1
|
Arya A, Arora S, Hamid F, Kumar S. PFusionDB: a comprehensive database of plant-specific fusion transcripts. 3 Biotech 2024; 14:282. [PMID: 39479298 PMCID: PMC11519250 DOI: 10.1007/s13205-024-04132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Fusion transcripts (FTs) are well known cancer biomarkers, relatively understudied in plants. Here, we developed PFusionDB (www.nipgr.ac.in/PFusionDB), a novel plant-specific fusion-transcript database. It is a comprehensive repository of 80,170, 39,108, 83,330, and 11,500 unique fusions detected in 1280, 637, 697, and 181 RNA-Seq samples of Arabidopsis thaliana, Oryza sativa japonica, Oryza sativa indica, and Cicer arietinum respectively. Here, a total of 76,599 (Arabidopsis thaliana), 35,480 (Oryza sativa japonica), 72,099 (Oryza sativa indica), and 9524 (Cicer arietinum) fusion transcripts are non-recurrent i.e., only found in one sample. Identification of FTs was performed by using a total of five tools viz. EricScript-Plants, STAR-Fusion, TrinityFusion, SQUID, and MapSplice. At PFusionDB, available fundamental details of fusion events includes the information of parental genes, junction sequence, expression levels of fusion transcripts, breakpoint coordinates, strand information, tissue type, treatment information, fusion type, PFusionDB ID, and Sequence Read Archive (SRA) ID. Further, two search modules: 'Simple Search' and 'Advanced Search', along with a 'Browse' option to data download, are present for the ease of users. Three distinct modules viz. 'BLASTN', 'SW Align', and 'Mapping' are also available for efficient query sequence mapping and alignment to FTs. PFusionDB serves as a crucial resource for delving into the intricate world of fusion transcript in plants, providing researchers with a foundation for further exploration and analysis. Database URL: www.nipgr.ac.in/PFusionDB. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04132-1.
Collapse
Affiliation(s)
- Ajay Arya
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Simran Arora
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Fiza Hamid
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
2
|
Reynoso-Noverón N, Santibáñez-Andrade M, Torres J, Bautista-Ocampo Y, Sánchez-Pérez Y, García-Cuellar CM. Benzene exposure and pediatric leukemia: From molecular clues to epidemiological insights. Toxicol Lett 2024; 400:113-120. [PMID: 39181343 DOI: 10.1016/j.toxlet.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
According to the International Agency for Research on Cancer, leukemia ranks 14th in incidence and 11th in mortality and has a 5-year prevalence of approximately 1300,000 cases. Acute lymphoblastic leukemia is the most common hematopoietic syndrome in children during the first 5 years of life and represents approximately 75 % of all neoplasms among the pediatric population. The development of leukemia is strongly governed by DNA alterations that accelerate the growth of bone marrow cells. Currently, the most examined factor in pediatric leukemia is exposure to multiple compounds, such as hydrocarbons. Benzene, an aromatic hydrocarbon, can cause health challenges and is categorized as a carcinogen. Benzene toxicity has been widely associated with occupational exposure. Importantly, studies are underway to generate evidence that can provide clues regarding the risk of environmental benzene exposure and hematological problems in children. In this review, we summarize the existing evidence regarding the effects of benzene on pediatric leukemia, the associations between the effect of benzene on carcinogenesis, and the presence of certain molecular signatures in benzene-associated pediatric leukemia. Although there is sufficient evidence regarding the effects of benzene on carcinogenesis and leukemia, epidemiological research has primarily focused on occupational risk. Moreover, most benzene-induced molecular and cytogenetic alterations have been widely described in adults but not in the pediatric population. Thus, epidemiological efforts are crucial in the pediatric population in terms of epidemiological, clinical, and biomedical research.
Collapse
Affiliation(s)
- Nancy Reynoso-Noverón
- Dirección de Investigación, Instituto Nacional de Cancerología, Ciudad de México, Mexico.
| | - Miguel Santibáñez-Andrade
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Juan Torres
- Dirección de Investigación, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Yanueh Bautista-Ocampo
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Claudia M García-Cuellar
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico.
| |
Collapse
|
3
|
Cheng B, Xu L, Zhang Y, Yang H, Liu S, Ding S, Zhao H, Sui Y, Wang C, Quan L, Liu J, Liu Y, Wang H, Zheng Z, Wu X, Guo J, Wen Z, Zhang R, Wang F, Liu H, Sun S. Correlation between NGS panel-based mutation results and clinical information in colorectal cancer patients. Heliyon 2024; 10:e29299. [PMID: 38623252 PMCID: PMC11016705 DOI: 10.1016/j.heliyon.2024.e29299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Early mutation identification guides patients with colorectal cancer (CRC) toward targeted therapies. In the present study, 414 patients with CRC were enrolled, and amplicon-based targeted next-generation sequencing (NGS) was then performed to detect genomic alterations within the 73 cancer-related genes in the OncoAim panel. The overall mutation rate was 91.5 % (379/414). Gene mutations were detected in 38/73 genes tested. The most frequently mutated genes were TP53 (60.9 %), KRAS (46.6 %), APC (30.4 %), PIK3CA (15.9 %), FBXW7 (8.2 %), SMAD4 (6.8 %), BRAF (6.5 %), and NRAS (3.9 %). Compared with the wild type, TP53 mutations were associated with low microsatellite instability/microsatellite stability (MSI-L/MSS) (P = 0.007), tumor location (P = 0.043), and histological grade (P = 0.0009); KRAS mutations were associated with female gender (P = 0.026), distant metastasis (P = 0.023), TNM stage (P = 0.013), and histological grade (P = 0.004); APC mutations were associated with patients <64 years of age at diagnosis (P = 0.04); PIK3CA mutations were associated with tumor location (P = 4.97e-06) and female gender (P = 0.018); SMAD4 mutations were associated with tumor location (P = 0.033); BRAF mutations were associated with high MSI (MSI-H; P = 6.968e-07), tumor location (P = 1.58e-06), and histological grade (P = 0.04). Mutations in 164 individuals were found to be pathogenic or likely pathogenic. A total of 26 patients harbored MSI-H tumors and they all had at least one detected gene mutation. Mutated genes were enriched in signaling pathways associated with CRC. The present findings have important implications for improving the personalized treatment of patients with CRC in China.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Lin Xu
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Yunzhi Zhang
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huimin Yang
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Shan Liu
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Shanshan Ding
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Huan Zhao
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Yi Sui
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Chan Wang
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Lanju Quan
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Jinhong Liu
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Ye Liu
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Hongming Wang
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Zhaoqing Zheng
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Xizhao Wu
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Jing Guo
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Zhaohong Wen
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Ruya Zhang
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Fei Wang
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Hongmei Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Suozhu Sun
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| |
Collapse
|
4
|
Hamid F, Arora S, Chitkara P, Kumar S. A Protocol for the Detection of Fusion Transcripts Using RNA-Sequencing Data. Methods Mol Biol 2024; 2812:243-258. [PMID: 39068367 DOI: 10.1007/978-1-0716-3886-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Fusion transcripts are formed when two genes or their mRNAs fuse to produce a novel gene or chimeric transcript. Fusion genes are well-known cancer biomarkers used for cancer diagnosis and as therapeutic targets. Gene fusions are also found in normal physiology and lead to the evolution of novel genes that contribute to better survival and adaptation for an organism. Various in vitro approaches, such as FISH, PCR, RT-PCR, and chromosome banding techniques, have been used to detect gene fusion. However, all these approaches have low resolution and throughput. Due to the development of high-throughput next-generation sequencing technologies, the detection of fusion transcript becomes feasible using whole genome sequencing, RNA-Seq data, and bioinformatics tools. This chapter will overview the general computational protocol for fusion transcript detection from RNA-sequencing datasets.
Collapse
Affiliation(s)
- Fiza Hamid
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Simran Arora
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Pragya Chitkara
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Shailesh Kumar
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India.
| |
Collapse
|
5
|
Ye R, Wang A, Bu B, Luo P, Deng W, Zhang X, Yin S. Viral oncogenes, viruses, and cancer: a third-generation sequencing perspective on viral integration into the human genome. Front Oncol 2023; 13:1333812. [PMID: 38188304 PMCID: PMC10768168 DOI: 10.3389/fonc.2023.1333812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
The link between viruses and cancer has intrigued scientists for decades. Certain viruses have been shown to be vital in the development of various cancers by integrating viral DNA into the host genome and activating viral oncogenes. These viruses include the Human Papillomavirus (HPV), Hepatitis B and C Viruses (HBV and HCV), Epstein-Barr Virus (EBV), and Human T-Cell Leukemia Virus (HTLV-1), which are all linked to the development of a myriad of human cancers. Third-generation sequencing technologies have revolutionized our ability to study viral integration events at unprecedented resolution in recent years. They offer long sequencing capabilities along with the ability to map viral integration sites, assess host gene expression, and track clonal evolution in cancer cells. Recently, researchers have been exploring the application of Oxford Nanopore Technologies (ONT) nanopore sequencing and Pacific BioSciences (PacBio) single-molecule real-time (SMRT) sequencing in cancer research. As viral integration is crucial to the development of cancer via viruses, third-generation sequencing would provide a novel approach to studying the relationship interlinking viral oncogenes, viruses, and cancer. This review article explores the molecular mechanisms underlying viral oncogenesis, the role of viruses in cancer development, and the impact of third-generation sequencing on our understanding of viral integration into the human genome.
