studies, we here propose that the spatial distribution of CTB-GM1 complexes and cholesterol-sphingomyelin rafts were due to their isotropic and anisotropic shapes, respectively. To elucidate the relationship between a membrane component shape and its spatial distribution, a two-component computational model was constructed. The minimization of the membrane bending (free) energy revealed the enrichment of the anisotropic component along the ICN and the isotropic component in the parent cell membrane, which was due to the curvature mismatch between the ICN curvature and the spontaneous curvature of the isotropic component. The equations of motion, derived from the differentiation of the membrane free energy, revealed a curvature-dependent flux of the isotropic component and a curvature-dependent force exerted on a vesicular dilation along the ICN. Finally, the effects of possible changes in the orientational ordering of the anisotropic component attendant to the transport of the vesicular dilation were discussed with connection to the propagation of electrical and chemical signals.
Collapse
Affiliation(s)
- Doron Kabaso
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
50
|
Cardiac telocytes - their junctions and functional implications. Cell Tissue Res 2012; 348:265-79. [PMID: 22350946 PMCID: PMC3349856 DOI: 10.1007/s00441-012-1333-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/10/2012] [Indexed: 12/11/2022]
Abstract
Telocytes (TCs) form a cardiac network of interstitial cells. Our previous studies have shown that TCs are involved in heterocellular contacts with cardiomyocytes and cardiac stem/progenitor cells. In addition, TCs frequently establish ‘stromal synapses’ with several types of immunoreactive cells in various organs (www.telocytes.com). Using electron microscopy (EM) and electron microscope tomography (ET), we further investigated the interstitial cell network of TCs and found that TCs form ‘atypical’ junctions with virtually all types of cells in the human heart. EM and ET showed different junction types connecting TCs in a network (puncta adhaerentia minima, processus adhaerentes and manubria adhaerentia). The connections between TCs and cardiomyocytes are ‘dot’ junctions with nanocontacts or asymmetric junctions. Junctions between stem cells and TCs are either ‘stromal synapses’ or adhaerens junctions. An unexpected finding was that TCs have direct cell–cell (nano)contacts with Schwann cells, endothelial cells and pericytes. Therefore, ultrastructural analysis proved that the cardiac TC network could integrate the overall ‘information’ from vascular system (endothelial cells and pericytes), nervous system (Schwann cells), immune system (macrophages, mast cells), interstitium (fibroblasts, extracellular matrix), stem cells/progenitors and working cardiomyocytes. Generally, heterocellular contacts occur by means of minute junctions (point contacts, nanocontacts and planar contacts) and the mean intermembrane distance is within the macromolecular interaction range (10–30 nm). In conclusion, TCs make a network in the myocardial interstitium, which is involved in the long-distance intercellular signaling coordination. This integrated interstitial system appears to be composed of large homotropic zones (TC–TC junctions) and limited (distinct) heterotropic zones (heterocellular junctions of TCs).
Collapse
|