1
|
Elder JJH, Papadopoulos R, Hayne CK, Stanley RE. The making and breaking of tRNAs by ribonucleases. Trends Genet 2024; 40:511-525. [PMID: 38641471 PMCID: PMC11152995 DOI: 10.1016/j.tig.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Ribonucleases (RNases) play important roles in supporting canonical and non-canonical roles of tRNAs by catalyzing the cleavage of the tRNA phosphodiester backbone. Here, we highlight how recent advances in cryo-electron microscopy (cryo-EM), protein structure prediction, reconstitution experiments, tRNA sequencing, and other studies have revealed new insight into the nucleases that process tRNA. This represents a very diverse group of nucleases that utilize distinct mechanisms to recognize and cleave tRNA during different stages of a tRNA's life cycle including biogenesis, fragmentation, surveillance, and decay. In this review, we provide a synthesis of the structure, mechanism, regulation, and modes of tRNA recognition by tRNA nucleases, along with open questions for future investigation.
Collapse
Affiliation(s)
- Jessica J H Elder
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ry Papadopoulos
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA; Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Cassandra K Hayne
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
2
|
Chaudhuri A, Paul S, Banerjea M, Das B. Polyadenylated versions of small non-coding RNAs in Saccharomyces cerevisiae are degraded by Rrp6p/Rrp47p independent of the core nuclear exosome. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:155-186. [PMID: 38783922 PMCID: PMC11115967 DOI: 10.15698/mic2024.05.823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024]
Abstract
In Saccharomyces cerevisiae, polyadenylated forms of mature (and not precursor) small non-coding RNAs (sncRNAs) those fail to undergo proper 3'-end maturation are subject to an active degradation by Rrp6p and Rrp47p, which does not require the involvement of core exosome and TRAMP components. In agreement with this finding, Rrp6p/Rrp47p is demonstrated to exist as an exosome-independent complex, which preferentially associates with mature polyadenylated forms of these sncRNAs. Consistent with this observation, a C-terminally truncated version of Rrp6p (Rrp6p-ΔC2) lacking physical association with the core nuclear exosome supports their decay just like its full-length version. Polyadenylation is catalyzed by both the canonical and non-canonical poly(A) polymerases, Pap1p and Trf4p. Analysis of the polyadenylation profiles in WT and rrp6-Δ strains revealed that the majority of the polyadenylation sites correspond to either one to three nucleotides upstream or downstream of their mature ends and their poly(A) tails ranges from 10-15 adenylate residues. Most interestingly, the accumulated polyadenylated snRNAs are functional in the rrp6-Δ strain and are assembled into spliceosomes. Thus, Rrp6p-Rrp47p defines a core nuclear exosome-independent novel RNA turnover system in baker's yeast targeting imperfectly processed polyadenylated sncRNAs that accumulate in the absence of Rrp6p.
Collapse
Affiliation(s)
- Anusha Chaudhuri
- Present Position: Zentrum fǜr Molekulare, Medizin, Institut fǜr Kardiovaskuläre Regeneration, Haus 25B, Goethe-Universität, Theodor-Stern-Kai 7, Universitätsklinikum, 60590 Frankfurt am Main, Germany
| | - Soumita Paul
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata – 700 032, West Bengal, India
| | - Mayukh Banerjea
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata – 700 032, West Bengal, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata – 700 032, West Bengal, India
| |
Collapse
|
3
|
Mouzannar K, Schauer A, Liang TJ. The Post-Transcriptional Regulatory Element of Hepatitis B Virus: From Discovery to Therapy. Viruses 2024; 16:528. [PMID: 38675871 PMCID: PMC11055085 DOI: 10.3390/v16040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The post-transcriptional regulatory element (PRE) is present in all HBV mRNAs and plays a major role in their stability, nuclear export, and enhancement of viral gene expression. Understanding PRE's structure, function, and mode of action is essential to leverage its potential as a therapeutic target. A wide range of PRE-based reagents and tools have been developed and assessed in preclinical and clinical settings for therapeutic and biotechnology applications. This manuscript aims to provide a systematic review of the characteristics and mechanism of action of PRE, as well as elucidating its current applications in basic and clinical research. Finally, we discuss the promising opportunities that PRE may provide to antiviral development, viral biology, and potentially beyond.
Collapse
Affiliation(s)
- Karim Mouzannar
- Liver Diseases Branch, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | | | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
4
|
Shatskikh AS, Fefelova EA, Klenov MS. Functions of RNAi Pathways in Ribosomal RNA Regulation. Noncoding RNA 2024; 10:19. [PMID: 38668377 PMCID: PMC11054153 DOI: 10.3390/ncrna10020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Argonaute proteins, guided by small RNAs, play crucial roles in gene regulation and genome protection through RNA interference (RNAi)-related mechanisms. Ribosomal RNAs (rRNAs), encoded by repeated rDNA units, constitute the core of the ribosome being the most abundant cellular transcripts. rDNA clusters also serve as sources of small RNAs, which are loaded into Argonaute proteins and are able to regulate rDNA itself or affect other gene targets. In this review, we consider the impact of small RNA pathways, specifically siRNAs and piRNAs, on rRNA gene regulation. Data from diverse eukaryotic organisms suggest the potential involvement of small RNAs in various molecular processes related to the rDNA transcription and rRNA fate. Endogenous siRNAs are integral to the chromatin-based silencing of rDNA loci in plants and have been shown to repress rDNA transcription in animals. Small RNAs also play a role in maintaining the integrity of rDNA clusters and may function in the cellular response to rDNA damage. Studies on the impact of RNAi and small RNAs on rRNA provide vast opportunities for future exploration.
Collapse
Affiliation(s)
- Aleksei S. Shatskikh
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia;
| | - Elena A. Fefelova
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
| | - Mikhail S. Klenov
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Saha U, Gaine R, Paira S, Das S, Das B. RRM1 and PAB domains of translation initiation factor eIF4G (Tif4631p) play a crucial role in the nuclear degradation of export-defective mRNAs in Saccharomyces cerevisiae. FEBS J 2024; 291:897-926. [PMID: 37994298 DOI: 10.1111/febs.17016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/02/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
In Saccharomyces cerevisiae, the CBC-Tif4631p-dependent exosomal targeting (CTEXT) complex consisting of Cbc1/2p, Tif4631p and Upf3p promotes the exosomal degradation of aberrantly long 3'-extended, export-defective transcripts and a small group of normal (termed 'special') mRNAs. We carried out a systematic analysis of all previously characterized functional domains of the major CTEXT component Tif4631p by deleting each of them and interrogating their involvement in the nuclear surveillance of abnormally long 3'-extended and export-defective messages. Our analyses show that the N-terminal RNA recognition motif 1 (RRM1) and poly(A)-binding protein (PAB) domains of Tif4631p, spanning amino acid residues, 1-82 and 188-299 in its primary structure, respectively, play a crucial role in degrading these aberrant messages. Furthermore, the physical association of the nuclear exosome with the altered/variant CTEXT complex harboring any of the mutant Tif4631p proteins lacking either the RRM1 or PAB domain becomes abolished. This finding indicates that the association between CTEXT and the exosome is accomplished via interaction between these Tif4631p domains with the major exosome component, Rrp6p. Abolition of interaction between altered CTEXT (harboring any of the RRM1/PAB-deleted versions of Tif4631p) and the exosome further leads to the impaired recruitment of the RNA targets to the Rrp6p subunit of the exosome carried out by the RRM1/PAB domains of Tif4631p. When analyzing the Tif4631p-interacting proteins, we identified a DEAD-box RNA helicase (Dbp2p), as an interacting partner that turned out to be a previously unknown component of CTEXT. The present study provides a more complete description of the CTEXT complex and offers insight into the functional relationship of this complex with the nuclear exosome.
Collapse
Grants
- BT/PR27917/BRB/10/1673/2018 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR6078/BRB/10/1114/2012 Department of Biotechnology, Ministry of Science and Technology, India
- 38/1427/16/EMR-II Council of Scientific and Industrial Research, India
- 38/1280/11/EMR-II Council of Scientific and Industrial Research, India
- SR/SO/BB/0066/2012 Department of Science and Technology, Ministry of Science and Technology, India
- Department of Science & Technology and Biotechnology, Government of West Bengal
- SR/WOS-A/LS-1067/2014 Department of Science and Technology, India, WOS-A
Collapse
Affiliation(s)
- Upasana Saha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Rajlaxmi Gaine
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Satarupa Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
6
|
Wen X, Irshad A, Jin H. The Battle for Survival: The Role of RNA Non-Canonical Tails in the Virus-Host Interaction. Metabolites 2023; 13:1009. [PMID: 37755289 PMCID: PMC10537345 DOI: 10.3390/metabo13091009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Terminal nucleotidyltransferases (TENTs) could generate a 'mixed tail' or 'U-rich tail' consisting of different nucleotides at the 3' end of RNA by non-templated nucleotide addition to protect or degrade cellular messenger RNA. Recently, there has been increasing evidence that the decoration of virus RNA terminus with a mixed tail or U-rich tail is a critical way to affect viral RNA stability in virus-infected cells. This paper first briefly introduces the cellular function of the TENT family and non-canonical tails, then comprehensively reviews their roles in virus invasion and antiviral immunity, as well as the significance of the TENT family in antiviral therapy. This review will contribute to understanding the role and mechanism of non-canonical RNA tailing in survival competition between the virus and host.