Collapse
Affiliation(s)
- Ruichen Ye
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Pathology Single-cell & Bioinformatics Laboratory, Bronx, NY, United States
- Stony Brook University, Stony Brook, NY, United States
| | - Angelina Wang
- Tufts Friedman School of Nutrition, Boston, MA, United States
| | - Brady Bu
- Horace Mann School, Bronx, NY, United States
| | - Pengxiang Luo
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Deng
- Clinical Proteomics Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shanye Yin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Pathology Single-cell & Bioinformatics Laboratory, Bronx, NY, United States
| |
Collapse
|
6
|
Hafstað V, Häkkinen J, Larsson M, Staaf J, Vallon-Christersson J, Persson H. Improved detection of clinically relevant fusion transcripts in cancer by machine learning classification. BMC Genomics 2023; 24:783. [PMID: 38110872 PMCID: PMC10726539 DOI: 10.1186/s12864-023-09889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Genomic rearrangements in cancer cells can create fusion genes that encode chimeric proteins or alter the expression of coding and non-coding RNAs. In some cancer types, fusions involving specific kinases are used as targets for therapy. Fusion genes can be detected by whole genome sequencing (WGS) and targeted fusion panels, but RNA sequencing (RNA-Seq) has the advantageous capability of broadly detecting expressed fusion transcripts. RESULTS We developed a pipeline for validation of fusion transcripts identified in RNA-Seq data using matched WGS data from The Cancer Genome Atlas (TCGA) and applied it to 910 tumors from 11 different cancer types. This resulted in 4237 validated gene fusions, 3049 of them with at least one identified genomic breakpoint. Utilizing validated fusions as true positive events, we trained a machine learning classifier to predict true and false positive fusion transcripts from RNA-Seq data. The final precision and recall metrics of the classifier were 0.74 and 0.71, respectively, in an independent dataset of 249 breast tumors. Application of this classifier to all samples with RNA-Seq data from these cancer types vastly extended the number of likely true positive fusion transcripts and identified many potentially targetable kinase fusions. Further analysis of the validated gene fusions suggested that many are created by intrachromosomal amplification events with microhomology-mediated non-homologous end-joining. CONCLUSIONS A classifier trained on validated fusion events increased the accuracy of fusion transcript identification in samples without WGS data. This allowed the analysis to be extended to all samples with RNA-Seq data, facilitating studies of tumor biology and increasing the number of detected kinase fusions. Machine learning could thus be used in identification of clinically relevant fusion events for targeted therapy. The large dataset of validated gene fusions generated here presents a useful resource for development and evaluation of fusion transcript detection algorithms.
Collapse
Affiliation(s)
- Völundur Hafstað
- Faculty of Medicine, Department of Clinical Sciences Lund, Oncology, Lund University Cancer Centre, Lund, Sweden
| | - Jari Häkkinen
- Faculty of Medicine, Department of Clinical Sciences Lund, Oncology, Lund University Cancer Centre, Lund, Sweden
| | - Malin Larsson
- Department of Physics, Chemistry and Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Linköping University, Linköping, Sweden
| | - Johan Staaf
- Faculty of Medicine, Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Centre, Lund, Sweden
| | - Johan Vallon-Christersson
- Faculty of Medicine, Department of Clinical Sciences Lund, Oncology, Lund University Cancer Centre, Lund, Sweden
| | - Helena Persson
- Faculty of Medicine, Department of Clinical Sciences Lund, Oncology, Lund University Cancer Centre, Lund, Sweden.
| |
Collapse
|
7
|
Mistretta B, Rankothgedera S, Castillo M, Rao M, Holloway K, Bhardwaj A, El Noafal M, Albarracin C, El-Zein R, Rezaei H, Su X, Akbani R, Shao XM, Czerniecki BJ, Karchin R, Bedrosian I, Gunaratne PH. Chimeric RNAs reveal putative neoantigen peptides for developing tumor vaccines for breast cancer. Front Immunol 2023; 14:1188831. [PMID: 37744342 PMCID: PMC10512078 DOI: 10.3389/fimmu.2023.1188831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/27/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction We present here a strategy to identify immunogenic neoantigen candidates from unique amino acid sequences at the junctions of fusion proteins which can serve as targets in the development of tumor vaccines for the treatment of breastcancer. Method We mined the sequence reads of breast tumor tissue that are usually discarded as discordant paired-end reads and discovered cancer specific fusion transcripts using tissue from cancer free controls as reference. Binding affinity predictions of novel peptide sequences crossing the fusion junction were analyzed by the MHC Class I binding predictor, MHCnuggets. CD8+ T cell responses against the 15 peptides were assessed through in vitro Enzyme Linked Immunospot (ELISpot). Results We uncovered 20 novel fusion transcripts from 75 breast tumors of 3 subtypes: TNBC, HER2+, and HR+. Of these, the NSFP1-LRRC37A2 fusion transcript was selected for further study. The 3833 bp chimeric RNA predicted by the consensus fusion junction sequence is consistent with a read-through transcription of the 5'-gene NSFP1-Pseudo gene NSFP1 (NSFtruncation at exon 12/13) followed by trans-splicing to connect withLRRC37A2 located immediately 3' through exon 1/2. A total of 15 different 8-mer neoantigen peptides discovered from the NSFP1 and LRRC37A2 truncations were predicted to bind to a total of 35 unique MHC class I alleles with a binding affinity of IC50<500nM.); 1 of which elicited a robust immune response. Conclusion Our data provides a framework to identify immunogenic neoantigen candidates from fusion transcripts and suggests a potential vaccine strategy to target the immunogenic neopeptides in patients with tumors carrying the NSFP1-LRRC37A2 fusion.
Collapse
Affiliation(s)
- Brandon Mistretta
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Sakuni Rankothgedera
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Micah Castillo
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Mitchell Rao
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Kimberly Holloway
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Anjana Bhardwaj
- Department of Breast Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Maha El Noafal
- Department of Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Constance Albarracin
- Department of Pathology, The UT MD Anderson Cancer Center, Houston, TX, United States
| | - Randa El-Zein
- Department of Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Hengameh Rezaei
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Xiaoping Su
- Department of Bioinformatics & Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Rehan Akbani
- Department of Bioinformatics & Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaoshan M. Shao
- Biomedical Engineering Department, Institute for Computational Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Brian J. Czerniecki
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Rachel Karchin
- Biomedical Engineering Department, Institute for Computational Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Isabelle Bedrosian
- Department of Breast Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Preethi H. Gunaratne
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
8
|
Powell SK, Kulakova K, Kennedy S. A Review of the Molecular Landscape of Adenoid Cystic Carcinoma of the Lacrimal Gland. Int J Mol Sci 2023; 24:13755. [PMID: 37762061 PMCID: PMC10530759 DOI: 10.3390/ijms241813755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) has a worldwide incidence of three to four cases per million population. Although more cases occur in the minor and major salivary glands, it is the most common lacrimal gland malignancy. ACC has a low-grade, indolent histological appearance, but is relentlessly progressive over time and has a strong proclivity to recur and/or metastasise. Current treatment options are limited to complete surgical excision and adjuvant radiotherapy. Intra-arterial systemic therapy is a recent innovation. Recurrent/metastatic disease is common due to perineural invasion, and it is largely untreatable as it is refractory to conventional chemotherapeutic agents. Given the rarity of this tumour, the molecular mechanisms that govern disease pathogenesis are poorly understood. There is an unmet, critical need to develop effective, personalised targeted therapies for the treatment of ACC in order to reduce morbidity and mortality associated with the disease. This review details the evidence relating to the molecular underpinnings of ACC of the lacrimal gland, including the MYB-NFIB chromosomal translocations, Notch-signalling pathway aberrations, DNA damage repair gene mutations and epigenetic modifications.
Collapse
Affiliation(s)
- Sarah Kate Powell
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
| | - Karina Kulakova
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
- Department of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland
| | - Susan Kennedy
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
- National Ophthalmic Pathology Laboratory, D04 T6F6 Dublin, Ireland
| |
Collapse
|
9
|
Haas BJ, Dobin A, Ghandi M, Van Arsdale A, Tickle T, Robinson JT, Gillani R, Kasif S, Regev A. Targeted in silico characterization of fusion transcripts in tumor and normal tissues via FusionInspector. CELL REPORTS METHODS 2023; 3:100467. [PMID: 37323575 PMCID: PMC10261907 DOI: 10.1016/j.crmeth.2023.100467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
Here, we present FusionInspector for in silico characterization and interpretation of candidate fusion transcripts from RNA sequencing (RNA-seq) and exploration of their sequence and expression characteristics. We applied FusionInspector to thousands of tumor and normal transcriptomes and identified statistical and experimental features enriched among biologically impactful fusions. Through clustering and machine learning, we identified large collections of fusions potentially relevant to tumor and normal biological processes. We show that biologically relevant fusions are enriched for relatively high expression of the fusion transcript, imbalanced fusion allelic ratios, and canonical splicing patterns, and are deficient in sequence microhomologies between partner genes. We demonstrate that FusionInspector accurately validates fusion transcripts in silico and helps characterize numerous understudied fusions in tumor and normal tissue samples. FusionInspector is freely available as open source for screening, characterization, and visualization of candidate fusions via RNA-seq, and facilitates transparent explanation and interpretation of machine-learning predictions and their experimental sources.
