1
|
Santiago MJ, Chinnapaiyan S, Panda K, Rahman MS, Ghorai S, Rahman I, Black SM, Liu Y, Unwalla HJ. Altered Host microRNAomics in HIV Infections: Therapeutic Potentials and Limitations. Int J Mol Sci 2024; 25:8809. [PMID: 39201495 PMCID: PMC11354509 DOI: 10.3390/ijms25168809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
microRNAs have emerged as essential regulators of health and disease, attracting significant attention from researchers across diverse disciplines. Following their identification as noncoding oligonucleotides intricately involved in post-transcriptional regulation of protein expression, extensive efforts were devoted to elucidating and validating their roles in fundamental metabolic pathways and multiple pathologies. Viral infections are significant modifiers of the host microRNAome. Specifically, the Human Immunodeficiency Virus (HIV), which affects approximately 39 million people worldwide and has no definitive cure, was reported to induce significant changes in host cell miRNA profiles. Identifying and understanding the effects of the aberrant microRNAome holds potential for early detection and therapeutic designs. This review presents a comprehensive overview of the impact of HIV on host microRNAome. We aim to review the cause-and-effect relationship between the HIV-induced aberrant microRNAome that underscores miRNA's therapeutic potential and acknowledge its limitations.
Collapse
Affiliation(s)
- Maria J. Santiago
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA;
| | - Stephen M. Black
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| |
Collapse
|
2
|
Xue J, Zhou D, Zhou J, Du X, Zhang X, Liu X, Ding L, Cheng Z. miR-155 facilitates the synergistic replication between avian leukosis virus subgroup J and reticuloendotheliosis virus by targeting a dual pathway. J Virol 2023; 97:e0093723. [PMID: 37909729 PMCID: PMC10688374 DOI: 10.1128/jvi.00937-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE The synergy of two oncogenic retroviruses is an essential phenomenon in nature. The synergistic replication of ALV-J and REV in poultry flocks increases immunosuppression and pathogenicity, extends the tumor spectrum, and accelerates viral evolution, causing substantial economic losses to the poultry industry. However, the mechanism of synergistic replication between ALV-J and REV is still incompletely elusive. We observed that microRNA-155 targets a dual pathway, PRKCI-MAPK8 and TIMP3-MMP2, interacting with the U3 region of ALV-J and REV, enabling synergistic replication. This work gives us new targets to modulate ALV-J and REV's synergistic replication, guiding future research on the mechanism.
Collapse
Affiliation(s)
- Jingwen Xue
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Xusheng Du
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Xinyue Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Xiaoyang Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Longying Ding
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| |
Collapse
|
3
|
Han D, Yin W, Zhang X, Lu X, Wu N. hsa-miR-181-5p inhibits human immunodeficiency virus type 1 replication by downregulating DDX3X expression. Virology 2023; 587:109868. [PMID: 37651885 DOI: 10.1016/j.virol.2023.109868] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND HIV-1 infection affects expression profiles of microRNA. miR-181 is found negatively correlated with HIV-1 viral load. This study aimed to explain that miR-181 targets DDX3X, a host factor involved in HIV-1 nuclear export, thereby inhibiting HIV-1 replication. METHODS To verify our hypothesis, first, the relationship between miR-181 expression, DDX3X expression, and HIV-1 viral load was analyzed. Second, miR-181 mimics were transfected into Jurkat cells infected with wild pNL4-3 strain or H9-IIIB cells with HIV-1 replication-competent for HIV-1 viral protein P24(Gag) detection. Besides the reporter gene plasmid containing the DDX3X mRNA sequence was transfected into 293T cells to demonstrate the targeting of miR-181 to the DDX3X mRNA. Finally, the spliced, unspliced, or incompletely spliced HIV-1 transcripts and HIV-1 Tat, Rev, and Gag mRNA were also detected after miR-181 transfection. RESULTS Our result proved that miR-181 significantly reduced the HIV-1 viral protein Gag(P24) level and targeted DDX3X mRNA 3'-UTR, inhibiting the unspliced or incompletely spliced HIV-1 mRNA's nuclear export. CONCLUSION Our results confirmed that miR-181 is involved in HIV-1 viral replication in lymphocytes by downregulating DDX3X expression. The research provides a research basis for future HIV-1 antiviral research.