Collapse
Affiliation(s)
| | | | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China; (X.W.); (A.I.)
| |
Collapse
|
7
|
Paira S, Chakraborty A, Das B. The Sequential Recruitments of Rab-GTPase Ypt1p and the NNS Complex onto pre- HAC1 mRNA Promote Its Nuclear Degradation in Baker's Yeast. Mol Cell Biol 2023; 43:371-400. [PMID: 37533322 PMCID: PMC10448977 DOI: 10.1080/10985549.2023.2227016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
Induction of unfolded protein response involves activation of transcription factor Hac1p that is encoded by HAC1 pre-mRNA harboring an intron and a bipartite element (BE), which is subjected to nuclear mRNA decay by the nuclear exosome/Cbc1p-Tif4631p-dependent Exosome Targeting (CTEXT) complex. Using a combination of genetic and biochemical approaches, we demonstrate that a Rab-GTPase Ypt1p controls unfolded protein response signaling dynamics. This regulation relies on the nuclear localization of a small fraction of the cellular Ypt1p pool in the absence of endoplasmic reticulum (ER)-stress causing a strong association of the nuclear Ypt1p with pre-HAC1 mRNA that eventually promotes sequential recruitments of NNS, CTEXT, and the nuclear exosome onto this pre-mRNA. Recruitment of these decay factors onto pre-HAC1 mRNA is accompanied by its rapid nuclear decay that produces a precursor RNA pool lacking functional BE thereby causing its inefficient targeting to Ire1p foci leading to their diminished splicing and translation. ER stress triggers rapid relocalization of the nuclear pool of Ypt1p to the cytoplasm leading to its dissociation from pre-HAC1 mRNA thereby causing decreased recruitment of these decay factors to precursor HAC1 RNA leading to its diminished degradation. Reduced decay results in an increased abundance of pre-HAC1 mRNA with intact functional BE leading to its enhanced recruitment to Ire1p foci.
Collapse
Affiliation(s)
- Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Anish Chakraborty
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
8
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
9
|
Webster SF, Ghalei H. Maturation of small nucleolar RNAs: from production to function. RNA Biol 2023; 20:715-736. [PMID: 37796118 PMCID: PMC10557570 DOI: 10.1080/15476286.2023.2254540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.
Collapse
Affiliation(s)
- Sarah F. Webster
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Brown RE, Su XA, Fair S, Wu K, Verra L, Jong R, Andrykovich K, Freudenreich CH. The RNA export and RNA decay complexes THO and TRAMP prevent transcription-replication conflicts, DNA breaks, and CAG repeat contractions. PLoS Biol 2022; 20:e3001940. [PMID: 36574440 PMCID: PMC9829180 DOI: 10.1371/journal.pbio.3001940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/09/2023] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
Expansion of structure-forming CAG/CTG repetitive sequences is the cause of several neurodegenerative disorders and deletion of repeats is a potential therapeutic strategy. Transcription-associated mechanisms are known to cause CAG repeat instability. In this study, we discovered that Thp2, an RNA export factor and member of the THO (suppressors of transcriptional defects of hpr1Δ by overexpression) complex, and Trf4, a key component of the TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex involved in nuclear RNA polyadenylation and degradation, are necessary to prevent CAG fragility and repeat contractions in a Saccharomyces cerevisiae model system. Depletion of both Thp2 and Trf4 proteins causes a highly synergistic increase in CAG repeat fragility, indicating a complementary role of the THO and TRAMP complexes in preventing genome instability. Loss of either Thp2 or Trf4 causes an increase in RNA polymerase stalling at the CAG repeats and other genomic loci, as well as genome-wide transcription-replication conflicts (TRCs), implicating TRCs as a cause of CAG fragility and instability in their absence. Analysis of the effect of RNase H1 overexpression on CAG fragility, RNAPII stalling, and TRCs suggests that RNAPII stalling with associated R-loops are the main cause of CAG fragility in the thp2Δ mutants. In contrast, CAG fragility and TRCs in the trf4Δ mutant can be compensated for by RPA overexpression, suggesting that excess unprocessed RNA in TRAMP4 mutants leads to reduced RPA availability and high levels of TRCs. Our results show the importance of RNA surveillance pathways in preventing RNAPII stalling, TRCs, and DNA breaks, and show that RNA export and RNA decay factors work collaboratively to maintain genome stability.
Collapse
Affiliation(s)
- Rebecca E. Brown
- Program in Genetics, Tufts University School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
| | - Xiaofeng A. Su
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stacey Fair
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Katherine Wu
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Lauren Verra
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Robyn Jong
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Kristin Andrykovich
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Catherine H. Freudenreich
- Program in Genetics, Tufts University School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Novačić A, Menéndez D, Ljubas J, Barbarić S, Stutz F, Soudet J, Stuparević I. Antisense non-coding transcription represses the PHO5 model gene at the level of promoter chromatin structure. PLoS Genet 2022; 18:e1010432. [PMID: 36215302 PMCID: PMC9584416 DOI: 10.1371/journal.pgen.1010432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/20/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Pervasive transcription of eukaryotic genomes generates non-coding transcripts with regulatory potential. We examined the effects of non-coding antisense transcription on the regulation of expression of the yeast PHO5 gene, a paradigmatic case for gene regulation through promoter chromatin remodeling. A negative role for antisense transcription at the PHO5 gene locus was demonstrated by leveraging the level of overlapping antisense transcription through specific mutant backgrounds, expression from a strong promoter in cis, and use of the CRISPRi system. Furthermore, we showed that enhanced elongation of PHO5 antisense leads to a more repressive chromatin conformation at the PHO5 gene promoter, which is more slowly remodeled upon gene induction. The negative effect of antisense transcription on PHO5 gene transcription is mitigated upon inactivation of the histone deacetylase Rpd3, showing that PHO5 antisense RNA acts via histone deacetylation. This regulatory pathway leads to Rpd3-dependent decreased recruitment of the RSC chromatin remodeling complex to the PHO5 gene promoter upon induction of antisense transcription. Overall, the data in this work reveal an additional level in the complex regulatory mechanism of PHO5 gene expression by showing antisense transcription-mediated repression at the level of promoter chromatin structure remodeling.
Collapse
Affiliation(s)
- Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Dario Menéndez
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Jurica Ljubas
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Slobodan Barbarić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Françoise Stutz
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Julien Soudet
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (J.S.); (I.S.)
| | - Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
- * E-mail: (J.S.); (I.S.)
| |
Collapse
|
12
|
Xin W, Qin Y, Lei P, Zhang J, Yang X, Wang Z. From cerebral ischemia towards myocardial, renal, and hepatic ischemia: Exosomal miRNAs as a general concept of intercellular communication in ischemia-reperfusion injury. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:900-922. [PMID: 36159596 PMCID: PMC9464648 DOI: 10.1016/j.omtn.2022.08.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Singh P, Chaudhuri A, Banerjea M, Marathe N, Das B. Nrd1p identifies aberrant and natural exosomal target messages during the nuclear mRNA surveillance in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:11512-11536. [PMID: 34664673 PMCID: PMC8599857 DOI: 10.1093/nar/gkab930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Nuclear degradation of aberrant mRNAs in Saccharomyces cerevisiae is accomplished by the nuclear exosome and its cofactors TRAMP/CTEXT. Evidence from this investigation establishes a universal role of the Nrd1p-Nab3p-Sen1p (NNS) complex in the nuclear decay of all categories of aberrant mRNAs. In agreement with this, both nrd1-1 and nrd1-2 mutations impaired the decay of all classes of aberrant messages. This phenotype is similar to that displayed by GAL::RRP41 and rrp6-Δ mutant yeast strains. Remarkably, however, nrd1ΔCID mutation (lacking the C-terminal domain required for interaction of Nrd1p with RNAPII) only diminished the decay of aberrant messages with defects occurring during the early stage of mRNP biogenesis, without affecting other messages with defects generated later in the process. Co-transcriptional recruitment of Nrd1p on the aberrant mRNAs was vital for their concomitant decay. Strikingly, this recruitment on to mRNAs defective in the early phases of biogenesis is solely dependent upon RNAPII. In contrast, Nrd1p recruitment onto export-defective transcripts with defects occurring in the later stage of biogenesis is independent of RNAPII and dependent on the CF1A component, Pcf11p, which explains the observed characteristic phenotype of nrd1ΔCID mutation. Consistently, pcf11-2 mutation displayed a selective impairment in the degradation of only the export-defective messages.