Collapse
Affiliation(s)
- Brian J. Haas
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | | | | | - Anne Van Arsdale
- Department of Obstetrics and Gynecology and Women’s Health, Albert Einstein Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Timothy Tickle
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James T. Robinson
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Riaz Gillani
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
- Boston Children’s Hospital, Boston, MA 02115, USA
| | - Simon Kasif
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
10
|
Desai SS, Ravindran F, Panchal A, Ojha N, Jadhav S, Choudhary B. Whole transcriptome sequencing reveals HOXD11-AGAP3, a novel fusion transcript in the Indian acute leukemia cohort. Front Genet 2023; 14:1100587. [PMID: 37113989 PMCID: PMC10126405 DOI: 10.3389/fgene.2023.1100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: Acute leukemia is a heterogeneous disease with distinct genotypes and complex karyotypes leading to abnormal proliferation of hematopoietic cells. According to GLOBOCAN reports, Asia accounts for 48.6% of leukemia cases, and India reports ~10.2% of all leukemia cases worldwide. Previous studies have shown that the genetic landscape of AML in India is significantly different from that in the western population by WES. Methods: We have sequenced and analyzed 9 acute myeloid leukemia (AML) transcriptome samples in the present study. We performed fusion detection in all the samples and categorized the patients based on cytogenetic abnormalities, followed by a differential expression analysis and WGCNA analysis. Finally, Immune profiles were obtained using CIBERSORTx. Results: We found a novel fusion HOXD11-AGAP3 in 3 patients, BCR-ABL1 in 4, and KMT2A-MLLT3 in one patient. Categorizing the patients based on their cytogenetic abnormalities and performing a differential expression analysis, followed by WGCNA analysis, we observed that in the HOXD11-AGAP3 group, correlated co-expression modules were enriched with genes from pathways like Neutrophil degranulation, Innate Immune system, ECM degradation, and GTP hydrolysis. Additionally, we obtained HOXD11-AGAP3-specific overexpression of chemokines CCL28 and DOCK2. Immune profiling using CIBRSORTx revealed differences in the immune profiles across all the samples. We also observed HOXD11-AGAP3-specific elevated expression of lincRNA HOTAIRM1 and its interacting partner HOXA2. Discussion: The findings highlight population-specific HOXD11-AGAP3, a novel cytogenetic abnormality in AML. The fusion led to alterations in immune system represented by CCL28 and DOCK2 over-expression. Interestingly, in AML, CCL28 is known prognostic marker. Additionally, non-coding signatures (HOTAIRM1) were observed specific to the HOXD11-AGAP3 fusion transcript which are known to be implicated in AML.
Collapse
Affiliation(s)
- Sagar Sanjiv Desai
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
- Graduate Student Registered Under Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Febina Ravindran
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Amey Panchal
- Cancer Centre, Healthcare Global Enterprises Ltd., Bangalore, India
| | - Nishit Ojha
- Cancer Centre, Healthcare Global Enterprises Ltd., Bangalore, India
| | - Sachin Jadhav
- Cancer Centre, Healthcare Global Enterprises Ltd., Bangalore, India
| | - Bibha Choudhary
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| |
Collapse
|
11
|
Ivanov AV, Alecsa MS, Popescu R, Starcea MI, Mocanu AM, Rusu C, Miron IC. Pediatric Acute Lymphoblastic Leukemia Emerging Therapies-From Pathway to Target. Int J Mol Sci 2023; 24:ijms24054661. [PMID: 36902091 PMCID: PMC10003692 DOI: 10.3390/ijms24054661] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Over the past 40 years, the 5-years-overall survival rate of pediatric cancer reached 75-80%, and for acute lymphoblastic leukemia (ALL), exceeded 90%. Leukemia continues to be a major cause of mortality and morbidity for specific patient populations, including infants, adolescents, and patients with high-risk genetic abnormalities. The future of leukemia treatment needs to count better on molecular therapies as well as immune and cellular therapy. Advances in the scientific interface have led naturally to advances in the treatment of childhood cancer. These discoveries have involved the recognition of the importance of chromosomal abnormalities, the amplification of the oncogenes, the aberration of tumor suppressor genes, as well as the dysregulation of cellular signaling and cell cycle control. Lately, novel therapies that have already proven efficient on relapsed/refractory ALL in adults are being evaluated in clinical trials for young patients. Tirosine kinase inhibitors are, by now, part of the standardized treatment of Ph+ALL pediatric patients, and Blinatumomab, with promising results in clinical trials, received both FDA and EMA approval for use in children. Moreover, other targeted therapies such as aurora-kinase inhibitors, MEK-inhibitors, and proteasome-inhibitors are involved in clinical trials that include pediatric patients. This is an overview of the novel leukemia therapies that have been developed starting from the molecular discoveries and those that have been applied in pediatric populations.
Collapse
Affiliation(s)
- Anca Viorica Ivanov
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Mirabela Smaranda Alecsa
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (M.S.A.); (R.P.)
| | - Roxana Popescu
- Medical Genetics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (M.S.A.); (R.P.)
| | - Magdalena Iuliana Starcea
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Adriana Maria Mocanu
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Rusu
- Medical Genetics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ingrith Crenguta Miron
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
12
|
Wei S, Talarchek JN, Huang M, Gong Y, Du F, Ehya H, Flieder DB, Patchefsky AS, Wasik MA, Pei J. Cell block-based RNA next generation sequencing for detection of gene fusions in lung adenocarcinoma: An institutional experience. Cytopathology 2023; 34:28-34. [PMID: 36062384 DOI: 10.1111/cyt.13175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Targeted therapy is an important part of the treatment of lung adenocarcinoma. Tests for EGFR mutation, ALK, ROS1, RET and NTRK gene fusions are needed to make a treatment decision. These gene fusions are traditionally detected by fluorescence in situ hybridisation (FISH) or immunohistochemistry. In this study, we investigated whether gene fusions in pulmonary adenocarcinoma could be accurately detected by RNA next-generation sequencing (RNA-NGS) and whether cytology cell blocks could be used effectively for this test. METHODS Archived cytological specimens of lung adenocarcinoma submitted for RNA sequencing between 2019 and 2022 at Fox Chase Cancer Center were retrospectively retrieved. Hybrid capture-based targeted RNA next generation sequencing was used, which covers 507 fusion genes, including ALK, ROS1, RET and NTRKs, irrespective of their partner genes. DNA NGS, FISH and chromosomal microarray analysis were used to confirm the results of the RNA-NGS. RESULTS A total of 129 lung adenocarcinoma cytology specimens were submitted for molecular testing. Eight of 129 (6.2%) cases were excluded from RNA sequencing as their cell blocks contained inadequate numbers of tumour cells. One case (0.8%) failed to yield adequate RNA. The overall success rate was 93% (120/129). Ten of 120 (8.3%) cytology cases were positive for gene fusions, including 7 ALK, 2 ROS1 fusion genes, and 1 RET fusion gene. Twenty-two cell block cases were also tested for ALK fusion genes using FISH. However, 11 of 22 (50%) failed the testing due to inadequate material. CONCLUSIONS Cytology cell blocks can be used as the main source of material for molecular testing for lung cancer. Detection of gene fusions by RNA-based NGS on cell blocks is convenient and reliable in daily practice.
Collapse
Affiliation(s)
- Shuanzeng Wei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Min Huang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yulan Gong
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Fang Du
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Hormoz Ehya
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Douglas B Flieder
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Arthur S Patchefsky
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Jianming Pei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Tyagi P, Singh D, Mathur S, Singh A, Ranjan R. Upcoming progress of transcriptomics studies on plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:1030890. [PMID: 36589087 PMCID: PMC9798009 DOI: 10.3389/fpls.2022.1030890] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Transcriptome sequencing or RNA-Sequencing is a high-resolution, sensitive and high-throughput next-generation sequencing (NGS) approach used to study non-model plants and other organisms. In other words, it is an assembly of RNA transcripts from individual or whole samples of functional and developmental stages. RNA-Seq is a significant technique for identifying gene predictions and mining functional analysis that improves gene ontology understanding mechanisms of biological processes, molecular functions, and cellular components, but there is limited information available on this topic. Transcriptomics research on different types of plants can assist researchers to understand functional genes in better ways and regulatory processes to improve breeding selection and cultivation practices. In recent years, several advancements in RNA-Seq technology have been made for the characterization of the transcriptomes of distinct cell types in biological tissues in an efficient manner. RNA-Seq technologies are briefly introduced and examined in terms of their scientific applications. In a nutshell, it introduces all transcriptome sequencing and analysis techniques, as well as their applications in plant biology research. This review will focus on numerous existing and forthcoming strategies for improving transcriptome sequencing technologies for functional gene mining in various plants using RNA- Seq technology, based on the principles, development, and applications.
Collapse
|
14
|
Athanasopoulou K, Daneva GN, Boti MA, Dimitroulis G, Adamopoulos PG, Scorilas A. The Transition from Cancer "omics" to "epi-omics" through Next- and Third-Generation Sequencing. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122010. [PMID: 36556377 PMCID: PMC9785810 DOI: 10.3390/life12122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Deciphering cancer etiopathogenesis has proven to be an especially challenging task since the mechanisms that drive tumor development and progression are far from simple. An astonishing amount of research has revealed a wide spectrum of defects, including genomic abnormalities, epigenomic alterations, disturbance of gene transcription, as well as post-translational protein modifications, which cooperatively promote carcinogenesis. These findings suggest that the adoption of a multidimensional approach can provide a much more precise and comprehensive picture of the tumor landscape, hence serving as a powerful tool in cancer research and precision oncology. The introduction of next- and third-generation sequencing technologies paved the way for the decoding of genetic information and the elucidation of cancer-related cellular compounds and mechanisms. In the present review, we discuss the current and emerging applications of both generations of sequencing technologies, also referred to as massive parallel sequencing (MPS), in the fields of cancer genomics, transcriptomics and proteomics, as well as in the progressing realms of epi-omics. Finally, we provide a brief insight into the expanding scope of sequencing applications in personalized cancer medicine and pharmacogenomics.