Collapse
Affiliation(s)
- Dating Han
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wanpeng Yin
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaodi Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Tu X, Zhang H, Chen S, Ding YH, Wu X, Liang R, Shi SS. LncRNA CEBPA-AS1 alleviates cerebral ischemia-reperfusion injury by sponging miR-340-5p regulating APPL1/LKB1/AMPK pathway. FASEB J 2021; 36:e22075. [PMID: 34919285 DOI: 10.1096/fj.202100826rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) regulate neurological damage in cerebral ischemia-reperfusion injury (CIRI). This study aimed to investigate the biological roles of lncRNA CEBPA-AS1 in CIRI. Middle cerebral artery occlusion and ischemia-reperfusion injury (MCAO/IR) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) cell lines were generated; the expression of CEBPA-AS1 was evaluated by qRT-PCR. The effects of CEBPA-AS1 on cell apoptosis and nerve damage were examined. The downstream microRNA (miRNA) and mRNA of CEBPA-AS1 were predicted and verified. We found that overexpression of CEBPA-AS1 could attenuate MCAO/IR-induced nerve damage and neuronal apoptosis in the rat model. Knockdown of CEBPA-AS1 aggravated cell apoptosis and enhanced the production of LDH and MDA in the OGD/R cells. Upon examining the molecular mechanisms, we found that CEBPA-AS1 stimulated APPL1 expression by combining with miR-340-5p, thereby regulating the APPL1/LKB1/AMPK pathway. In the rescue experiments, CEBPA-AS1 overexpression was found to attenuate OGD/R-induced cell apoptosis and MCAO/IR induced nerve damage, while miR-340-5p reversed these effects of CEBPA-AS1. In conclusion, CEBPA-AS1 could decrease CIRI by sponging miR-340-5, regulating the APPL1/LKB1/AMPK pathway.
Collapse
Affiliation(s)
- Xiankun Tu
- Department of Neurosurgery, Neurosurgical Institute of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huabin Zhang
- Department of Neurosurgery, Neurosurgical Institute of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, China
| | - Song Chen
- Department of Neurosurgery, Neurosurgical Institute of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yi-Hang Ding
- Department of Neurosurgery, Neurosurgical Institute of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiyao Wu
- Department of Neurosurgery, Neurosurgical Institute of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, China
| | - Risheng Liang
- Department of Neurosurgery, Neurosurgical Institute of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, China
| | - Song-Sheng Shi
- Department of Neurosurgery, Neurosurgical Institute of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
5
|
Latency-Reversing Agents Induce Differential Responses in Distinct Memory CD4 T Cell Subsets in Individuals on Antiretroviral Therapy. Cell Rep 2020; 29:2783-2795.e5. [PMID: 31775045 DOI: 10.1016/j.celrep.2019.10.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/11/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Latent proviruses persist in central (TCM), transitional (TTM), and effector (TEM) memory cells. We measured the levels of cellular factors involved in HIV gene expression in these subsets. The highest levels of acetylated H4, active nuclear factor κB (NF-κB), and active positive transcription elongation factor b (P-TEFb) were measured in TEM, TCM, and TTM cells, respectively. Vorinostat and romidepsin display opposite abilities to induce H4 acetylation across subsets. Protein kinase C (PKC) agonists are more efficient at inducing NF-κB phosphorylation in TCM cells but more potent at activating PTEF-b in the TEM subset. We selected the most efficient latency-reversing agents (LRAs) and measured their ability to reverse latency in each subset. While ingenol alone has modest activities in the three subsets, its combination with a histone deacetylase inhibitor (HDACi) dramatically increases latency reversal in TCM cells. Altogether, these results indicate that cellular HIV reservoirs are differentially responsive to common LRAs and suggest that combination of compounds will be required to achieve latency reversal in all subsets.
Collapse
|
6
|
Akimbekov NS, Ortoski RA, Razzaque MS. Effects of sunlight exposure and vitamin D supplementation on HIV patients. J Steroid Biochem Mol Biol 2020; 200:105664. [PMID: 32229174 DOI: 10.1016/j.jsbmb.2020.105664] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/02/2019] [Accepted: 03/21/2020] [Indexed: 02/08/2023]
Abstract
Unlike many vitamins derived predominantly from food sources, vitamin D is produced endogenously in the skin upon exposure to sunlight. Ethnicity, skin pigmentation, socioeconomic status, geographic location, climate and sunscreen; all of these factors contribute to the amount of insolation for any given individual. Insufficient insolation creates the prerequisites for vitamin D deficiency. This is particularly true in HIV-infected individuals, who are highly vulnerable to vitamin D insufficiency/deficiency, as it plays a huge role in the musculoskeletal and cardiovascular systems. Antiretroviral therapy may also be a factor in vitamin D deficiency. Today, as the issues of preventing common skeletal and non-skeletal diseases with HIV-infected people are becoming highly relevant, the maintenance of vitamin D levels through exposure to sunlight or supplementation appears to be an effective and safe solution. This review focuses on studies concerning the potential role of vitamin D supplementation through adequate sunlight exposure or dietary intake in HIV-infected people. The biology and epidemiology of HIV infection, as well as the issues related to vitamin D deficiency, its status on immune function, the effect of vitamin D against HIV disease progression and other health aspects of this vitamin, are briefly explained.