Collapse
Affiliation(s)
- Pragyan Singh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Anusha Chaudhuri
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Mayukh Banerjea
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Neeraja Marathe
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| |
Collapse
|
14
|
Wang Y, Yu Y, Pang Y, Yu H, Zhang W, Zhao X, Yu J. The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biol 2021; 18:2107-2126. [PMID: 33787465 DOI: 10.1080/15476286.2021.1909320] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The zinc finger CCHC-type (ZCCHC) superfamily proteins, characterized with the consensus sequence C-X2-C-X4-H-X4-C, are accepted to have high-affinity binding to single-stranded nucleic acids, especially single-stranded RNAs. In human beings 25 ZCCHC proteins have been annotated in the HGNC database. Of interest is that among the family, most members are involved in the multiple steps of RNA metabolism. In this review, we focus on the diverged roles of human ZCCHC proteins on RNA transcription, biogenesis, splicing, as well as translation and degradation.
Collapse
Affiliation(s)
- Yishu Wang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Pang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojun Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Zhang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Block TM, Young JAT, Javanbakht H, Sofia MJ, Zhou T. Host RNA quality control as a hepatitis B antiviral target. Antiviral Res 2020; 186:104972. [PMID: 33242518 DOI: 10.1016/j.antiviral.2020.104972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibition of the host RNA polyadenylating polymerases, PAPD5 and PAPD7 (PAPD5/7), with dihydroquinolizinone, a small orally available, molecule, results in a rapid and selective degradation of hepatitis B virus (HBV) RNA, and hence reduction in the amounts of viral gene products. DHQ, is a first in class investigational agent and could represent an entirely new category of HBV antivirals. PAPD5 and PAPD7 are non-canonical, cell specified, polyadenylating polymerases, also called terminal nucleotidyl transferases 4B and 4A (TENT4B/A), respectively. They are involved in the degradation of poor-quality cell transcripts, mostly non-coding RNAs and in the maturation of a sub-set of transcripts. They also appear to play a role in shielding some mRNA from degradation. The results of studies with DHQ, along with other recent findings, provide evidence that repression of the PAPD5/7 arm of the cell "RNA quality control" pathway, causes a profound (multi-fold) reduction rather than increase, in the amount of HBV pre-genomic, pre-core and HBsAg mRNA levels in tissue culture and animal models, as well. In this review we will briefly discuss the need for new HBV therapeutics and provide background about HBV transcription. We also discuss cellular degradation of host transcripts, as it relates to a new family of anti-HBV drugs that interfere with these processes. Finally, since HBV mRNA maturation appears to be selectively sensitive to PAPD5/7 inhibition in hepatocytes, we discuss the possibility of targeting host RNA "quality control" as an antiviral strategy.
Collapse
Affiliation(s)
| | - John A T Young
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Hassan Javanbakht
- SQZ Biotechnologies, 200 Arsenal Yards Blvd, Suite 210, Watertown, MA, 02472, USA.
| | - Michael J Sofia
- Arbutus Biopharma, Inc, 701 Veterans Circle, Warminster, PA, 18974, USA.
| | - Tianlun Zhou
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA.
| |
Collapse
|
16
|
Aguilar LC, Paul B, Reiter T, Gendron L, Arul Nambi Rajan A, Montpetit R, Trahan C, Pechmann S, Oeffinger M, Montpetit B. Altered rRNA processing disrupts nuclear RNA homeostasis via competition for the poly(A)-binding protein Nab2. Nucleic Acids Res 2020; 48:11675-11694. [PMID: 33137177 PMCID: PMC7672433 DOI: 10.1093/nar/gkaa964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) are key mediators of RNA metabolism. Whereas some RBPs exhibit narrow transcript specificity, others function broadly across both coding and non-coding RNAs. Here, in Saccharomyces cerevisiae, we demonstrate that changes in RBP availability caused by disruptions to distinct cellular processes promote a common global breakdown in RNA metabolism and nuclear RNA homeostasis. Our data shows that stabilization of aberrant ribosomal RNA (rRNA) precursors in an enp1-1 mutant causes phenotypes similar to RNA exosome mutants due to nucleolar sequestration of the poly(A)-binding protein (PABP) Nab2. Decreased nuclear PABP availability is accompanied by genome-wide changes in RNA metabolism, including increased pervasive transcripts levels and snoRNA processing defects. These phenotypes are mitigated by overexpression of PABPs, inhibition of rDNA transcription, or alterations in TRAMP activity. Our results highlight the need for cells to maintain poly(A)-RNA levels in balance with PABPs and other RBPs with mutable substrate specificity across nucleoplasmic and nucleolar RNA processes.
Collapse
Affiliation(s)
- Lisbeth-Carolina Aguilar
- Department for Systems Biology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Biplab Paul
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Taylor Reiter
- Food Science Graduate Group, University of California Davis, Davis, CA, USA
| | - Louis Gendron
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Arvind Arul Nambi Rajan
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
| | - Rachel Montpetit
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Christian Trahan
- Department for Systems Biology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Sebastian Pechmann
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Marlene Oeffinger
- Department for Systems Biology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ben Montpetit
- Department of Cell Biology, University of Alberta, Edmonton, Canada
- Food Science Graduate Group, University of California Davis, Davis, CA, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| |
Collapse
|
17
|
Wang Y, Weng C, Chen X, Zhou X, Huang X, Yan Y, Zhu C. CDE-1 suppresses the production of risiRNA by coupling polyuridylation and degradation of rRNA. BMC Biol 2020; 18:115. [PMID: 32887607 PMCID: PMC7472701 DOI: 10.1186/s12915-020-00850-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/17/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Modification of RNAs, particularly at the terminals, is critical for various essential cell processes; for example, uridylation is implicated in tumorigenesis, proliferation, stem cell maintenance, and immune defense against viruses and retrotransposons. Ribosomal RNAs can be regulated by antisense ribosomal siRNAs (risiRNAs), which downregulate pre-rRNAs through the nuclear RNAi pathway in Caenorhabditis elegans. However, the biogenesis and regulation of risiRNAs remain obscure. Previously, we showed that 26S rRNAs are uridylated at the 3'-ends by an unknown terminal polyuridylation polymerase before the rRNAs are degraded by a 3' to 5' exoribonuclease SUSI-1(ceDIS3L2). RESULTS Here, we found that CDE-1, one of the three C.elegans polyuridylation polymerases (PUPs), is specifically involved in suppressing risiRNA production. CDE-1 localizes to perinuclear granules in the germline and uridylates Argonaute-associated 22G-RNAs, 26S, and 5.8S rRNAs at the 3'-ends. Immunoprecipitation followed by mass spectrometry (IP-MS) revealed that CDE-1 interacts with SUSI-1(ceDIS3L2). Consistent with these results, both CDE-1 and SUSI-1(ceDIS3L2) are required for the inheritance of RNAi. CONCLUSIONS This work identified a rRNA surveillance machinery of rRNAs that couples terminal polyuridylation and degradation.
Collapse
Affiliation(s)
- Yun Wang
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
- School of Bioengineering, Huainan Normal University, Huainan, 232038, Anhui, People's Republic of China.
| | - Chenchun Weng
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Xiangyang Chen
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Xufei Zhou
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Xinya Huang
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Yonghong Yan
- National Institute of Biological Sciences, Beijing, 102206, People's Republic of China
| | - Chengming Zhu
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| |
Collapse
|
18
|
Delan-Forino C, Spanos C, Rappsilber J, Tollervey D. Substrate specificity of the TRAMP nuclear surveillance complexes. Nat Commun 2020; 11:3122. [PMID: 32561742 PMCID: PMC7305330 DOI: 10.1038/s41467-020-16965-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/29/2020] [Indexed: 01/01/2023] Open
Abstract
During nuclear surveillance in yeast, the RNA exosome functions together with the TRAMP complexes. These include the DEAH-box RNA helicase Mtr4 together with an RNA-binding protein (Air1 or Air2) and a poly(A) polymerase (Trf4 or Trf5). To better determine how RNA substrates are targeted, we analyzed protein and RNA interactions for TRAMP components. Mass spectrometry identified three distinct TRAMP complexes formed in vivo. These complexes preferentially assemble on different classes of transcripts. Unexpectedly, on many substrates, including pre-rRNAs and pre-mRNAs, binding specificity is apparently conferred by Trf4 and Trf5. Clustering of mRNAs by TRAMP association shows co-enrichment for mRNAs with functionally related products, supporting the significance of surveillance in regulating gene expression. We compared binding sites of TRAMP components with multiple nuclear RNA binding proteins, revealing preferential colocalization of subsets of factors. TRF5 deletion reduces Mtr4 recruitment and increases RNA abundance for mRNAs specifically showing high Trf5 binding.