Collapse
|
15
|
Wang Y, Chen R, Wang Q, Yue Y, Gao Q, Wang C, Zheng H, Peng S. Transcriptomic Analysis of Large Yellow Croaker (Larimichthys crocea) during Early Development under Hypoxia and Acidification Stress. Vet Sci 2022; 9:vetsci9110632. [PMID: 36423081 PMCID: PMC9697846 DOI: 10.3390/vetsci9110632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The large yellow croaker is one of the most economically important fish in China. In recent years, the deterioration of the water environment and unregulated aquaculture have caused great economic losses to the large yellow croaker breeding industry. The aim of this study was to analyze the effects of hypoxia and acidification stress on large yellow croaker. This study revealed that hypoxia and acidification stress suppressed the growth of the large yellow croaker. Transcriptome analysis revealed that genes of the collagen family play an important role in the response of large yellow croaker to hypoxia and acidification stress. The study elucidates the mechanism underlying the response of large yellow croaker to hypoxia–acidification stress during early development and provides a basic understanding of the potential combined effects of reduced pH and dissolved oxygen on Sciaenidae fishes. Abstract Fishes live in aquatic environments and several aquatic environmental factors have undergone recent alterations. The molecular mechanisms underlying fish responses to hypoxia and acidification stress have become a serious concern in recent years. This study revealed that hypoxia and acidification stress suppressed the growth of body length and height of the large yellow croaker (Larimichthys crocea). Subsequent transcriptome analyses of L. crocea juveniles under hypoxia, acidification, and hypoxia–acidification stress led to the identification of 5897 differentially expressed genes (DEGs) in the five groups. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that several DEGs were enriched in the ‘protein digestion and absorption’ pathway. Enrichment analysis revealed that this pathway was closely related to hypoxia and acidification stress in the five groups, and we found that genes of the collagen family may play a key role in this pathway. The zf-C2H2 transcription factor may play an important role in the hypoxia and acidification stress response, and novel genes were additionally identified. The results provide new clues for further research on the molecular mechanisms underlying hypoxia–acidification tolerance in L. crocea and provides a basic understanding of the potential combined effects of reduced pH and dissolved oxygen on Sciaenidae fishes.
Collapse
Affiliation(s)
- Yabing Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Run Chen
- Marine Fisheries Development Center of Xiapu, Xiapu 355100, China
| | - Qian Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yanfeng Yue
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Quanxin Gao
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Cuihua Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Hanfeng Zheng
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
- Correspondence: (H.Z.); (S.P.)
| | - Shiming Peng
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
- Correspondence: (H.Z.); (S.P.)
| |
Collapse
|
16
|
PANAGOPOULOS IOANNIS, HEIM SVERRE. Neoplasia-associated Chromosome Translocations Resulting in Gene Truncation. Cancer Genomics Proteomics 2022; 19:647-672. [PMID: 36316036 PMCID: PMC9620447 DOI: 10.21873/cgp.20349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Abstract
Chromosomal translocations in cancer as well as benign neoplasias typically lead to the formation of fusion genes. Such genes may encode chimeric proteins when two protein-coding regions fuse in-frame, or they may result in deregulation of genes via promoter swapping or translocation of the gene into the vicinity of a highly active regulatory element. A less studied consequence of chromosomal translocations is the fusion of two breakpoint genes resulting in an out-of-frame chimera. The breaks then occur in one or both protein-coding regions forming a stop codon in the chimeric transcript shortly after the fusion point. Though the latter genetic events and mechanisms at first awoke little research interest, careful investigations have established them as neither rare nor inconsequential. In the present work, we review and discuss the truncation of genes in neoplastic cells resulting from chromosomal rearrangements, especially from seemingly balanced translocations.
Collapse
Affiliation(s)
- IOANNIS PANAGOPOULOS
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - SVERRE HEIM
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Numeric Lyndon-based feature embedding of sequencing reads for machine learning approaches. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Zhang L, Wang D, Han X, Guo X, Cao Y, Xia Y, Gao D. Novel read-through fusion transcript Bcl2l2-Pabpn1 in glioblastoma cells. J Cell Mol Med 2022; 26:4686-4697. [PMID: 35894779 PMCID: PMC9443946 DOI: 10.1111/jcmm.17481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/11/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022] Open
Abstract
Read‐through fusion transcripts have recently been identified as chimeric RNAs and have since been linked to tumour growth in some cases. Many fusion genes generated by chromosomal rearrangements have been described in glioblastoma. However, read‐through fusion transcripts between neighbouring genes in glioblastoma remain unexplored. We performed paired‐end RNA‐seq of rat C6 glioma cells and normal cells and discovered a read‐through fusion transcript Bcl2l2‐Pabpn1 in which exon 3 of Bcl‐2‐like protein 2 (Bcl2l2) fused to exon 2 of Polyadenylate‐binding protein 1 (Pabpn1). This fusion transcript was found in both human glioblastoma and normal cells. Unlike other fusions reported in glioblastoma, Bcl2l2‐Pabpn1 appeared to result from RNA processing rather than genomic rearrangement. Bcl2l2‐Pabpn1 fusion transcript encoded a fusion protein with BH4, BCL and RRM domains. Functionally, Bcl2l2‐Pabpn1 knockdown by targeting its fusion junction decreased its expression, and suppressed cell proliferation, migration and invasion in vitro. Mechanistically, Bcl2l2‐Pabpn1 blocked Bax activity and activated PI3K/AKT pathway to promote glioblastoma progression. Together, our work characterized a glioblastoma‐associated Bcl2l2‐Pabpn1 fusion transcript shared by humans and rats.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China.,School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Dan Wang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Xiao Han
- Nanjing Medical University, Nanjing, China
| | - Xiaoxiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Yuanyuan Cao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Xia
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Neoantigens in precision cancer immunotherapy: from identification to clinical applications. Chin Med J (Engl) 2022; 135:1285-1298. [PMID: 35838545 PMCID: PMC9433083 DOI: 10.1097/cm9.0000000000002181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunotherapies targeting cancer neoantigens are safe, effective, and precise. Neoantigens can be identified mainly by genomic techniques such as next-generation sequencing and high-throughput single-cell sequencing; proteomic techniques such as mass spectrometry; and bioinformatics tools based on high-throughput sequencing data, mass spectrometry data, and biological databases. Neoantigen-related therapies are widely used in clinical practice and include neoantigen vaccines, neoantigen-specific CD8+ and CD4+ T cells, and neoantigen-pulsed dendritic cells. In addition, neoantigens can be used as biomarkers to assess immunotherapy response, resistance, and prognosis. Therapies based on neoantigens are an important and promising branch of cancer immunotherapy. Unremitting efforts are needed to unravel the comprehensive role of neoantigens in anti-tumor immunity and to extend their clinical application. This review aimed to summarize the progress in neoantigen research and to discuss its opportunities and challenges in precision cancer immunotherapy.
Collapse
|
20
|
Sun Y, Li H. Chimeric RNAs Discovered by RNA Sequencing and Their Roles in Cancer and Rare Genetic Diseases. Genes (Basel) 2022; 13:741. [PMID: 35627126 PMCID: PMC9140685 DOI: 10.3390/genes13050741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
Chimeric RNAs are transcripts that are generated by gene fusion and intergenic splicing events, thus comprising nucleotide sequences from different parental genes. In the past, Northern blot analysis and RT-PCR were used to detect chimeric RNAs. However, they are low-throughput and can be time-consuming, labor-intensive, and cost-prohibitive. With the development of RNA-seq and transcriptome analyses over the past decade, the number of chimeric RNAs in cancer as well as in rare inherited diseases has dramatically increased. Chimeric RNAs may be potential diagnostic biomarkers when they are specifically expressed in cancerous cells and/or tissues. Some chimeric RNAs can also play a role in cell proliferation and cancer development, acting as tools for cancer prognosis, and revealing new insights into the cell origin of tumors. Due to their abilities to characterize a whole transcriptome with a high sequencing depth and intergenically identify spliced chimeric RNAs produced with the absence of chromosomal rearrangement, RNA sequencing has not only enhanced our ability to diagnose genetic diseases, but also provided us with a deeper understanding of these diseases. Here, we reviewed the mechanisms of chimeric RNA formation and the utility of RNA sequencing for discovering chimeric RNAs in several types of cancer and rare inherited diseases. We also discussed the diagnostic, prognostic, and therapeutic values of chimeric RNAs.
Collapse
Affiliation(s)
- Yunan Sun
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
21
|
Roosen M, Odé Z, Bunt J, Kool M. The oncogenic fusion landscape in pediatric CNS neoplasms. Acta Neuropathol 2022; 143:427-451. [PMID: 35169893 PMCID: PMC8960661 DOI: 10.1007/s00401-022-02405-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/09/2023]
Abstract
Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events. In contrast to adult tumors, which often harbor multiple mutated oncogenic drivers, the number of mutated genes in pediatric cancers is much lower and many tumors can have a single oncogenic driver. Moreover, in children, much more than in adults, fusion proteins play an important role in driving tumorigenesis, and many different fusions have been identified as potential driver events in pediatric CNS neoplasms. However, a comprehensive overview of all the different reported oncogenic fusion proteins in pediatric CNS neoplasms is still lacking. A better understanding of the fusion proteins detected in these tumors and of the molecular mechanisms how these proteins drive tumorigenesis, could improve diagnosis and further benefit translational research into targeted therapies necessary to treat these distinct entities. In this review, we discuss the different oncogenic fusions reported in pediatric CNS neoplasms and their structure to create an overview of the variety of oncogenic fusion proteins to date, the tumor entities they occur in and their proposed mode of action.
Collapse
Affiliation(s)
- Mieke Roosen
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Zelda Odé
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Jens Bunt
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands.
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Huang L, Zhu H, Luo Z, Luo C, Luo L, Nong B, Zhang S, Wan C, Wang Y, Songyang Z, Xiong Y. FPIA: A database for gene fusion profiling and interactive analyses. Int J Cancer 2022; 150:1504-1511. [PMID: 34985769 DOI: 10.1002/ijc.33921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022]
Abstract
As one of the hallmarks of cancer, gene fusions play an important role in tumorigenesis, and have been established as biomarkers and therapeutic targets. Although recent years have witnessed the development of gene fusion databases, a tool with interactive analytic functions is still lacking. Here, we introduce FPIA (Fusion Profiling Interactive Analysis), a web server to perform interactive and customizable analysis on fusion genes. With this platform, researchers can easily explore fusion-associated biological and molecular differences including gene expression, tumor purity and ploidy, mutation, copy number variations, protein expression, immune cell infiltration, stemness, telomere length, microsatellite instability, survival, and novel peptides based on 33 cancer types from TCGA data. Currently, it contains 31 633 fusion events from 6910 patients. FPIA complements the existing gene fusion annotation databases with its multi-omics analytic capacity, integrated analysis features, customized analysis selection, and user-friendly design. The comprehensive data analyses by FPIA will greatly facilitate data mining, hypothesis generation, and therapeutic target discovery. FPIA is available at http://bioinfo-sysu.com/fpia.