Collapse
Affiliation(s)
- Nuraly S Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.
| | - Richard A Ortoski
- Department of Primary Care Education, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA.
| |
Collapse
|
7
|
Vila-Sanjurjo A, Juarez D, Loyola S, Torres M, Leguia M. Minority Gene Expression Profiling: Probing the Genetic Signatures of Pathogenesis Using Ribosome Profiling. J Infect Dis 2020; 221:S341-S357. [PMID: 32221545 DOI: 10.1093/infdis/jiz565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Minority Gene Expression Profiling (MGEP) refers to a scenario where the expression profiles of specific genes of interest are concentrated in a small cellular pool that is embedded within a larger, non-expressive pool. An example of this is the analysis of disease-related genes within sub-populations of blood or biopsied tissues. These systems are characterized by low signal-to-noise ratios that make it difficult, if not impossible, to uncover the desired signatures of pathogenesis in the absence of lengthy, and often problematic, technical manipulations. We have adapted ribosome profiling (RP) workflows from the Illumina to the Ion Proton platform and used them to analyze signatures of pathogenesis in an MGEP model system consisting of human cells eliciting <3% productive dengue infection. We find that RP is powerful enough to identify relevant responses of differentially expressed genes, even in the presence of significant noise. We discuss how to deal with sources of unwanted variation, and propose ways to further improve this powerful approach to the study of pathogenic signatures within MGEP systems.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía and Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Diana Juarez
- Genomics Laboratory, Pontificia Universidad Católica del Perú (PUCP), Lima, Peru.,Virology & Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Lima, Peru
| | - Steev Loyola
- Virology & Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Lima, Peru
| | - Michael Torres
- Virology & Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Lima, Peru
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Perú (PUCP), Lima, Peru.,Virology & Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Lima, Peru
| |
Collapse
|
8
|
Liu TY, Zhang YC, Lin YQ, Hu YF, Zhang Y, Wang D, Wang Y, Ning L. Exploration of invasive mechanisms via global ncRNA-associated virus-host crosstalk. Genomics 2019; 112:1643-1650. [PMID: 31626899 DOI: 10.1016/j.ygeno.2019.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022]
Abstract
Viral infection is a complex pathogenesis and the underlying molecular mechanisms remain poorly understood. In this study, an integrated multiple resources analysis was performed and showed that the cellular ncRNAs and proteins targeted by viruses were primarily "hubs" and "bottlenecks" in the human ncRNA/protein-protein interaction. The common proteins targeted by both viral ncRNAs and proteins tended to skew toward higher degrees and betweenness compared with other proteins, showed significant enrichment in the cell death process. Specifically, >800 pairs of human cellular ncRNAs and viral ncRNAs that exhibited a high degree of functional homology were identified, representing potential ncRNA-mediated co-regulation patterns of viral invasion. Additionally, clustering analysis further revealed several distinct viral clusters with obvious functional divergence. Overall, this is the first attempt to systematically explore the invasive mechanism via global ncRNA-associated virus-host crosstalk. Our results provide useful information in comprehensively understanding the viral invasive mechanism.
Collapse
Affiliation(s)
- Tian-Yuan Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yun-Cong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yun-Qing Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yong-Fei Hu
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yang Zhang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Lin Ning
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.
| |
Collapse
|
9
|
Singh HO, Jadhav S, Samani D, Dhole TN. Polymorphisms in miRNAs Gene (146a, 149, 196a) and Susceptibility to ARV-associated Hepatotoxicity. Curr Genomics 2019; 20:134-150. [PMID: 31555064 PMCID: PMC6728905 DOI: 10.2174/1389202920666190325161439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 11/26/2022] Open
Abstract
Background: Micro RNAs act as a regulatory layer for pharmacogenomics-related gene ex-pression. It could play a role in the efficacy and toxicity of the drug. The SNPs in miRNA genes are linked with different functional consequences.