Collapse
Affiliation(s)
- Clémentine Delan-Forino
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK
| | - Christos Spanos
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - David Tollervey
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
19
|
Viral hijacking of the TENT4-ZCCHC14 complex protects viral RNAs via mixed tailing. Nat Struct Mol Biol 2020; 27:581-588. [PMID: 32451488 DOI: 10.1038/s41594-020-0427-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
TENT4 enzymes generate 'mixed tails' of diverse nucleotides at 3' ends of RNAs via nontemplated nucleotide addition to protect messenger RNAs from deadenylation. Here we discover extensive mixed tailing in transcripts of hepatitis B virus (HBV) and human cytomegalovirus (HCMV), generated via a similar mechanism exploiting the TENT4-ZCCHC14 complex. TAIL-seq on HBV and HCMV RNAs revealed that TENT4A and TENT4B are responsible for mixed tailing and protection of viral poly(A) tails. We find that the HBV post-transcriptional regulatory element (PRE), specifically the CNGGN-type pentaloop, is critical for TENT4-dependent regulation. HCMV uses a similar pentaloop, an interesting example of convergent evolution. This pentaloop is recognized by the sterile alpha motif domain-containing ZCCHC14 protein, which in turn recruits TENT4. Overall, our study reveals the mechanism of action of PRE, which has been widely used to enhance gene expression, and identifies the TENT4-ZCCHC14 complex as a potential target for antiviral therapeutics.
Collapse
|
20
|
Ustyantsev IG, Tatosyan KA, Stasenko DV, Kochanova NY, Borodulina OR, Kramerov DA. Polyadenylation of Sine Transcripts Generated by RNA Polymerase III Dramatically Prolongs Their Lifetime in Cells. Mol Biol 2020. [DOI: 10.1134/s0026893319040150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Keidel A, Conti E, Falk S. Purification and Reconstitution of the S. cerevisiae TRAMP and Ski Complexes for Biochemical and Structural Studies. Methods Mol Biol 2020; 2062:491-513. [PMID: 31768992 DOI: 10.1007/978-1-4939-9822-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The RNA exosome is a macromolecular machine that degrades a large variety of RNAs from their 3'-end. It comprises the major 3'-to-5' exonuclease in the cell, completely degrades erroneous and overly abundant RNAs, and is also involved in the precise processing of RNAs. To degrade transcripts both specifically and efficiently the exosome functions together with compartment-specific cofactors. In the yeast S. cerevisiae, the exosome associates with the Ski complex in the cytoplasm and with Mtr4 alone or with Mtr4 as part of the TRAMP complex in the nucleus. Here we describe how to produce, purify, and assemble the Ski and TRAMP complexes from S. cerevisiae.
Collapse
Affiliation(s)
- Achim Keidel
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | - Sebastian Falk
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
- Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Abstract
The evolutionarily conserved RNA exosome is a multisubunit ribonuclease complex that processes and/or degrades numerous RNAs. Recently, mutations in genes encoding both structural and catalytic subunits of the RNA exosome have been linked to human disease. Mutations in the structural exosome gene EXOSC2 cause a distinct syndrome that includes retinitis pigmentosa, hearing loss, and mild intellectual disability. In contrast, mutations in the structural exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are related autosomal recessive, neurodegenerative diseases. In addition, mutations in the structural exosome gene EXOSC9 cause a PCH-like disease with cerebellar atrophy and spinal motor neuronopathy. Finally, mutations in the catalytic exosome gene DIS3 have been linked to multiple myeloma, a neoplasm of plasma B cells. How mutations in these RNA exosome genes lead to distinct, tissue-specific diseases is not currently well understood. In this chapter, we examine the role of the RNA exosome complex in human disease and discuss the mechanisms by which mutations in different exosome subunit genes could impair RNA exosome function and give rise to diverse diseases.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| | - Derrick J Morton
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephanie K Jones
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Sara W Leung
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Anita H Corbett
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| |
Collapse
|
23
|
Savic N, Shortill SP, Bilenky M, Dobbs JM, Dilworth D, Hirst M, Nelson CJ. Histone Chaperone Paralogs Have Redundant, Cooperative, and Divergent Functions in Yeast. Genetics 2019; 213:1301-1316. [PMID: 31604797 PMCID: PMC6893378 DOI: 10.1534/genetics.119.302235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023] Open
Abstract
Gene duplications increase organismal robustness by providing freedom for gene divergence or by increasing gene dosage. The yeast histone chaperones Fpr3 and Fpr4 are paralogs that can assemble nucleosomes in vitro; however, the genomic locations they target and their functional relationship is poorly understood. We refined the yeast synthetic genetic array approach to enable the functional dissection of gene paralogs. Applying this method to Fpr3 and Fpr4 uncovered redundant, cooperative, and divergent functions. While Fpr3 is uniquely involved in chromosome segregation, Fpr3 and Fpr4 cooperate to regulate genes involved in polyphosphate metabolism and ribosome biogenesis. We find that the TRAMP5 RNA exosome is critical for fitness in Δfpr3Δfpr4 yeast and leverage this information to identify an important role for Fpr4 at the 5' ends of protein coding genes. Additionally, Fpr4 and TRAMP5 negatively regulate RNAs from the nontranscribed spacers of ribosomal DNA. Yeast lacking Fpr3 and Fpr4 exhibit a genome instability phenotype at the ribosomal DNA, which implies that these histone chaperones regulate chromatin structure and DNA access at this location. Taken together. we provide genetic and transcriptomic evidence that Fpr3 and Fpr4 operate separately, cooperatively, and redundantly to regulate a variety of chromatin environments.
Collapse
Affiliation(s)
- Neda Savic
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| | - Shawn P Shortill
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| | - Misha Bilenky
- BC Cancer Agency Genome Sciences Centre and the Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Joseph M Dobbs
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| | - David Dilworth
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| | - Martin Hirst
- BC Cancer Agency Genome Sciences Centre and the Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Christopher J Nelson
- Department Biochemistry and Microbiology, University of Victoria, BC V8W 3P6, Canada
| |
Collapse
|
24
|
Das S, Biswas S, Chaudhuri S, Bhattacharyya A, Das B. A Nuclear Zip Code in SKS1 mRNA Promotes Its Slow Export, Nuclear Retention, and Degradation by the Nuclear Exosome/DRN in Saccharomyces cerevisiae. J Mol Biol 2019; 431:3626-3646. [DOI: 10.1016/j.jmb.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 01/12/2023]
|
25
|
Goos C, Dejung M, Wehman AM, M-Natus E, Schmidt J, Sunter J, Engstler M, Butter F, Kramer S. Trypanosomes can initiate nuclear export co-transcriptionally. Nucleic Acids Res 2019; 47:266-282. [PMID: 30418648 PMCID: PMC6326799 DOI: 10.1093/nar/gky1136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/25/2018] [Indexed: 02/03/2023] Open
Abstract
The nuclear envelope serves as important messenger RNA (mRNA) surveillance system. In yeast and human, several control systems act in parallel to prevent nuclear export of unprocessed mRNAs. Trypanosomes lack homologues to most of the involved proteins and their nuclear mRNA metabolism is non-conventional exemplified by polycistronic transcription and mRNA processing by trans-splicing. We here visualized nuclear export in trypanosomes by intra- and intermolecular multi-colour single molecule FISH. We found that, in striking contrast to other eukaryotes, the initiation of nuclear export requires neither the completion of transcription nor splicing. Nevertheless, we show that unspliced mRNAs are mostly prevented from reaching the nucleus-distant cytoplasm and instead accumulate at the nuclear periphery in cytoplasmic nuclear periphery granules (NPGs). Further characterization of NPGs by electron microscopy and proteomics revealed that the granules are located at the cytoplasmic site of the nuclear pores and contain most cytoplasmic RNA-binding proteins but none of the major translation initiation factors, consistent with a function in preventing faulty mRNAs from reaching translation. Our data indicate that trypanosomes regulate the completion of nuclear export, rather than the initiation. Nuclear export control remains poorly understood, in any organism, and the described way of control may not be restricted to trypanosomes.