Collapse
Affiliation(s)
- Lu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huiming Zhu
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chukun Luo
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Linjiang Luo
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Baoting Nong
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shiyu Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chengcheng Wan
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yanzhi Wang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
23
|
Gao Y, Suding Z, Wang L, Liu D, Su S, Xu J, Hu J, Tao J. Full-length transcriptome analysis and identification of transcript structures in Eimeria necatrix from different developmental stages by single-molecule real-time sequencing. Parasit Vectors 2021; 14:502. [PMID: 34579769 PMCID: PMC8474931 DOI: 10.1186/s13071-021-05015-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/14/2021] [Indexed: 03/08/2023] Open
Abstract
Background Eimeria necatrix is one of the most pathogenic parasites, causing high mortality in chickens. Although its genome sequence has been published, the sequences and complete structures of its mRNA transcripts remain unclear, limiting exploration of novel biomarkers, drug targets and genetic functions in E. necatrix. Methods Second-generation merozoites (MZ-2) of E. necatrix were collected using Percoll density gradients, and high-quality RNA was extracted from them. Single-molecule real-time (SMRT) sequencing and Illumina sequencing were combined to generate the transcripts of MZ-2. Combined with the SMRT sequencing data of sporozoites (SZ) collected in our previous study, the transcriptome and transcript structures of E. necatrix were studied. Results SMRT sequencing yielded 21,923 consensus isoforms in MZ-2. A total of 17,151 novel isoforms of known genes and 3918 isoforms of novel genes were successfully identified. We also identified 2752 (SZ) and 3255 (MZ-2) alternative splicing (AS) events, 1705 (SZ) and 1874 (MZ-2) genes with alternative polyadenylation (APA) sites, 4019 (SZ) and 2588 (MZ-2) fusion transcripts, 159 (SZ) and 84 (MZ-2) putative transcription factors (TFs) and 3581 (SZ) and 2039 (MZ-2) long non-coding RNAs (lncRNAs). To validate fusion transcripts, reverse transcription-PCR was performed on 16 candidates, with an accuracy reaching up to 87.5%. Sanger sequencing of the PCR products further confirmed the authenticity of chimeric transcripts. Comparative analysis of transcript structures revealed a total of 3710 consensus isoforms, 815 AS events, 1139 genes with APA sites, 20 putative TFs and 352 lncRNAs in both SZ and MZ-2. Conclusions We obtained many long-read isoforms in E. necatrix SZ and MZ-2, from which a series of lncRNAs, AS events, APA events and fusion transcripts were identified. Information on TFs will improve understanding of transcriptional regulation, and fusion event data will greatly improve draft versions of gene models in E. necatrix. This information offers insights into the mechanisms governing the development of E. necatrix and will aid in the development of novel strategies for coccidiosis control. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05015-7.
Collapse
Affiliation(s)
- Yang Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zeyang Suding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Junjie Hu
- Biology Department, Yunnan University, Kunming, 650500, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
24
|
Singh S, Li H. Comparative study of bioinformatic tools for the identification of chimeric RNAs from RNA Sequencing. RNA Biol 2021; 18:254-267. [PMID: 34142643 DOI: 10.1080/15476286.2021.1940047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chimeric RNAs are gaining more and more attention as they have broad implications in both cancer and normal physiology. To date, over 40 chimeric RNA prediction methods have been developed to facilitate their identification from RNA sequencing data. However, a limited number of studies have been conducted to compare the performance of these tools; additionally, previous studies have become outdated as more software tools have been developed within the last three years. In this study, we benchmarked 16 chimeric RNA prediction software, including seven top performers in previous benchmarking studies, and nine that were recently developed. We used two simulated and two real RNA-Seq datasets, compared the 16 tools for their sensitivity, positive prediction value (PPV), F-measure, and also documented the computational requirements (time and memory). We noticed that none of the tools are inclusive, and their performance varies depending on the dataset and objects. To increase the detection of true positive events, we also evaluated the pair-wise combination of these methods to suggest the best combination for sensitivity and F-measure. In addition, we compared the performance of the tools for the identification of three classes (read-through, inter-chromosomal and intra-others) of chimeric RNAs. Finally, we performed TOPSIS analyses and ranked the weighted performance of the 16 tools.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
25
|
Bajpai M, Panda A, Birudaraju K, Van Gurp J, Chak A, Das KM, Javidian P, Aviv H. Recurring Translocations in Barrett's Esophageal Adenocarcinoma. Front Genet 2021; 12:674741. [PMID: 34178034 PMCID: PMC8220202 DOI: 10.3389/fgene.2021.674741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Barrett's esophagus (BE) is a premalignant metaplasia in patients with chronic gastroesophageal reflux disease (GERD). BE can progress to esophageal adenocarcinoma (EA) with less than 15% 5-year survival. Chromosomal aneuploidy, deletions, and duplication are early events in BE progression to EA, but reliable diagnostic assays to detect chromosomal markers in premalignant stages of EA arising from BE are lacking. Previously, we investigated chromosomal changes in an in vitro model of acid and bile exposure-induced Barrett's epithelial carcinogenesis (BEC). In addition to detecting changes already known to occur in BE and EA, we also reported a novel recurring chromosomal translocation t(10:16) in the BE cells at an earlier time point before they undergo malignant transformation. In this study, we refine the chromosomal event with the help of fluorescence microscopy techniques as a three-way translocation between chromosomes 2, 10, and 16, t(2:10;16) (p22;q22;q22). We also designed an exclusive fluorescent in situ hybridization for esophageal adenocarcinoma (FISH-EA) assay that detects these chromosomal breakpoints and fusions. We validate the feasibility of the FISH-EA assay to objectively detect these chromosome events in primary tissues by confirming the presence of one of the fusions in paraffin-embedded formalin-fixed human EA tumors. Clinical validation in a larger cohort of BE progressors and non-progressors will confirm the specificity and sensitivity of the FISH-EA assay in identifying malignant potential in the early stages of EA.
Collapse
Affiliation(s)
- Manisha Bajpai
- Department of Medicine-Gastroenterology and Hepatology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Anshuman Panda
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Kristen Birudaraju
- Cytogenetics Laboratory, Department of Pathology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, NJ, United States
| | - James Van Gurp
- Department of Pathology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, NJ, United States
| | - Amitabh Chak
- Division of Gastroenterology and Hepatology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Kiron M Das
- Department of Medicine-Gastroenterology and Hepatology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Parisa Javidian
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Pathology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, NJ, United States
| | - Hana Aviv
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Cytogenetics Laboratory, Department of Pathology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
26
|
Ou MY, Xiao Q, Ju XC, Zeng PM, Huang J, Sheng AL, Luo ZG. The CTNNBIP1-CLSTN1 fusion transcript regulates human neocortical development. Cell Rep 2021; 35:109290. [PMID: 34192541 DOI: 10.1016/j.celrep.2021.109290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/17/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Fusion transcripts or RNAs have been found in both disordered and healthy human tissues and cells; however, their physiological functions in the brain development remain unknown. In the analysis of deposited RNA-sequence libraries covering early to middle embryonic stages, we identify 1,055 fusion transcripts present in the developing neocortex. Interestingly, 98 fusion transcripts exhibit distinct expression patterns in various neural progenitors (NPs) or neurons. We focus on CTNNBIP1-CLSTN1 (CTCL), which is enriched in outer radial glial cells that contribute to cortex expansion during human evolution. Intriguingly, downregulation of CTCL in cultured human cerebral organoids causes marked reduction in NPs and precocious neuronal differentiation, leading to impairment of organoid growth. Furthermore, the expression of CTCL fine-tunes Wnt/β-catenin signaling that controls cortex patterning. Together, this work provides evidence indicating important roles of fusion transcript in human brain development and evolution.
Collapse
Affiliation(s)
- Min-Yi Ou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Xiao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Chun Ju
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ai-Li Sheng
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
27
|
Panagopoulos I, Heim S. Interstitial Deletions Generating Fusion Genes. Cancer Genomics Proteomics 2021; 18:167-196. [PMID: 33893073 DOI: 10.21873/cgp.20251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Fusion transcript discovery using RNA sequencing in formalin-fixed paraffin-embedded specimen. Crit Rev Oncol Hematol 2021; 160:103303. [DOI: 10.1016/j.critrevonc.2021.103303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
|
29
|
Lim JK, Kuss B, Talaulikar D. Role of cell-free DNA in haematological malignancies. Pathology 2021; 53:416-426. [PMID: 33648721 DOI: 10.1016/j.pathol.2021.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Cell-free DNA (cfDNA) consists of fragments of double stranded DNA that are found in the circulation. They are released from the apoptosis of both normal haemopoietic cells and malignant cells. The use of cfDNA from easily accessible peripheral blood samples has created a new strategy in studying molecular genomics in haematological malignancies. Its use in diagnosis, prognosis and monitoring potentially precludes the need for repeated tissue samples, i.e., bone marrow biopsy or primary tissue biopsy. It also potentially provides a more comprehensive analysis of the disease as cfDNA are released from tumours from multiple sites of the body. While cfDNA research is still in its infancy, given its potential and the expansion in next generation sequencing (NGS) it has attracted a lot of attention in recent years. This review will focus on acute leukaemia, multiple myeloma and lymphoma and the potential diagnostic and prognostic implications of cfDNA, its role in response assessment and in detection of disease relapse.