Methods: Hence, we examined the miR (146a G/C, 149C/T, and 196aC/T) polymorphisms in 34 pa-tients with hepatotoxicity, 123 patients without hepatotoxicity, and 155 healthy controls using a PCR-RFLP method. Results: In patients with hepatotoxicity, miR196aCT genotype and combined genotype GCT showed a risk for hepatotoxicity severity with borderline significance (OR=2.08, P=0.07; OR=2.88, P=0.06). While comparing between patients with hepatotoxicity and healthy controls, the combined genotypes CCC and GCT have shown a susceptibility to hepatotoxicity severity (OR=2.89, P=0.05; OR=2.60, P=0.09). The miR196TT genotype was associated with the individuals of advanced HIV disease stage (OR=3.68, P=0.04). In HIV patients who consumed alcohol and did not have hepatotoxicity, the miR 196aCT genotype showed susceptibility to acquisition of hepatotoxicity with borderline significance (OR=2.36, P=0.06). Discussion: The miR149TT and 196aTT genotypes showed a risk of acquisition of hepatotoxicity to nevirapine usage among HIV patients without hepatotoxicity (OR=4.19, P=0.07; OR=1.97, P=0.84). In HIV patients with and without hepatotoxicity, the miR 196aCT genotype showed a risk of acquisition of hepatotoxicity and its severity to the combined use of alcohol and nevirapine, respectively (OR=14.18, P=0.08; OR=2.29, P=0.08). In multivariate logistic regression, taking nevirapine, 196aCT genotype had an independent risk factor for hepatotoxicity severity (OR=5.98, P=0.005; OR=2.38, P=0.05). Conclusion: In conclusion, miR196aC/T polymorphism and combined genotypes GCT and CCC may facilitate the risk for acquisition of hepatotoxicity and its severity
Collapse
Affiliation(s)
- Hari Om Singh
- 1Department of Molecular Biology, National AIDS Research Institute, Pune, India; 2Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, 226014-Lucknow, India
| | - Sushma Jadhav
- 1Department of Molecular Biology, National AIDS Research Institute, Pune, India; 2Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, 226014-Lucknow, India
| | - Dharmesh Samani
- 1Department of Molecular Biology, National AIDS Research Institute, Pune, India; 2Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, 226014-Lucknow, India
| | - Tapan N Dhole
- 1Department of Molecular Biology, National AIDS Research Institute, Pune, India; 2Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, 226014-Lucknow, India
| |
Collapse
|
10
|
Chao TC, Zhang Q, Li Z, Tiwari SK, Qin Y, Yau E, Sanchez A, Singh G, Chang K, Kaul M, Karris MAY, Rana TM. The Long Noncoding RNA HEAL Regulates HIV-1 Replication through Epigenetic Regulation of the HIV-1 Promoter. mBio 2019; 10:e02016-19. [PMID: 31551335 PMCID: PMC6759764 DOI: 10.1128/mbio.02016-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 01/01/2023] Open
Abstract
A major challenge in finding a cure for HIV-1/AIDS is the difficulty in identifying and eradicating persistent reservoirs of replication-competent provirus. Long noncoding RNAs (lncRNAs, >200 nucleotides) are increasingly recognized to play important roles in pathophysiology. Here, we report the first genome-wide expression analysis of lncRNAs in HIV-1-infected primary monocyte-derived macrophages (MDMs). We identified an lncRNA, which we named HIV-1-enhanced lncRNA (HEAL), that is upregulated by HIV-1 infection of MDMs, microglia, and T lymphocytes. Peripheral blood mononuclear cells of HIV-1-infected individuals show elevated levels of HEAL Importantly, HEAL is a broad enhancer of multiple HIV-1 strains because depletion of HEAL inhibited X4, R5, and dual-tropic HIV replications and the inhibition was rescued by HEAL overexpression. HEAL forms a complex with the RNA-binding protein FUS, which facilitates HIV replication through at least two mechanisms: (i) HEAL-FUS complex binds the HIV promoter and enhances recruitment of the histone acetyltransferase p300, which positively regulates HIV transcription by increasing histone H3K27 acetylation and P-TEFb enrichment on the HIV promoter, and (ii) HEAL-FUS complex is enriched at the promoter of the cyclin-dependent kinase 2 gene, CDK2, to enhance CDK2 expression. Notably, HEAL knockdown and knockout mediated by RNA interference (RNAi) and CRISPR-Cas9, respectively, prevent HIV-1 recrudescence in T cells and microglia upon cessation of azidothymidine treatment in vitro Our results suggest that silencing of HEAL or perturbation of the HEAL-FUS ribonucleoprotein complex could provide a new epigenetic silencing strategy to eradicate viral reservoirs and effect a cure for HIV-1/AIDS.IMPORTANCE Despite our increased understanding of the functions of lncRNAs, their potential to develop HIV/AIDS cure strategies remains unexplored. A genome-wide analysis of lncRNAs in HIV-1-infected primary monocyte-derived macrophages (MDMs) was performed, and 1,145 differentially expressed lncRNAs were identified. An lncRNA named HIV-1-enhanced lncRNA (HEAL) is upregulated by HIV-1 infection and promotes HIV replication in T cells and macrophages. HEAL forms a complex with the RNA-binding protein FUS to enhance transcriptional coactivator p300 recruitment to the HIV promoter. Furthermore, HEAL knockdown and knockout prevent HIV-1 recrudescence in T cells and microglia upon cessation of azidothymidine treatment, suggesting HEAL as a potential therapeutic target to cure HIV-1/AIDS.