Collapse
Affiliation(s)
- Carina Goos
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Ann M Wehman
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Elisabeth M-Natus
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Johannes Schmidt
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jack Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Susanne Kramer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
26
|
Telekawa C, Boisvert FM, Bachand F. Proteomic profiling and functional characterization of post-translational modifications of the fission yeast RNA exosome. Nucleic Acids Res 2019; 46:11169-11183. [PMID: 30321377 PMCID: PMC6265454 DOI: 10.1093/nar/gky915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022] Open
Abstract
The RNA exosome is a conserved multi-subunit complex essential for processing and degradation of several types of RNAs. Although many of the functions of the RNA exosome are well established, whether the activity of this complex is regulated remains unclear. Here we performed a proteomic analysis of the RNA exosome complex purified from Schizosaccharomyces pombe and identified 39 post-translational modifications (PTMs), including phosphorylation, methylation, and acetylation sites. Interestingly, most of the modifications were identified in Dis3, a catalytic subunit of the RNA exosome, as well as in the exosome-associated RNA helicase, Mtr4. Functional analysis of selected PTM sites using modification-deficient and -mimetic versions of exosome subunits revealed substitutions that affected cell growth and exosome functions. Notably, our results suggest that site-specific phosphorylation in the catalytic center of Dis3 and in the helical bundle domain of Mtr4 control their activity. Our findings support a view in which post-translational modifications fine-tune exosome activity and add a layer of regulation to RNA degradation.
Collapse
Affiliation(s)
- Caroline Telekawa
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
27
|
Sarkar D, Paira S, Das B. Nuclear mRNA degradation tunes the gain of the unfolded protein response in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:1139-1156. [PMID: 29165698 PMCID: PMC5814838 DOI: 10.1093/nar/gkx1160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/10/2017] [Indexed: 12/14/2022] Open
Abstract
Unfolded protein response (UPR) is triggered by the accumulation of unfolded proteins in the endoplasmic reticulum (ER), which is accomplished by a dramatic induction of genes encoding ER chaperones. Activation of these genes involves their rapid transcription by Hac1p, encoded by the HAC1 precursor transcript harboring an intron and a bipartite element (3′-BE) in the 3′-UTR. ER stress facilitates intracellular targeting and recruitment of HAC1 pre-mRNA to Ire1p foci (requiring 3′-BE), leading to its non-spliceosomal splicing mediated by Ire1p/Rlg1p. A critical concentration of the pre-HAC1 harboring a functional 3′-BE element is governed by its 3′→5′ decay by the nuclear exosome/DRN. In the absence of stress, pre-HAC1 mRNA undergoes a rapid and kinetic 3′→5′ decay leading to a precursor pool, the majority of which lack the BE element. Stress, in contrast, causes a diminished decay, thus resulting in the production of a population with an increased abundance of pre-HAC1 mRNA carrying an intact BE, which facilitates its more efficient recruitment to Ire1p foci. This mechanism plays a crucial role in the timely activation of UPR and its prompt attenuation following the accomplishment of homeostasis. Thus, a kinetic mRNA decay provides a novel paradigm for mRNA targeting and regulation of gene expression.
Collapse
Affiliation(s)
- Debasish Sarkar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700 032, West Bengal, India
| |
Collapse
|
28
|
Yan Q, Zhu C, Guang S, Feng X. The Functions of Non-coding RNAs in rRNA Regulation. Front Genet 2019; 10:290. [PMID: 31024617 PMCID: PMC6463246 DOI: 10.3389/fgene.2019.00290] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/18/2019] [Indexed: 02/04/2023] Open
Abstract
Ribosomes are ribonucleoprotein machines that decode the genetic information embedded in mRNAs into polypeptides. Ribosome biogenesis is tightly coordinated and controlled from the transcription of pre-rRNAs to the assembly of ribosomes. Defects or disorders in rRNA production result in a number of human ribosomopathy diseases. During the processes of rRNA synthesis, non-coding RNAs, especially snoRNAs, play important roles in pre-rRNA transcription, processing, and maturation. Recent research has started to reveal that other long and short non-coding RNAs, including risiRNA, LoNA, and SLERT (among others), are also involved in pre-rRNA transcription and rRNA production. Here, we summarize the current understanding of the mechanisms of non-coding RNA-mediated rRNA generation and regulation and their biological roles.
Collapse
Affiliation(s)
- Qi Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengming Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shouhong Guang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, China
| | - Xuezhu Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
29
|
Peck SA, Hughes KD, Victorino JF, Mosley AL. Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1529. [PMID: 30848101 PMCID: PMC6570551 DOI: 10.1002/wrna.1529] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/27/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022]
Abstract
Processing and maturation of precursor RNA species is coupled to RNA polymerase II transcription. Co-transcriptional RNA processing helps to ensure efficient and proper capping, splicing, and 3' end processing of different RNA species to help ensure quality control of the transcriptome. Many improperly processed transcripts are not exported from the nucleus, are restricted to the site of transcription, and are in some cases degraded, which helps to limit any possibility of aberrant RNA causing harm to cellular health. These critical quality control pathways are regulated by the highly dynamic protein-protein interaction network at the site of transcription. Recent work has further revealed the extent to which the processes of transcription and RNA processing and quality control are integrated, and how critically their coupling relies upon the dynamic protein interactions that take place co-transcriptionally. This review focuses specifically on the intricate balance between 3' end processing and RNA decay during transcription termination. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Sarah A Peck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katlyn D Hughes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
30
|
Boivin V, Faucher-Giguère L, Scott M, Abou-Elela S. The cellular landscape of mid-size noncoding RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1530. [PMID: 30843375 PMCID: PMC6619189 DOI: 10.1002/wrna.1530] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 01/06/2023]
Abstract
Noncoding RNA plays an important role in all aspects of the cellular life cycle, from the very basic process of protein synthesis to specialized roles in cell development and differentiation. However, many noncoding RNAs remain uncharacterized and the function of most of them remains unknown. Mid-size noncoding RNAs (mncRNAs), which range in length from 50 to 400 nucleotides, have diverse regulatory functions but share many fundamental characteristics. Most mncRNAs are produced from independent promoters although others are produced from the introns of other genes. Many are found in multiple copies in genomes. mncRNAs are highly structured and carry many posttranscriptional modifications. Both of these facets dictate their RNA-binding protein partners and ultimately their function. mncRNAs have already been implicated in translation, catalysis, as guides for RNA modification, as spliceosome components and regulatory RNA. However, recent studies are adding new mncRNA functions including regulation of gene expression and alternative splicing. In this review, we describe the different classes, characteristics and emerging functions of mncRNAs and their relative expression patterns. Finally, we provide a portrait of the challenges facing their detection and annotation in databases. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Vincent Boivin
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Laurence Faucher-Giguère
- Department of Microbiology and Infectious Disease, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Michelle Scott
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sherif Abou-Elela
- Department of Microbiology and Infectious Disease, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
31
|
Schmid M, Jensen TH. The Nuclear RNA Exosome and Its Cofactors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:113-132. [PMID: 31811632 DOI: 10.1007/978-3-030-31434-7_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The RNA exosome is a highly conserved ribonuclease endowed with 3'-5' exonuclease and endonuclease activities. The multisubunit complex resides in both the nucleus and the cytoplasm, with varying compositions and activities between the two compartments. While the cytoplasmic exosome functions mostly in mRNA quality control pathways, the nuclear RNA exosome partakes in the 3'-end processing and complete decay of a wide variety of substrates, including virtually all types of noncoding (nc) RNAs. To handle these diverse tasks, the nuclear exosome engages with dedicated cofactors, some of which serve as activators by stimulating decay through oligoA addition and/or RNA helicase activities or, as adaptors, by recruiting RNA substrates through their RNA-binding capacities. Most nuclear exosome cofactors contain the essential RNA helicase Mtr4 (MTR4 in humans). However, apart from Mtr4, nuclear exosome cofactors have undergone significant evolutionary divergence. Here, we summarize biochemical and functional knowledge about the nuclear exosome and exemplify its cofactor variety by discussing the best understood model organisms-the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and human cells.
Collapse
Affiliation(s)
- Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
32
|
Kufel J, Grzechnik P. Small Nucleolar RNAs Tell a Different Tale. Trends Genet 2018; 35:104-117. [PMID: 30563726 DOI: 10.1016/j.tig.2018.11.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022]
Abstract
Transcribing RNA Polymerase II interacts with multiple factors that orchestrate maturation and stabilisation of messenger RNA. For the majority of noncoding RNAs, the polymerase complex employs entirely different strategies, which usually direct the nascent transcript to ribonucleolytic degradation. However, some noncoding RNA classes use endo- and exonucleases to achieve functionality. Here we review processing of small nucleolar RNAs that are transcribed by RNA Polymerase II as precursors, and whose 5' and 3' ends undergo processing to release mature, functional molecules. The maturation strategies of these noncoding RNAs in various organisms follow a similar pattern but employ different factors and are strictly correlated with genomic organisation of their genes.