Collapse
Affiliation(s)
- Jun K Lim
- Department of Haematology, The Canberra Hospital, Canberra, ACT, Australia
| | - Bryone Kuss
- Department of Molecular Medicine and Genetics, Flinders University/Flinders Medical Centre, SA Pathology Laboratories, Adelaide, SA, Australia
| | - Dipti Talaulikar
- Department of Haematology, The Canberra Hospital, Canberra, ACT, Australia; College of Health and Medicine, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
30
|
Stodolna A, He M, Vasipalli M, Kingsbury Z, Becq J, Stockton JD, Dilworth MP, James J, Sillo T, Blakeway D, Ward ST, Ismail T, Ross MT, Beggs AD. Clinical-grade whole-genome sequencing and 3' transcriptome analysis of colorectal cancer patients. Genome Med 2021; 13:33. [PMID: 33632293 PMCID: PMC7908713 DOI: 10.1186/s13073-021-00852-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Clinical-grade whole-genome sequencing (cWGS) has the potential to become the standard of care within the clinic because of its breadth of coverage and lack of bias towards certain regions of the genome. Colorectal cancer presents a difficult treatment paradigm, with over 40% of patients presenting at diagnosis with metastatic disease. We hypothesised that cWGS coupled with 3' transcriptome analysis would give new insights into colorectal cancer. METHODS Patients underwent PCR-free whole-genome sequencing and alignment and variant calling using a standardised pipeline to output SNVs, indels, SVs and CNAs. Additional insights into the mutational signatures and tumour biology were gained by the use of 3' RNA-seq. RESULTS Fifty-four patients were studied in total. Driver analysis identified the Wnt pathway gene APC as the only consistently mutated driver in colorectal cancer. Alterations in the PI3K/mTOR pathways were seen as previously observed in CRC. Multiple private CNAs, SVs and gene fusions were unique to individual tumours. Approximately 30% of patients had a tumour mutational burden of > 10 mutations/Mb of DNA, suggesting suitability for immunotherapy. CONCLUSIONS Clinical whole-genome sequencing offers a potential avenue for the identification of private genomic variation that may confer sensitivity to targeted agents and offer patients new options for targeted therapies.
Collapse
Affiliation(s)
- Agata Stodolna
- Institute of Cancer and Genomic Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Miao He
- Illumina Cambridge, Granta Park, Cambridge, UK
| | | | | | | | - Joanne D Stockton
- Institute of Cancer and Genomic Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Mark P Dilworth
- Institute of Cancer and Genomic Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jonathan James
- Institute of Cancer and Genomic Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Toju Sillo
- Institute of Cancer and Genomic Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniel Blakeway
- Institute of Cancer and Genomic Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stephen T Ward
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Tariq Ismail
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Mark T Ross
- Illumina Cambridge, Granta Park, Cambridge, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Surgical Research Laboratory, Institute of Cancer & Genomic Science, University of Birmingham, Vincent Drive, Birmingham, B15 2TT, UK.
| |
Collapse
|
31
|
Taniue K, Akimitsu N. Fusion Genes and RNAs in Cancer Development. Noncoding RNA 2021; 7:10. [PMID: 33557176 PMCID: PMC7931065 DOI: 10.3390/ncrna7010010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Fusion RNAs are a hallmark of some cancers. They result either from chromosomal rearrangements or from splicing mechanisms that are non-chromosomal rearrangements. Chromosomal rearrangements that result in gene fusions are particularly prevalent in sarcomas and hematopoietic malignancies; they are also common in solid tumors. The splicing process can also give rise to more complex RNA patterns in cells. Gene fusions frequently affect tyrosine kinases, chromatin regulators, or transcription factors, and can cause constitutive activation, enhancement of downstream signaling, and tumor development, as major drivers of oncogenesis. In addition, some fusion RNAs have been shown to function as noncoding RNAs and to affect cancer progression. Fusion genes and RNAs will therefore become increasingly important as diagnostic and therapeutic targets for cancer development. Here, we discuss the function, biogenesis, detection, clinical relevance, and therapeutic implications of oncogenic fusion genes and RNAs in cancer development. Further understanding the molecular mechanisms that regulate how fusion RNAs form in cancers is critical to the development of therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Cancer Genomics and Precision Medicine, Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
32
|
Ramani NS, Patel KP, Routbort MJ, Alvarez H, Broaddus R, Chen H, Rashid A, Lazar A, San Lucas FA, Yao H, Manekia J, Dang H, Barkoh BA, Medeiros LJ, Luthra R, Roy-Chowdhuri S. Factors Impacting Clinically Relevant RNA Fusion Assays Using Next-Generation Sequencing. Arch Pathol Lab Med 2021; 145:1405-1412. [PMID: 33493304 DOI: 10.5858/arpa.2020-0415-oa] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— RNA-based next-generation sequencing (NGS) assays are being used with increasing frequency for comprehensive molecular profiling of solid tumors. OBJECTIVE.— To evaluate factors that might impact clinical assay performance. DESIGN.— A 4-month retrospective review of cases analyzed by a targeted RNA-based NGS assay to detect fusions was performed. RNA extraction was performed from formalin-fixed, paraffin-embedded tissue sections and/or cytology smears of 767 cases, including 493 in-house and 274 outside referral cases. The types of samples included 422 core needle biopsy specimens (55%), 268 resection specimens (35%), and 77 cytology samples (10%). RESULTS.— Successful NGS fusion testing was achieved in 697 specimens (90.9%) and correlated positively with RNA yield (P < .001) and negatively with specimen necrosis (P = .002), decalcification (P < .001), and paraffin block age of more than 2 years (P = .001). Of the 697 cases that were successfully sequenced, 50 (7.2%) had clinically relevant fusions. The testing success rates and fusion detection rates were similar between core needle biopsy and cytology samples. In contrast, RNA fusion testing was often less successful using resection specimens (P = .007). Testing success was independent of the tumor percentage in the specimen, given that at least 20% tumor cellularity was present. CONCLUSIONS.— The success of RNA-based NGS testing is multifactorial and is influenced by RNA quality and quantity. Identification of preanalytical factors affecting RNA quality and yield can improve NGS testing success rates.
Collapse
Affiliation(s)
- Nisha S Ramani
- From the Departments of Pathology (Ramani, Broaddus, Chen, Rashid, Lazar, Roy-Chowdhuri)
| | - Keyur P Patel
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Mark J Routbort
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Hector Alvarez
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Russell Broaddus
- From the Departments of Pathology (Ramani, Broaddus, Chen, Rashid, Lazar, Roy-Chowdhuri)
| | - Hui Chen
- From the Departments of Pathology (Ramani, Broaddus, Chen, Rashid, Lazar, Roy-Chowdhuri)
| | - Asif Rashid
- From the Departments of Pathology (Ramani, Broaddus, Chen, Rashid, Lazar, Roy-Chowdhuri)
| | - Alex Lazar
- From the Departments of Pathology (Ramani, Broaddus, Chen, Rashid, Lazar, Roy-Chowdhuri)
| | - Francis A San Lucas
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Hui Yao
- and Bioinformatics and Computational Biology (Yao), The University of Texas MD Anderson Cancer Center, Houston. Broaddus is currently with the Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill
| | - Jawad Manekia
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Hyvan Dang
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Bedia A Barkoh
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - L Jeffrey Medeiros
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Rajyalakshmi Luthra
- Hematopathology (Patel, Routbort, Alvarez, San Lucas, Manekia, Dang, Barkoh, Medeiros, Luthra)
| | - Sinchita Roy-Chowdhuri
- From the Departments of Pathology (Ramani, Broaddus, Chen, Rashid, Lazar, Roy-Chowdhuri)
| |
Collapse
|
33
|
Wang X, Johnson V, Johnson L, Cook JR. RNA-Based next generation sequencing complements but does not replace fluorescence in situ hybridization studies for the classification of aggressive B-Cell lymphomas. Cancer Genet 2020; 252-253:43-47. [PMID: 33360122 DOI: 10.1016/j.cancergen.2020.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/22/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023]
Abstract
Aggressive B-cell lymphomas are currently classified based in part upon the presence or absence of translocations involving BCL2, BCL6, and MYC. Most clinical laboratories employ fluorescence in situ hybridization (FISH) analysis for the detection of these rearrangements. The potential role of RNA-based sequencing approaches in the evaluation of malignant lymphoma is currently unclear. In this study, we performed RNA sequencing (RNAseq) in 37 cases of aggressive B-cell lymphomas using a commercially available next generation sequencing assay and compared results to previously performed FISH studies. RNAseq detected 1/7 MYC (14%), 3/8 BCL2 (38%) and 4/8 BCL6 (50%) translocations identified by FISH. RNAseq also detected 1 MYC/IGH fusion in a case not initially tested by FISH due to low MYC protein expression and 2 BCL6 translocations that were not detected by FISH. RNAseq identified the partner gene in each detected rearrangement, including a novel EIF4G1-BCL6 rearrangement. In summary, RNAseq complements FISH for the detection of rearrangements of BCL2, BCL6 and MYC in the evaluation and classification of aggressive B-cell lymphomas by detecting rearrangements that may be cryptic by FISH methods and by identifying the rearrangement partner genes. Detection of these clinically important translocations may be optimized by combined use of FISH and RNAseq.