Collapse
Affiliation(s)
- Ti-Chun Chao
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Qiong Zhang
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Zhonghan Li
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Shashi Kant Tiwari
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Yue Qin
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Edwin Yau
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Ana Sanchez
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Gatikrushna Singh
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Kungyen Chang
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Marcus Kaul
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Maile Ann Young Karris
- Division of Infectious Diseases, UCSD Center for AIDS Research, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tariq M Rana
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Cortés-Rubio CN, Salgado-Montes de Oca G, Prado-Galbarro FJ, Matías-Florentino M, Murakami-Ogasawara A, Kuri-Cervantes L, Carranco-Arenas AP, Ormsby CE, Cortés-Rubio IK, Reyes-Terán G, Ávila-Ríos S. Longitudinal variation in human immunodeficiency virus long terminal repeat methylation in individuals on suppressive antiretroviral therapy. Clin Epigenetics 2019; 11:134. [PMID: 31519219 PMCID: PMC6743183 DOI: 10.1186/s13148-019-0735-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Persistence of latent, replication-competent provirus in CD4+ T cells of human immunodeficiency virus (HIV)-infected individuals on antiretroviral treatment (ART) is the main obstacle for virus eradication. Methylation of the proviral 5' long terminal repeat (LTR) promoter region has been proposed as a possible mechanism contributing to HIV latency; however, conflicting observations exist regarding its relevance. We assessed 5'-LTR methylation profiles in total CD4+ T cells from blood of 12 participants on short-term ART (30 months) followed up for 2 years, and a cross-sectional group of participants with long-term ART (6-15 years), using next generation sequencing. We then looked for associations between specific 5'-LTR methylation patterns and baseline and follow-up clinical characteristics. RESULTS 5'-LTR methylation was observed in all participants and behaved dynamically. The number of 5'-LTR variants found per sample ranged from 1 to 13, with median sequencing depth of 16270× (IQR 4107×-46760×). An overall significant 5'-LTR methylation increase was observed at month 42 compared to month 30 (median CpG Methylation Index: 74.7% vs. 0%, p = 0.025). This methylation increase was evident in a subset of participants (methylation increase group), while the rest maintained fairly high and constant methylation (constant methylation group). Persons in the methylation increase group were younger, had higher CD4+ T cell gain, larger CD8% decrease, and larger CD4/CD8 ratio change after 48 months on ART (all p < 0.001). Using principal component analysis, the constant methylation and methylation increase groups showed low evidence of separation along time (factor 2: p = 0.04). Variance was largely explained (21%) by age, CD4+/CD8+ T cell change, and CD4+ T cell subpopulation proportions. Persons with long-term ART showed overall high methylation (median CpG Methylation Index: 78%; IQR 71-87%). No differences were observed in residual plasma viral load or proviral load comparing individuals on short-term (both at 30 or 42 months) and long-term ART. CONCLUSIONS Our study shows evidence that HIV 5'-LTR methylation in total CD4+ T cells is dynamic along time and that it can follow different temporal patterns that are associated with a combination of baseline and follow-up clinical characteristics. These observations may account for differences observed between previous contrasting studies.
Collapse
Affiliation(s)
- César N. Cortés-Rubio
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Tlalpan 4502, 14080 Mexico City, Mexico
| | - Gonzalo Salgado-Montes de Oca
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Tlalpan 4502, 14080 Mexico City, Mexico
| | | | - Margarita Matías-Florentino
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Tlalpan 4502, 14080 Mexico City, Mexico
| | - Akio Murakami-Ogasawara
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Tlalpan 4502, 14080 Mexico City, Mexico
| | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Ana P. Carranco-Arenas
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Tlalpan 4502, 14080 Mexico City, Mexico
| | - Christopher E. Ormsby
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Tlalpan 4502, 14080 Mexico City, Mexico
| | | | - Gustavo Reyes-Terán
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Tlalpan 4502, 14080 Mexico City, Mexico
| | - Santiago Ávila-Ríos
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Tlalpan 4502, 14080 Mexico City, Mexico
| |
Collapse
|
12
|
Porcine endemic diarrhea virus infection regulates long noncoding RNA expression. Virology 2018; 527:89-97. [PMID: 30471453 PMCID: PMC7112091 DOI: 10.1016/j.virol.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in various life processes. However, the lncRNA expression and potential functions in porcine endemic diarrhea virus (PEDV) infection and host defense are still poorly understood. In this study, we investigated the lncRNA expression profiles during PEDV infection in intestinal porcine epithelial cell-jejunum 2 (IPEC-J2) cell lines by next-generation sequencing and identified 6188 novel lncRNAs. The functional annotation analysis revealed that these lncRNAs might be associated with many immunity-related genes. We next selected candidate lncRNAs related to immune response pathways and further identified their differential expression in PEDV-infected IPEC-J2 cells and newborn piglets. Our results demonstrated that PEDV infection regulated lncRNA expression patterns in both the IPEC-J2 cell line and piglet ileum. These findings provide the first large-scale survey of lncRNAs associated with PEDV infection, specifically the lncRNAs responsible for the activation of the immune system within the ileum.