Collapse
Affiliation(s)
- Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Pawel Grzechnik
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
33
|
Warkocki Z, Liudkovska V, Gewartowska O, Mroczek S, Dziembowski A. Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0162. [PMID: 30397099 PMCID: PMC6232586 DOI: 10.1098/rstb.2018.0162] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, almost all RNA species are processed at their 3′ ends and most mRNAs are polyadenylated in the nucleus by canonical poly(A) polymerases. In recent years, several terminal nucleotidyl transferases (TENTs) including non-canonical poly(A) polymerases (ncPAPs) and terminal uridyl transferases (TUTases) have been discovered. In contrast to canonical polymerases, TENTs' functions are more diverse; some, especially TUTases, induce RNA decay while others, such as cytoplasmic ncPAPs, activate translationally dormant deadenylated mRNAs. The mammalian genome encodes 11 different TENTs. This review summarizes the current knowledge about the functions and mechanisms of action of these enzymes. This article is part of the theme issue ‘5′ and 3′ modifications controlling RNA degradation’.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, Poland
| | - Vladyslava Liudkovska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Olga Gewartowska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
34
|
Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA. Proc Natl Acad Sci U S A 2018; 115:10082-10087. [PMID: 30224484 DOI: 10.1073/pnas.1800974115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ribosome biogenesis is a multistep process, during which mistakes can occur at any step of pre-rRNA processing, modification, and ribosome assembly. Misprocessed rRNAs are usually detected and degraded by surveillance machineries. Recently, we identified a class of antisense ribosomal siRNAs (risiRNAs) that down-regulate pre-rRNAs through the nuclear RNAi pathway. To further understand the biological roles of risiRNAs, we conducted both forward and reverse genetic screens to search for more suppressor of siRNA (susi) mutants. We isolated a number of genes that are broadly conserved from yeast to humans and are involved in pre-rRNA modification and processing. Among them, SUSI-2(ceRRP8) is homologous to human RRP8 and engages in m1A methylation of the 26S rRNA. C27F2.4(ceBUD23) is an m7G-methyltransferase of the 18S rRNA. E02H1.1(ceDIMT1L) is a predicted m6(2)Am6(2)A-methyltransferase of the 18S rRNA. Mutation of these genes led to a deficiency in modification of rRNAs and elicited accumulation of risiRNAs, which further triggered the cytoplasmic-to-nuclear and cytoplasmic-to-nucleolar translocations of the Argonaute protein NRDE-3. The rRNA processing deficiency also resulted in accumulation of risiRNAs. We also isolated SUSI-3(RIOK-1), which is similar to human RIOK1, that cleaves the 20S rRNA to 18S. We further utilized RNAi and CRISPR-Cas9 technologies to perform candidate-based reverse genetic screens and identified additional pre-rRNA processing factors that suppressed risiRNA production. Therefore, we concluded that erroneous rRNAs can trigger risiRNA generation and subsequently, turn on the nuclear RNAi-mediated gene silencing pathway to inhibit pre-rRNA expression, which may provide a quality control mechanism to maintain homeostasis of rRNAs.
Collapse
|
35
|
Liao Z, Kjellin J, Hoeppner MP, Grabherr M, Söderbom F. Global characterization of the Dicer-like protein DrnB roles in miRNA biogenesis in the social amoeba Dictyostelium discoideum. RNA Biol 2018; 15:937-954. [PMID: 29966484 PMCID: PMC6161686 DOI: 10.1080/15476286.2018.1481697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Micro (mi)RNAs regulate gene expression in many eukaryotic organisms where they control diverse biological processes. Their biogenesis, from primary transcripts to mature miRNAs, have been extensively characterized in animals and plants, showing distinct differences between these phylogenetically distant groups of organisms. However, comparably little is known about miRNA biogenesis in organisms whose evolutionary position is placed in between plants and animals and/or in unicellular organisms. Here, we investigate miRNA maturation in the unicellular amoeba Dictyostelium discoideum, belonging to Amoebozoa, which branched out after plants but before animals. High-throughput sequencing of small RNAs and poly(A)-selected RNAs demonstrated that the Dicer-like protein DrnB is required, and essentially specific, for global miRNA maturation in D. discoideum. Our RNA-seq data also showed that longer miRNA transcripts, generally preceded by a T-rich putative promoter motif, accumulate in a drnB knock-out strain. For two model miRNAs we defined the transcriptional start sites (TSSs) of primary (pri)-miRNAs and showed that they carry the RNA polymerase II specific m7G-cap. The generation of the 3ʹ-ends of these pri-miRNAs differs, with pri-mir-1177 reading into the downstream gene, and pri-mir-1176 displaying a distinct end. This 3´-end is processed to shorter intermediates, stabilized in DrnB-depleted cells, of which some carry a short oligo(A)-tail. Furthermore, we identified 10 new miRNAs, all DrnB dependent and developmentally regulated. Thus, the miRNA machinery in D. discoideum shares features with both plants and animals, which is in agreement with its evolutionary position and perhaps also an adaptation to its complex lifestyle: unicellular growth and multicellular development.
Collapse
Affiliation(s)
- Zhen Liao
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Jonas Kjellin
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Marc P Hoeppner
- b Department of Medical Biochemistry and Microbiology , Uppsala University , Uppsala , Sweden.,c Christian-Albrechts-University of Kiel, Institute of Clinical Molecular Biology , Kiel , Germany
| | - Manfred Grabherr
- b Department of Medical Biochemistry and Microbiology , Uppsala University , Uppsala , Sweden
| | - Fredrik Söderbom
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| |
Collapse
|
36
|
RNA Polymerase II Transcription Attenuation at the Yeast DNA Repair Gene, DEF1, Involves Sen1-Dependent and Polyadenylation Site-Dependent Termination. G3-GENES GENOMES GENETICS 2018; 8:2043-2058. [PMID: 29686108 PMCID: PMC5982831 DOI: 10.1534/g3.118.200072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Termination of RNA Polymerase II (Pol II) activity serves a vital cellular role by separating ubiquitous transcription units and influencing RNA fate and function. In the yeast Saccharomyces cerevisiae, Pol II termination is carried out by cleavage and polyadenylation factor (CPF-CF) and Nrd1-Nab3-Sen1 (NNS) complexes, which operate primarily at mRNA and non-coding RNA genes, respectively. Premature Pol II termination (attenuation) contributes to gene regulation, but there is limited knowledge of its prevalence and biological significance. In particular, it is unclear how much crosstalk occurs between CPF-CF and NNS complexes and how Pol II attenuation is modulated during stress adaptation. In this study, we have identified an attenuator in the DEF1 DNA repair gene, which includes a portion of the 5′-untranslated region (UTR) and upstream open reading frame (ORF). Using a plasmid-based reporter gene system, we conducted a genetic screen of 14 termination mutants and their ability to confer Pol II read-through defects. The DEF1 attenuator behaved as a hybrid terminator, relying heavily on CPF-CF and Sen1 but without Nrd1 and Nab3 involvement. Our genetic selection identified 22 cis-acting point mutations that clustered into four regions, including a polyadenylation site efficiency element that genetically interacts with its cognate binding-protein Hrp1. Outside of the reporter gene context, a DEF1 attenuator mutant increased mRNA and protein expression, exacerbating the toxicity of a constitutively active Def1 protein. Overall, our data support a biologically significant role for transcription attenuation in regulating DEF1 expression, which can be modulated during the DNA damage response.
Collapse
|
37
|
Bresson S, Tollervey D. Surveillance-ready transcription: nuclear RNA decay as a default fate. Open Biol 2018; 8:170270. [PMID: 29563193 PMCID: PMC5881035 DOI: 10.1098/rsob.170270] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic cells synthesize enormous quantities of RNA from diverse classes, most of which are subject to extensive processing. These processes are inherently error-prone, and cells have evolved robust quality control mechanisms to selectively remove aberrant transcripts. These surveillance pathways monitor all aspects of nuclear RNA biogenesis, and in addition remove nonfunctional transcripts arising from spurious transcription and a host of non-protein-coding RNAs (ncRNAs). Surprisingly, this is largely accomplished with only a handful of RNA decay enzymes. It has, therefore, been unclear how these factors efficiently distinguish between functional RNAs and huge numbers of diverse transcripts that must be degraded. Here we describe how bona fide transcripts are specifically protected, particularly by 5' and 3' modifications. Conversely, a plethora of factors associated with the nascent transcripts all act to recruit the RNA quality control, surveillance and degradation machinery. We conclude that initiating RNAPII is 'surveillance ready', with degradation being a default fate for all transcripts that lack specific protective features. We further postulate that this promiscuity is a key feature that allowed the proliferation of vast numbers of ncRNAs in eukaryotes, including humans.