Collapse
Affiliation(s)
- Xiaoqiong Wang
- Department of Laboratory Medicine, Robert J Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | | | | | - James R Cook
- Department of Laboratory Medicine, Robert J Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
34
|
Xiu Y, Li Y, Liu X, Li C. Full-length transcriptome sequencing from multiple immune-related tissues of Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:930-937. [PMID: 32927055 DOI: 10.1016/j.fsi.2020.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Olive flounder (Paralichthys olivaceus) is an important economical flatfish in Japan, Korea and China, but its production has been greatly threatened by various of diseases. Although RNA-seq has provided valuable insights into the host-pathogen interaction, there are still some disadvantages, such as a short sequencing length, the incomplete or inaccurate splicing. Therefore, we generated a full-length transcriptome using mixed immune-related tissues of P. olivaceus with PacBio Sequel platform. In this study, 379,671 full-length non-chimeric (flnc) reads were generated with average length of 2482 bp, which is longer than any previously reported in P. olivaceus. A total of 66,420 isoforms of transcript were identified, 46,850 of which were novel isoforms of known genes accounting for 70.54%. In addition, 7720 novel genes, 12,540 alternative splicing (AS) events, 9296 alternative polyadenylation (APA) events, 2298 transcription factors (TFs), 10,270 lncRNAs and 5400 fusion transcripts were identified. Furthermore, functional annotation showed that most of the full-length transcripts were enriched in immune-related signaling pathways. Otherwise, the mRNA-miRNA interacting networks confirmed that 28.5% of mRNAs were predicted to be targeted by more than one miRNA. These results facilitate the understanding of gene structure, post-transcriptional regulatory networks, and subsequently proteomic diversity. In conclusion, our study provides the full-length transcriptome from multiple immune-related tissues of P. olivaceus, which is valuable for exploring its immune responses.
Collapse
Affiliation(s)
- Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingrui Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaofei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
35
|
Ramani NS, Chen H, Broaddus RR, Lazar AJ, Luthra R, Medeiros LJ, Patel KP, Rashid A, Routbort MJ, Stewart J, Tang Z, Bassett R, Manekia J, Barkoh BA, Dang H, Roy-Chowdhuri S. Utilization of cytology smears improves success rates of RNA-based next-generation sequencing gene fusion assays for clinically relevant predictive biomarkers. Cancer Cytopathol 2020; 129:374-382. [PMID: 33119213 DOI: 10.1002/cncy.22381] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The use of RNA-based next-generation sequencing (NGS) assays to detect gene fusions for targeted therapy has rapidly become an essential component of comprehensive molecular profiling. For cytology specimens, the cell block (CB) is most commonly used for fusion testing; however, insufficient cellularity and/or suboptimal RNA quality are often limiting factors. In the current study, the authors evaluated the factors affecting RNA fusion testing in cytology and the added value of smears in cases with a suboptimal or inadequate CB. METHODS A 12-month retrospective review was performed to identify cytology cases that were evaluated by a targeted RNA-based NGS assay. Samples were sequenced by targeted amplicon-based NGS for 51 clinically relevant genes on a proprietary platform. Preanalytic factors and NGS quality parameters were correlated with the results of RNA fusion testing. RESULTS The overall success rate of RNA fusion testing was 92%. Of the 146 cases successfully sequenced, 14% had a clinically relevant fusion detected. NGS testing success positively correlated with RNA yield (P = .03) but was independent of the tumor fraction, the tumor size, or the number of slides used for extraction. CB preparations were adequate for testing in 45% cases, but the inclusion of direct smears increased the adequacy rate to 92%. There was no significant difference in testing success rates between smears and CB preparations. CONCLUSIONS The success of RNA-based NGS fusion testing depends on the quality and quantity of RNA extracted. The use of direct smears significantly improves the adequacy of cytologic samples for RNA fusion testing for predictive biomarkers.
Collapse
Affiliation(s)
- Nisha S Ramani
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Chen
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Russell R Broaddus
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander J Lazar
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Asif Rashid
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark J Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John Stewart
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roland Bassett
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jawad Manekia
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bedia A Barkoh
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hyvan Dang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sinchita Roy-Chowdhuri
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
36
|
SoRelle JA, Wachsmann M, Cantarel BL. Assembling and Validating Bioinformatic Pipelines for Next-Generation Sequencing Clinical Assays. Arch Pathol Lab Med 2020; 144:1118-1130. [PMID: 32045276 DOI: 10.5858/arpa.2019-0476-ra] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Clinical next-generation sequencing (NGS) is being rapidly adopted, but analysis and interpretation of large data sets prompt new challenges for a clinical laboratory setting. Clinical NGS results rely heavily on the bioinformatics pipeline for identifying genetic variation in complex samples. The choice of bioinformatics algorithms, genome assembly, and genetic annotation databases are important for determining genetic alterations associated with disease. The analysis methods are often tuned to the assay to maximize accuracy. Once a pipeline has been developed, it must be validated to determine accuracy and reproducibility for samples similar to real-world cases. In silico proficiency testing or institutional data exchange will ensure consistency among clinical laboratories. OBJECTIVE.— To provide molecular pathologists a step-by-step guide to bioinformatics analysis and validation design in order to navigate the regulatory and validation standards of implementing a bioinformatic pipeline as a part of a new clinical NGS assay. DATA SOURCES.— This guide uses published studies on genomic analysis, bioinformatics methods, and methods comparison studies to inform the reader on what resources, including open source software tools and databases, are available for genetic variant detection and interpretation. CONCLUSIONS.— This review covers 4 key concepts: (1) bioinformatic analysis design for detecting genetic variation, (2) the resources for assessing genetic effects, (3) analysis validation assessment experiments and data sets, including a diverse set of samples to mimic real-world challenges that assess accuracy and reproducibility, and (4) if concordance between clinical laboratories will be improved by proficiency testing designed to test bioinformatic pipelines.
Collapse
Affiliation(s)
- Jeffrey A SoRelle
- Department of Pathology (SoRelle, Wachsmann), University of Texas Southwestern Medical Center, Dallas
| | - Megan Wachsmann
- Department of Pathology (SoRelle, Wachsmann), University of Texas Southwestern Medical Center, Dallas
| | - Brandi L Cantarel
- Bioinformatics Core Facility (Cantarel), University of Texas Southwestern Medical Center, Dallas.,Department of Bioinformatics (Cantarel), University of Texas Southwestern Medical Center, Dallas.,University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
37
|
Wang J, Li B, Marques S, Steinmetz LM, Wei W, Pelechano V. TIF-Seq2 disentangles overlapping isoforms in complex human transcriptomes. Nucleic Acids Res 2020; 48:e104. [PMID: 32816037 PMCID: PMC7544212 DOI: 10.1093/nar/gkaa691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic transcriptomes are complex, involving thousands of overlapping transcripts. The interleaved nature of the transcriptomes limits our ability to identify regulatory regions, and in some cases can lead to misinterpretation of gene expression. To improve the understanding of the overlapping transcriptomes, we have developed an optimized method, TIF-Seq2, able to sequence simultaneously the 5' and 3' ends of individual RNA molecules at single-nucleotide resolution. We investigated the transcriptome of a well characterized human cell line (K562) and identified thousands of unannotated transcript isoforms. By focusing on transcripts which are challenging to be investigated with RNA-Seq, we accurately defined boundaries of lowly expressed unannotated and read-through transcripts putatively encoding fusion genes. We validated our results by targeted long-read sequencing and standard RNA-Seq for chronic myeloid leukaemia patient samples. Taking the advantage of TIF-Seq2, we explored transcription regulation among overlapping units and investigated their crosstalk. We show that most overlapping upstream transcripts use poly(A) sites within the first 2 kb of the downstream transcription units. Our work shows that, by paring the 5' and 3' end of each RNA, TIF-Seq2 can improve the annotation of complex genomes, facilitate accurate assignment of promoters to genes and easily identify transcriptionally fused genes.
Collapse
Affiliation(s)
- Jingwen Wang
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Bingnan Li
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Sueli Marques
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Wu Wei
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| |
Collapse
|
38
|
Wang L, Yekula A, Muralidharan K, Small JL, Rosh ZS, Kang KM, Carter BS, Balaj L. Novel Gene Fusions in Glioblastoma Tumor Tissue and Matched Patient Plasma. Cancers (Basel) 2020; 12:cancers12051219. [PMID: 32414213 PMCID: PMC7281415 DOI: 10.3390/cancers12051219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 11/30/2022] Open
Abstract
Sequencing studies have provided novel insights into the heterogeneous molecular landscape of glioblastoma (GBM), unveiling a subset of patients with gene fusions. Tissue biopsy is highly invasive, limited by sampling frequency and incompletely representative of intra-tumor heterogeneity. Extracellular vesicle-based liquid biopsy provides a minimally invasive alternative to diagnose and monitor tumor-specific molecular aberrations in patient biofluids. Here, we used targeted RNA sequencing to screen GBM tissue and the matched plasma of patients (n = 9) for RNA fusion transcripts. We identified two novel fusion transcripts in GBM tissue and five novel fusions in the matched plasma of GBM patients. The fusion transcripts FGFR3-TACC3 and VTI1A-TCF7L2 were detected in both tissue and matched plasma. A longitudinal follow-up of a GBM patient with a FGFR3-TACC3 positive glioma revealed the potential of monitoring RNA fusions in plasma. In summary, we report a sensitive RNA-seq-based liquid biopsy strategy to detect RNA level fusion status in the plasma of GBM patients.
Collapse
Affiliation(s)
- Lan Wang
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Koushik Muralidharan
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Zachary S. Rosh
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Keiko M. Kang
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
- School of Medicine, University of California San Diego, San Diego, CA 92092, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
- Correspondence: (B.S.C.); (L.B.)