Collapse
|
13
|
Analysis of expression profiles of long noncoding RNAs and mRNAs in brains of mice infected by rabies virus by RNA sequencing. Sci Rep 2018; 8:11858. [PMID: 30089776 PMCID: PMC6082909 DOI: 10.1038/s41598-018-30359-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
Rabies, caused by rabies virus (RABV), is still the deadliest infectious disease. Mechanism of host immune response upon RABV infection is not yet fully understood. Accumulating evidences suggest that long noncoding RNAs (lncRNAs) plays key roles in host antiviral responses. However, expression profile and function of lncRNAs in RABV infection remain unclear. In the present study, expression profile of lncRNAs and mRNAs profiles were investigated in RABV-infected brain tissues of mice by RNA sequencing. A total of 140 lncRNAs and 3,807 mRNAs were differentially expressed in RABV-infected animals. The functional annotation and enrichment analysis using Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that differentially expressed transcripts were predominantly involved in signaling pathways related to host immune response. The expression profiles of the selected lncRNAs in brains of mice during RABV infections were verified by quantitative real time polymerase chain reaction (qRT-PCR). To our knowledge, this is the first report to profile the lncRNA expression in RABV infected mice. Our findings provide insights into understanding the role of lncRNAs in host immune response against RABV infection.
Collapse
|
14
|
Abstract
BACKGROUND The viral transactivator Tat protein is a key modulator of HIV-1 replication, as it regulates transcriptional elongation from the integrated proviral genome. Tat recruits the human transcription elongation factor b, and other host proteins, such as the super elongation complex, to activate the cellular RNA polymerase II, normally stalled shortly after transcription initiation at the HIV promoter. By means of a complex set of interactions with host cellular factors, Tat determines the fate of viral activity within the infected cell. The virus will either actively replicate to promote dissemination in blood and tissues, or become dormant mostly in memory CD4+ T cells, as part of a small but long-living latent reservoir, the main obstacle for HIV eradication. OBJECTIVE In this review, we summarize recent advances in the understanding of the multi-step mechanism that regulates Tat-mediated HIV-1 transcription and RNA polymerase II release, to promote viral transcription elongation. Early events of the human transcription elongation factor b release from the inhibitory 7SK small nuclear ribonucleoprotein complex and its recruitment to the HIV promoter will be discussed. Specific roles of the super elongation complex subunits during transcription elongation, and insight on recently identified cellular factors and mechanisms regulating HIV latency will be detailed. CONCLUSION Understanding the complexity of HIV transcriptional regulation by host factors may open the door for development of novel strategies to eradicate the resilient latent reservoir.
Collapse
Affiliation(s)
- Guillaume Mousseau
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| | - Susana T Valente
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| |
Collapse
|
15
|
Chen L, Chen L, Zuo L, Gao Z, Shi Y, Yuan P, Han S, Yin J, Peng B, He X, Liu W. Short Communication: Long Noncoding RNA GAS5 Inhibits HIV-1 Replication Through Interaction with miR-873. AIDS Res Hum Retroviruses 2018; 34:544-549. [PMID: 29620929 DOI: 10.1089/aid.2017.0177] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HIV is the causative pathogen of AIDS, which has generated worldwide concern. Long noncoding RNAs (lncRNAs) are a rising star in virus-host cross-talk pathways; they are differentially expressed during many viral infections and are involved in multiple biological processes. Currently, lncRNA growth arrest-specific transcript 5 (GAS5) is known to be downregulated during HIV-1 infection. However, the functions and mechanisms of GAS5 in HIV-1 infection remain largely unknown. In this report, it was found for the first time that GAS5 could inhibit HIV-1 replication. Interestingly, using bioinformatics analyses (with Genomica and starBase.v2.0), GAS5 was found to potentially interact with miR-873. It was further verified that GAS5 could suppress miR-873. Moreover, miR-873 could promote HIV-1 replication. Together, these results not only suggest that GAS5 may inhibit HIV-1 replication through interaction with miR-873 but the results may also provide novel biomarkers for antiviral drugs or potential targets for future therapeutics for HIV/AIDS.