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
38
|
Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH, Fasken MB. The RNA exosome and RNA exosome-linked disease. RNA (NEW YORK, N.Y.) 2018; 24:127-142. [PMID: 29093021 PMCID: PMC5769741 DOI: 10.1261/rna.064626.117] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The RNA exosome is an evolutionarily conserved, ribonuclease complex that is critical for both processing and degradation of a variety of RNAs. Cofactors that associate with the RNA exosome likely dictate substrate specificity for this complex. Recently, mutations in genes encoding both structural subunits of the RNA exosome and its cofactors have been linked to human disease. Mutations in the RNA exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are similar autosomal-recessive, neurodegenerative diseases. Mutations in the RNA exosome gene EXOSC2 cause a distinct syndrome with various tissue-specific phenotypes including retinitis pigmentosa and mild intellectual disability. Mutations in genes that encode RNA exosome cofactors also cause tissue-specific diseases with complex phenotypes. How mutations in these genes give rise to distinct, tissue-specific diseases is not clear. In this review, we discuss the role of the RNA exosome complex and its cofactors in human disease, consider the amino acid changes that have been implicated in disease, and speculate on the mechanisms by which exosome gene mutations could underlie dysfunction and disease.
Collapse
Affiliation(s)
- Derrick J Morton
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Stephanie K Jones
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Sara W Leung
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Milo B Fasken
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| |
Collapse
|
39
|
De Almeida C, Scheer H, Zuber H, Gagliardi D. RNA uridylation: a key posttranscriptional modification shaping the coding and noncoding transcriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28984054 DOI: 10.1002/wrna.1440] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022]
Abstract
RNA uridylation is a potent and widespread posttranscriptional regulator of gene expression. RNA uridylation has been detected in a range of eukaryotes including trypanosomes, animals, plants, and fungi, but with the noticeable exception of budding yeast. Virtually all classes of eukaryotic RNAs can be uridylated and uridylation can also tag viral RNAs. The untemplated addition of a few uridines at the 3' end of a transcript can have a decisive impact on RNA's fate. In rare instances, uridylation is an intrinsic step in the maturation of noncoding RNAs like for the U6 spliceosomal RNA or mitochondrial guide RNAs in trypanosomes. Uridylation can also switch specific miRNA precursors from a degradative to a processing mode. This switch depends on the number of uridines added which is regulated by the cellular context. Yet, the typical consequence of uridylation on mature noncoding RNAs or their precursors is to accelerate decay. Importantly, mRNAs are also tagged by uridylation. In fact, the advent of novel high throughput sequencing protocols has recently revealed the pervasiveness of mRNA uridylation, from plants to humans. As for noncoding RNAs, the main function to date for mRNA uridylation is to promote degradation. Yet, additional roles begin to be ascribed to U-tailing such as the control of mRNA deadenylation, translation control and possibly storage. All these new findings illustrate that we are just beginning to appreciate the diversity of roles played by RNA uridylation and its full temporal and spatial implication in regulating gene expression. WIREs RNA 2018, 9:e1440. doi: 10.1002/wrna.1440 This article is categorized under: RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Caroline De Almeida
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Scheer
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
40
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
41
|
Chen X, Poorey K, Carver MN, Müller U, Bekiranov S, Auble DT, Brow DA. Transcriptomes of six mutants in the Sen1 pathway reveal combinatorial control of transcription termination across the Saccharomyces cerevisiae genome. PLoS Genet 2017; 13:e1006863. [PMID: 28665995 PMCID: PMC5513554 DOI: 10.1371/journal.pgen.1006863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/17/2017] [Accepted: 06/10/2017] [Indexed: 01/04/2023] Open
Abstract
Transcriptome studies on eukaryotic cells have revealed an unexpected abundance and diversity of noncoding RNAs synthesized by RNA polymerase II (Pol II), some of which influence the expression of protein-coding genes. Yet, much less is known about biogenesis of Pol II non-coding RNA than mRNAs. In the budding yeast Saccharomyces cerevisiae, initiation of non-coding transcripts by Pol II appears to be similar to that of mRNAs, but a distinct pathway is utilized for termination of most non-coding RNAs: the Sen1-dependent or “NNS” pathway. Here, we examine the effect on the S. cerevisiae transcriptome of conditional mutations in the genes encoding six different essential proteins that influence Sen1-dependent termination: Sen1, Nrd1, Nab3, Ssu72, Rpb11, and Hrp1. We observe surprisingly diverse effects on transcript abundance for the different proteins that cannot be explained simply by differing severity of the mutations. Rather, we infer from our results that termination of Pol II transcription of non-coding RNA genes is subject to complex combinatorial control that likely involves proteins beyond those studied here. Furthermore, we identify new targets and functions of Sen1-dependent termination, including a role in repression of meiotic genes in vegetative cells. In combination with other recent whole-genome studies on termination of non-coding RNAs, our results provide promising directions for further investigation. The information stored in the DNA of a cell’s chromosomes is transmitted to the rest of the cell by transcribing the DNA into RNA copies or “transcripts”. The fidelity of this process, and thus the health of the cell, depends critically on the proper function of proteins that direct transcription. Since hundreds of genes, each specifying a unique RNA transcript, are arranged in tandem along each chromosome, the beginning and end of each gene must be marked in the DNA sequence. Although encoded in DNA, the signal for terminating an RNA transcript is usually recognized in the transcript itself. We examined the genome-wide functional targets of six proteins implicated in transcription termination by identifying transcripts whose structure or abundance is altered by a mutation that compromises the activity of each protein. For a small minority of transcripts, a mutation in any of the six proteins disrupts termination. Much more commonly, a transcript is affected by a mutation in only one or a few of the six proteins, revealing the varying extent to which the proteins cooperate with one another. We discovered affected transcripts that were not known to be controlled by any of the six proteins, including a cohort of genes required for meiosis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kunal Poorey
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Melissa N. Carver
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Ulrika Müller
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, United States of America
- * E-mail: (DAB); (DTA)
| | - David A. Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail: (DAB); (DTA)
| |
Collapse
|
42
|
Tomecki R, Sikorski PJ, Zakrzewska-Placzek M. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Lett 2017; 591:1801-1850. [PMID: 28524231 DOI: 10.1002/1873-3468.12682] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | | | | |
Collapse
|
43
|
Onderak AM, Anderson JT. Loss of the RNA helicase SKIV2L2 impairs mitotic progression and replication-dependent histone mRNA turnover in murine cell lines. RNA (NEW YORK, N.Y.) 2017; 23:910-926. [PMID: 28351885 PMCID: PMC5435864 DOI: 10.1261/rna.060640.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
RNA surveillance via the nuclear exosome requires cofactors such as the helicase SKIV2L2 to process and degrade certain noncoding RNAs. This research aimed to characterize the phenotype associated with RNAi knockdown of Skiv2l2 in two murine cancer cell lines: Neuro2A and P19. SKIV2L2 depletion in Neuro2A and P19 cells induced changes in gene expression indicative of cell differentiation and reduced cellular proliferation by 30%. Propidium iodide-based cell-cycle analysis of Skiv2l2 knockdown cells revealed defective progression through the G2/M phase and an accumulation of mitotic cells, suggesting SKIV2L2 contributes to mitotic progression. Since SKIV2L2 targets RNAs to the nuclear exosome for processing and degradation, we identified RNA targets elevated in cells depleted of SKIV2L2 that could account for the observed twofold increase in mitotic cells. Skiv2l2 knockdown cells accumulated replication-dependent histone mRNAs, among other RNAs, that could impede mitotic progression and indirectly trigger differentiation.
Collapse
Affiliation(s)
- Alexis M Onderak
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201, USA
| | - James T Anderson
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
44
|
Tailing and degradation of Argonaute-bound small RNAs protect the genome from uncontrolled RNAi. Nat Commun 2017; 8:15332. [PMID: 28541282 PMCID: PMC5458512 DOI: 10.1038/ncomms15332] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/21/2017] [Indexed: 12/30/2022] Open
Abstract
RNAi is a conserved mechanism in which small RNAs induce silencing of complementary targets. How Argonaute-bound small RNAs are targeted for degradation is not well understood. We show that the adenyl-transferase Cid14, a member of the TRAMP complex, and the uridyl-transferase Cid16 add non-templated nucleotides to Argonaute-bound small RNAs in fission yeast. The tailing of Argonaute-bound small RNAs recruits the 3'-5' exonuclease Rrp6 to degrade small RNAs. Failure in degradation of Argonaute-bound small RNAs results in accumulation of 'noise' small RNAs on Argonaute and targeting of diverse euchromatic genes by RNAi. To protect themselves from uncontrolled RNAi, cid14Δ cells exploit the RNAi machinery and silence genes essential for RNAi itself, which is required for their viability. Our data indicate that surveillance of Argonaute-bound small RNAs by Cid14/Cid16 and the exosome protects the genome from uncontrolled RNAi and reveal a rapid RNAi-based adaptation to stress conditions.