Collapse
Affiliation(s)
- Liujun Chen
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lang Chen
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Luoshiyuan Zuo
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Ziang Gao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yingying Shi
- Department of Immunology, Jianghan University, Wuhan, China
| | - Peipei Yuan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Xu Y, Wang HW, Luo HY, Shu R, Liu J, Sun L, Han XF, Lin N, Wang TH, Zeng YJ, Wang KH. MicroRNA expression profiling of intestinal mucosa tissue predicts multiple crucial regulatory molecules and signaling pathways for gut barrier dysfunction of AIDS patients. Mol Med Rep 2017; 16:8854-8862. [PMID: 28990060 PMCID: PMC5779965 DOI: 10.3892/mmr.2017.7722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus‑1 (HIV‑1) infection severely damages the gut‑associated lymphoid tissue (GALT), the immune system and the gut barrier, which leads to accelerating the disease progression for patients with acquired immune deficiency syndrome (AIDS). Dysregulation of microRNAs (miRNAs) may contribute to this process. However, few studies have investigated the importance of miRNAs in AIDS pathogenesis and progression. The whole miRNA profile of patients with HIV infection from southwest P.R. China and the mode of interaction between HIV‑1 and miRNAs remains to be elucidated. Colon mucosal samples were collected from HIV+ patients and HIV‑ healthy individuals, miRNAs were isolated and subjected to array hybridization in the present study. A total of 476 human and virus‑derived microRNAs were significantly altered in the HIV+ group when compared with the control group (P<0.05), which may be involved in the progression to AIDS. Target genes of the significantly altered miRNAs were predicted using the TargetScan, miRbase and miRanda databases and the 10 shared target genes of upregulated miRNAs and the 391 target genes of downregulated miRNAs were selected. As only 10 target genes were predicted for upregulated miRNAs, subsequent GO and KEGG pathway analyses were focused on the 391 target genes of the downregulated miRNAs. The findings of the present study identified a series of crucial pathways, including cell‑extracellular matrix interaction and chemokine regulation, which indicated close affinity with CD4+ T cell activation. These pathways, involving genes such as integrin α5, led to a gut barrier dysfunction of patients with HIV. Important miRNAs include hsa‑miRNA‑32‑5p, hsa‑miRNA‑195‑5p, hsa‑miRNA‑20b‑5p, hsa‑miRNA‑590‑5p. The expression levels of the miRNAs and their target genes were confirmed using RT‑qPCR. Taking into previous observations, the findings of the present study identified the importance of miRNAs for regulating gut barrier dysfunction via multiple regulatory molecules and signaling pathways, which elucidated the underlying molecular mechanism of gut barrier dysfunction in patients with HIV.
Collapse
Affiliation(s)
- Yu Xu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Department of Experimental Pharmacology, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Hua-Wei Wang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Hua-You Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Ruo Shu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jia Liu
- Department of Experimental Pharmacology, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liang Sun
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xue-Fei Han
- Department of Experimental Pharmacology, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Na Lin
- Department of Experimental Pharmacology, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Ting-Hua Wang
- Department of Experimental Pharmacology, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yu-Jian Zeng
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Kun-Hua Wang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
17
|
Jin C, Cheng L, Höxtermann S, Xie T, Lu X, Wu H, Skaletz-Rorowski A, Brockmeyer NH, Wu N. MicroRNA-155 is a biomarker of T-cell activation and immune dysfunction in HIV-1-infected patients. HIV Med 2016; 18:354-362. [PMID: 27981723 DOI: 10.1111/hiv.12470] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVES MicroRNA-155 (miR-155) regulates T-cell differentiation and activation. It has also been associated with HIV infection. However, it remains unclear whether miR-155 is related to the T-cell response in HIV-infected individuals (e.g. T-cell activation and exhaustion). METHODS We performed a cross-sectional study involving 121 HIV-1-infected patients on highly active antiretroviral therapy (HAART) and 43 HAART-naïve patients. MiR-155 levels in the peripheral blood were determined by quantitative reverse transcription-polymerase chain reaction (PCR). T-cell immune activation, exhaustion, and homeostasis were measured by determining the expression of CD38, programmed death 1 (PD-1) and CD127 via flow cytometry. RESULTS The levels of miR-155 in total peripheral blood mononuclear cells, CD4 T cells and CD8 T cells from HIV-1-infected patients were increased (P < 0.01). Nonresponders and HAART-naïve patients also exhibited a higher percentage of CD8+ CD38+ T cells and a lower percentage of CD4+ CD127+ and CD8+ CD127+ T cells (P < 0.05). We also found higher levels of PD-1 expression on the CD4+ and CD8+ T cells of HIV-1-infected patients (P < 0.05). CONCLUSIONS Our findings suggest that miR-155 levels in the peripheral blood of HIV-1-infected patients are increased and associated with T-cell activation. Therefore, miR-155 is a potential biomarker of the immune response following HIV-1 infection.
Collapse
Affiliation(s)
- C Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - L Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - S Höxtermann
- Department of Dermatology, Venerology and Allergology, Center for Sexual Health and Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - T Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - X Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - A Skaletz-Rorowski
- Department of Dermatology, Venerology and Allergology, Center for Sexual Health and Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany.,Competence Network for HIV/AIDS, Ruhr University Bochum, Bochum, Germany
| | - N H Brockmeyer
- Department of Dermatology, Venerology and Allergology, Center for Sexual Health and Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany.,Competence Network for HIV/AIDS, Ruhr University Bochum, Bochum, Germany
| | - N Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Abstract
The survival of all organisms is dependent on complex, coordinated responses to environmental cues. Non-coding RNAs have been identified as major players in regulation of gene expression, with recent evidence supporting roles for long non-coding (lnc)RNAs in both transcriptional and post-transcriptional control. Evidence from our laboratory shows that lncRNAs have the ability to form hybridized structures called R-loops with specific DNA target sequences in S. cerevisiae, thereby modulating gene expression. In this Point of View, we provide an overview of the nature of lncRNA-mediated control of gene expression in the context of our studies using the GAL gene cluster as a model for controlling the timing of transcription.
Collapse
Affiliation(s)
- Zachary T Beck
- a Department of Biochemistry , Purdue University , West Lafayette , IN , USA
| | - Zheng Xing
- a Department of Biochemistry , Purdue University , West Lafayette , IN , USA
| | - Elizabeth J Tran
- a Department of Biochemistry , Purdue University , West Lafayette , IN , USA.,b Purdue University Center for Cancer Research, Purdue University , West Lafayette , IN , USA
| |
Collapse
|
19
|
Telesnitsky A, Wolin SL. The Host RNAs in Retroviral Particles. Viruses 2016; 8:v8080235. [PMID: 27548206 PMCID: PMC4997597 DOI: 10.3390/v8080235] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
As they assemble, retroviruses encapsidate both their genomic RNAs and several types of host RNA. Whereas limited amounts of messenger RNA (mRNA) are detectable within virion populations, the predominant classes of encapsidated host RNAs do not encode proteins, but instead include endogenous retroelements and several classes of non-coding RNA (ncRNA), some of which are packaged in significant molar excess to the viral genome. Surprisingly, although the most abundant host RNAs in retroviruses are also abundant in cells, unusual forms of these RNAs are packaged preferentially, suggesting that these RNAs are recruited early in their biogenesis: before associating with their cognate protein partners, and/or from transient or rare RNA populations. These RNAs' packaging determinants differ from the viral genome's, and several of the abundantly packaged host ncRNAs serve cells as the scaffolds of ribonucleoprotein particles. Because virion assembly is equally efficient whether or not genomic RNA is available, yet RNA appears critical to the structural integrity of retroviral particles, it seems possible that the selectively encapsidated host ncRNAs might play roles in assembly. Indeed, some host ncRNAs appear to act during replication, as some transfer RNA (tRNA) species may contribute to nuclear import of human immunodeficiency virus 1 (HIV-1) reverse transcription complexes, and other tRNA interactions with the viral Gag protein aid correct trafficking to plasma membrane assembly sites. However, despite high conservation of packaging for certain host RNAs, replication roles for most of these selectively encapsidated RNAs-if any-have remained elusive.
Collapse
Affiliation(s)
- Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sandra L Wolin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
20
|
Bazzini AA, Del Viso F, Moreno-Mateos MA, Johnstone TG, Vejnar CE, Qin Y, Yao J, Khokha MK, Giraldez AJ. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition. EMBO J 2016; 35:2087-2103. [PMID: 27436874 DOI: 10.15252/embj.201694699] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
Cellular transitions require dramatic changes in gene expression that are supported by regulated mRNA decay and new transcription. The maternal-to-zygotic transition is a conserved developmental progression during which thousands of maternal mRNAs are cleared by post-transcriptional mechanisms. Although some maternal mRNAs are targeted for degradation by microRNAs, this pathway does not fully explain mRNA clearance. We investigated how codon identity and translation affect mRNA stability during development and homeostasis. We show that the codon triplet contains translation-dependent regulatory information that influences transcript decay. Codon composition shapes maternal mRNA clearance during the maternal-to-zygotic transition in zebrafish, Xenopus, mouse, and Drosophila, and gene expression during homeostasis across human tissues. Some synonymous codons show consistent stabilizing or destabilizing effects, suggesting that amino acid composition influences mRNA stability. Codon composition affects both polyadenylation status and translation efficiency. Thus, the ribosome interprets two codes within the mRNA: the genetic code which specifies the amino acid sequence and a conserved "codon optimality code" that shapes mRNA stability and translation efficiency across vertebrates.
Collapse
Affiliation(s)
- Ariel A Bazzini
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Florencia Del Viso
- Departments of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Timothy G Johnstone
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yidan Qin
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Mustafa K Khokha
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Departments of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Nakanishi K. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:637-60. [PMID: 27184117 PMCID: PMC5084781 DOI: 10.1002/wrna.1356] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
RNA silencing is a eukaryote‐specific phenomenon in which microRNAs and small interfering RNAs degrade messenger RNAs containing a complementary sequence. To this end, these small RNAs need to be loaded onto an Argonaute protein (AGO protein) to form the effector complex referred to as RNA‐induced silencing complex (RISC). RISC assembly undergoes multiple and sequential steps with the aid of Hsc70/Hsp90 chaperone machinery. The molecular mechanisms for this assembly process remain unclear, despite their significance for the development of gene silencing techniques and RNA interference‐based therapeutics. This review dissects the currently available structures of AGO proteins and proposes models and hypotheses for RISC assembly, covering the conformation of unloaded AGO proteins, the chaperone‐assisted duplex loading, and the slicer‐dependent and slicer‐independent duplex separation. The differences in the properties of RISC between prokaryotes and eukaryotes will also be clarified. WIREs RNA 2016, 7:637–660. doi: 10.1002/wrna.1356 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|