Collapse
|
45
|
Meola N, Jensen TH. Targeting the nuclear RNA exosome: Poly(A) binding proteins enter the stage. RNA Biol 2017; 14:820-826. [PMID: 28421898 DOI: 10.1080/15476286.2017.1312227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Centrally positioned in nuclear RNA metabolism, the exosome deals with virtually all transcript types. This 3'-5' exo- and endo-nucleolytic degradation machine is guided to its RNA targets by adaptor proteins that enable substrate recognition. Recently, the discovery of the 'Poly(A) tail exosome targeting (PAXT)' connection as an exosome adaptor to human nuclear polyadenylated transcripts has relighted the interest of poly(A) binding proteins (PABPs) in both RNA productive and destructive processes.
Collapse
Affiliation(s)
- Nicola Meola
- a Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| | - Torben Heick Jensen
- a Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| |
Collapse
|
46
|
Lin CJ, Wen J, Bejarano F, Hu F, Bortolamiol-Becet D, Kan L, Sanfilippo P, Kondo S, Lai EC. Characterization of a TUTase/RNase complex required for Drosophila gametogenesis. RNA (NEW YORK, N.Y.) 2017; 23:284-296. [PMID: 27974621 PMCID: PMC5311484 DOI: 10.1261/rna.059527.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Post-transcriptional regulatory strategies that involve coupling between terminal uridyltransferase (TUTase) and exoribonuclease enzymes have recently been characterized in diverse species. Of note, the 3' exoribonuclease Dis3L2 has received substantial attention as a factor that metabolizes uridylated substrates in contexts such as general mRNA degradation, turnover of specific miRNAs, and quality control of noncoding RNAs. To date, most studies of Dis3L2 have focused on fungi and mammalian cells. Here, we introduce Drosophila as a system that permits analysis of molecular mechanisms as well as the ability to interrogate organismal phenotypes. We started with a structure-function analysis of the Drosophila TUTase Tailor, which we recently identified to inhibit biogenesis of splicing-derived miRNA hairpins. Next, we show that Tailor/Dis3L2 form a complex via N-terminal domains in the respective proteins that are distinct from their catalytic domains. In vitro, Dis3L2 has nuclease activity, but substrate oligouridylation by Tailor stimulates their degradation by Dis3L2, especially for structured substrates. We analyzed mutants of Tailor and Dis3L2, which are viable and lack overt morphological defects. Instead, these mutants exhibit defects in female and male fertility, implying specific requirements in the germline. Dis3L2 defects are more severe than Tailor, and their requirements appear stronger in males than in females. In particular, loss of Dis3L2 completely blocks productive spermatogenesis, causing male sterility. RNA-seq analysis from single- and double-mutant testes reveals aberrant gene expression programs and suggests that noncoding RNAs may be preferentially affected by Dis3L2. Overall, our studies of a new tailing/trimming complex reveal unexpectedly specific requirements during gametogenesis.
Collapse
Affiliation(s)
- Ching-Jung Lin
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
- Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
| | - Jiayu Wen
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
| | - Fernando Bejarano
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
| | - Fuqu Hu
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
| | - Diane Bortolamiol-Becet
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
| | - Lijuan Kan
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
| | - Piero Sanfilippo
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Eric C Lai
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
| |
Collapse
|
47
|
Patrick EM, Srinivasan S, Jankowsky E, Comstock MJ. The RNA helicase Mtr4p is a duplex-sensing translocase. Nat Chem Biol 2016; 13:99-104. [PMID: 27870836 DOI: 10.1038/nchembio.2234] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/29/2016] [Indexed: 12/30/2022]
Abstract
The conserved Saccharomyces cerevisiae Ski2-like RNA helicase Mtr4p plays essential roles in eukaryotic nuclear RNA processing. RNA helicase activity of Mtr4p is critical for biological functions of the enzyme, but the molecular basis for RNA unwinding is not understood. Here, single-molecule high-resolution optical trapping measurements reveal that Mtr4p unwinds RNA duplexes by 3'-to-5' translocation on the loading strand, that strand separation occurs in discrete steps of 6 base pairs and that a single Mtr4p molecule performs consecutive unwinding steps. We further show that RNA unwinding by Mtr4p requires interaction with upstream RNA duplex. Inclusion of Mtr4p within the TRAMP complex increases the rate constant for unwinding initiation but does not change the characteristics of Mtr4p's helicase mechanism. Our data indicate that Mtr4p utilizes a previously unknown unwinding mode that combines aspects of canonical translocating helicases and non-canonical duplex-sensing helicases, thereby restricting directional translocation to duplex regions.
Collapse
Affiliation(s)
- Eric M Patrick
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
| | - Sukanya Srinivasan
- Center for RNA Molecular Biology and Department of Biochemistry, Case Western University, Cleveland, Ohio, USA
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology and Department of Biochemistry, Case Western University, Cleveland, Ohio, USA
| | - Matthew J Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
48
|
Reimão-Pinto MM, Manzenreither RA, Burkard TR, Sledz P, Jinek M, Mechtler K, Ameres SL. Molecular basis for cytoplasmic RNA surveillance by uridylation-triggered decay in Drosophila. EMBO J 2016; 35:2417-2434. [PMID: 27729457 DOI: 10.15252/embj.201695164] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023] Open
Abstract
The posttranscriptional addition of nucleotides to the 3' end of RNA regulates the maturation, function, and stability of RNA species in all domains of life. Here, we show that in flies, 3' terminal RNA uridylation triggers the processive, 3'-to-5' exoribonucleolytic decay via the RNase II/R enzyme CG16940, a homolog of the human Perlman syndrome exoribonuclease Dis3l2. Together with the TUTase Tailor, dmDis3l2 forms the cytoplasmic, terminal RNA uridylation-mediated processing (TRUMP) complex that functionally cooperates in the degradation of structured RNA RNA immunoprecipitation and high-throughput sequencing reveals a variety of TRUMP complex substrates, including abundant non-coding RNA, such as 5S rRNA, tRNA, snRNA, snoRNA, and the essential RNase MRP Based on genetic and biochemical evidence, we propose a key function of the TRUMP complex in the cytoplasmic quality control of RNA polymerase III transcripts. Together with high-throughput biochemical characterization of dmDis3l2 and bacterial RNase R, our results imply a conserved molecular function of RNase II/R enzymes as "readers" of destabilizing posttranscriptional marks-uridylation in eukaryotes and adenylation in prokaryotes-that play important roles in RNA surveillance.
Collapse
Affiliation(s)
| | | | - Thomas R Burkard
- Institute of Molecular Biotechnology, IMBA, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Pawel Sledz
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Karl Mechtler
- Institute of Molecular Biotechnology, IMBA, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Stefan L Ameres
- Institute of Molecular Biotechnology, IMBA, Vienna Biocenter Campus (VBC), Vienna, Austria
| |
Collapse
|
49
|
Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3125-3147. [PMID: 27713097 DOI: 10.1016/j.bbamcr.2016.09.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022]
Abstract
RNA decay plays a crucial role in post-transcriptional regulation of gene expression. Work conducted over the last decades has defined the major mRNA decay pathways, as well as enzymes and their cofactors responsible for these processes. In contrast, our knowledge of the mechanisms of degradation of non-protein coding RNA species is more fragmentary. This review is focused on the cytoplasmic pathways of mRNA and ncRNA degradation in eukaryotes. The major 3' to 5' and 5' to 3' mRNA decay pathways are described with emphasis on the mechanisms of their activation by the deprotection of RNA ends. More recently discovered 3'-end modifications such as uridylation, and their relevance to cytoplasmic mRNA decay in various model organisms, are also discussed. Finally, we provide up-to-date findings concerning various pathways of non-coding RNA decay in the cytoplasm.
Collapse
Affiliation(s)
- Anna Łabno
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
50
|
Maity A, Chaudhuri A, Das B. DRN and TRAMP degrade specific and overlapping aberrant mRNAs formed at various stages of mRNP biogenesis inSaccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow088. [DOI: 10.1093/femsyr/fow088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
|