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
- Correspondence: (B.S.C.); (L.B.)
| |
Collapse
|
39
|
Heyer EE, Blackburn J. Sequencing Strategies for Fusion Gene Detection. Bioessays 2020; 42:e2000016. [DOI: 10.1002/bies.202000016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Erin E. Heyer
- The Kinghorn Cancer CentreGarvan Institute of Medical Research 384 Victoria Street Darlinghurst NSW 2010 Australia
| | - James Blackburn
- The Kinghorn Cancer CentreGarvan Institute of Medical Research 384 Victoria Street Darlinghurst NSW 2010 Australia
- Faculty of Medicine, St. Vincent's Clinical SchoolUNSW, St Vincent's Hospital Victoria Street Darlinghurst NSW 2010 Australia
| |
Collapse
|
40
|
Liu C, Zhang Y, Li X, Jia Y, Li F, Li J, Zhang Z. Evidence of constraint in the 3D genome for trans-splicing in human cells. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1380-1393. [PMID: 32221814 DOI: 10.1007/s11427-019-1609-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/04/2019] [Indexed: 10/24/2022]
Abstract
Fusion transcripts are commonly found in eukaryotes, and many aberrant fusions are associated with severe diseases, including cancer. One class of fusion transcripts is generated by joining separate transcripts through trans-splicing. However, the mechanism of trans-splicing in mammals remains largely elusive. Here we showed evidence to support an intuitive hypothesis that attributes trans-sphcing to the spatial proximity between premature transcripts. A novel trans-splicing detection tool (TSD) was developed to reliably identify intra-chromosomal trans-splicing events (iTSEs) from RNA-seq data. TSD can maintain a remarkable balance between sensitivity and accuracy, thus distinguishing it from most state-of-the-art tools. The accuracy of TSD was experimentally demonstrated by excluding potential false discovery from mosaic genome or template switching during PCR. We showed that iTSEs identified by TSD were frequently found between genomic regulatory elements, which are known to be more prone to interact with each other. Moreover, iTSE sites may be more physically adjacent to each other than random control in the tested human lymphoblastoid cell line according to Hi-C data. Our results suggest that trans-splicing and 3D genome architecture may be coupled in mammals and that our pipeline, TSD, may facilitate investigations of trans-splicing on a systematic and accurate level previously thought impossible.
Collapse
Affiliation(s)
- Cong Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiqun Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoli Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Jia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feifei Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, 100101, China. .,School of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
41
|
Ouali K, Pellat A, Cohen R, Svrcek M, Penault-Llorca F, André T. [NTRK Fusions: A new way of treatment for gastro-intestinal tumor?]. Bull Cancer 2020; 107:447-457. [PMID: 32067719 DOI: 10.1016/j.bulcan.2019.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 11/25/2022]
Abstract
The advent of molecular biology resulted in the discovery of new oncogenes that have led to the development of targeted therapies for the management of cancer patients. The development of these therapies has improved the prognosis of patients in various tumour localizations. The TRK receptor (tropomyosin receptor kinase) is a transmembrane receptor with a tyrosine kinase activity that plays a role in both cell proliferation and the physiology of the nervous system. Fusions involving the NTRK gene, which codes for this receptor, have been found in different types of solid tumours and lead to its constitutional activation. These fusions, however uncommon, are mainly found in rare pediatric tumours but can also be encountered in digestive cancers with high prevalence (such as colorectal cancer, especially in case of microsatellite instability, with a frequency of 2.5 to 38.5 %) or in aggressive cancers (such as pancreatic cancer). Therapies targeting TRK, such as larotrectinib or entrectinib, have shown significant response rates, usually greater than 6 months, for tumours from various primary sites presenting NTRK fusions and refractory to standard therapies. These fusions can be detected by different methods: immunohistochemistry, FISH (fluorescence in situ hybridization) as well as NGS (next generation sequencing). The intent of this review is to report on current knowledge on NTRK fusions in oncology and to discuss the role of these fusions in digestive cancers and potential therapeutic implications.
Collapse
Affiliation(s)
- Kaïssa Ouali
- AP-HP, hôpital Saint-Antoine, service d'oncologie médicale, 75012 Paris, France
| | - Anna Pellat
- AP-HP, hôpital Saint-Antoine, service d'oncologie médicale, 75012 Paris, France; Sorbonne université, Paris, France
| | - Romain Cohen
- AP-HP, hôpital Saint-Antoine, service d'oncologie médicale, 75012 Paris, France; Sorbonne université, Paris, France
| | - Magali Svrcek
- Sorbonne université, Paris, France; AP-HP, hôpital Saint-Antoine, département d'anatomo-pathologie, 75012 Paris, France
| | | | - Thierry André
- AP-HP, hôpital Saint-Antoine, service d'oncologie médicale, 75012 Paris, France; Sorbonne université, Paris, France.
| |
Collapse
|
42
|
Warthi G, Fournier PE, Seligmann H. Systematic Nucleotide Exchange Analysis of ESTs From the Human Cancer Genome Project Report: Origins of 347 Unknown ESTs Indicate Putative Transcription of Non-Coding Genomic Regions. Front Genet 2020; 11:42. [PMID: 32117454 PMCID: PMC7027195 DOI: 10.3389/fgene.2020.00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Expressed sequence tags (ESTs) provide an imprint of cellular RNA diversity irrespectively of sequence homology with template genomes. NCBI databases include many unknown RNAs from various normal and cancer cells. These are usually ignored assuming sequencing artefacts or contamination due to their lack of sequence homology with template DNA. Here, we report genomic origins of 347 ESTs previously assumed artefacts/unknown, from the FAPESP/LICR Human Cancer Genome Project. EST template detection uses systematic nucleotide exchange analyses called swinger transformations. Systematic nucleotide exchanges replace systematically particular nucleotides with different nucleotides. Among 347 unknown ESTs, 51 ESTs match mitogenome transcription, 17 and 2 ESTs are from nuclear chromosome non-coding regions, and uncharacterized nuclear genes. Identified ESTs mapped on 205 protein-coding genes, 10 genes had swinger RNAs in several biosamples. Whole cell transcriptome searches for 17 ESTs mapping on non-coding regions confirmed their transcription. The 10 swinger-transcribed genes identified more than once associate with cancer induction and progression, suggesting swinger transformation occurs mainly in highly transcribed genes. Swinger transformation is a unique method to identify noncanonical RNAs obtained from NGS, which identifies putative ncRNA transcribed regions. Results suggest that swinger transcription occurs in highly active genes in normal and genetically unstable cancer cells.
Collapse
Affiliation(s)
- Ganesh Warthi
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel.,Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, La Tronche, France
| |
Collapse
|
43
|
LaRoche-Johnston F, Monat C, Cousineau B. Detection of Group II Intron-Generated Chimeric mRNAs in Bacterial Cells. Methods Mol Biol 2020; 2079:95-107. [PMID: 31728964 DOI: 10.1007/978-1-4939-9904-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chimeric RNAs are the transcripts composed of exons from two separate genes or transcripts. Although the presence of these joined RNA molecules have mainly been documented in a variety of eukaryotes, we recently demonstrated that the Ll.LtrB group II intron, from the gram-positive bacterium Lactococcus lactis, can generate chimeric mRNAs through a novel intergenic trans-splicing pathway. Here we describe the detailed experimental procedures to detect group II intron-generated mRNA-mRNA chimeras from total RNA extracts using stringent reverse transcription conditions along with a reverse splicing-deficient group II intron as a negative control.
Collapse
Affiliation(s)
| | - Caroline Monat
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Benoit Cousineau
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
44
|
Neckles C, Sundara Rajan S, Caplen NJ. Fusion transcripts: Unexploited vulnerabilities in cancer? WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1562. [PMID: 31407506 PMCID: PMC6916338 DOI: 10.1002/wrna.1562] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Gene fusions are an important class of mutations in several cancer types and include genomic rearrangements that fuse regulatory or coding elements from two different genes. Analysis of the genetics of cancers harboring fusion oncogenes and the proteins they encode have enhanced cancer diagnosis and in some cases patient treatment. However, the effect of the complex structure of fusion genes on the biogenesis of the resulting chimeric transcripts they express is not well studied. There are two potential RNA-related vulnerabilities inherent to fusion-driven cancers: (a) the processing of the fusion precursor messenger RNA (pre-mRNA) to the mature mRNA and (b) the mature mRNA. In this study, we discuss the effects that the genetic organization of fusion oncogenes has on the generation of translatable mature RNAs and the diversity of fusion transcripts expressed in different cancer subtypes, which can fundamentally influence both tumorigenesis and treatment. We also discuss functional genomic approaches that can be utilized to identify proteins that mediate the processing of fusion pre-mRNAs. Furthermore, we assert that an enhanced understanding of fusion transcript biogenesis and the diversity of the chimeric RNAs present in fusion-driven cancers will increase the likelihood of successful application of RNA-based therapies in this class of tumors. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Carla Neckles
- Functional Genetics Section, Genetics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of Health, DHHSBethesdaMaryland
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of Health, DHHSBethesdaMaryland
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of Health, DHHSBethesdaMaryland
| |
Collapse
|
45
|
Standardization of Somatic Variant Classifications in Solid and Haematological Tumours by a Two-Level Approach of Biological and Clinical Classes: An Initiative of the Belgian ComPerMed Expert Panel. Cancers (Basel) 2019; 11:cancers11122030. [PMID: 31888289 PMCID: PMC6966529 DOI: 10.3390/cancers11122030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
In most diagnostic laboratories, targeted next-generation sequencing (NGS) is currently the default assay for the detection of somatic variants in solid as well as haematological tumours. Independent of the method, the final outcome is a list of variants that differ from the human genome reference sequence of which some may relate to the establishment of the tumour in the patient. A critical point towards a uniform patient management is the assignment of the biological contribution of each variant to the malignancy and its subsequent clinical impact in a specific malignancy. These so-called biological and clinical classifications of somatic variants are currently not standardized and are vastly dependent on the subjective analysis of each laboratory. This subjectivity can thus result in a different classification and subsequent clinical interpretation of the same variant. Therefore, the ComPerMed panel of Belgian experts in cancer diagnostics set up a working group with the goal to harmonize the biological classification and clinical interpretation of somatic variants detected by NGS. This effort resulted in the establishment of a uniform, two-level classification workflow system that should enable high consistency in diagnosis, prognosis, treatment and follow-up of cancer patients. Variants are first classified into a tumour-independent biological five class system and subsequently in a four tier ACMG clinical classification. Here, we describe the ComPerMed workflow in detail including examples for each step of the pipeline. Moreover, this workflow can be implemented in variant classification software tools enabling automatic reporting of NGS data, independent of panel, method or analysis software.
Collapse
|
46
|
Kim H, Yun JW, Lee ST, Kim HJ, Kim SH, Kim JW. Korean Society for Genetic Diagnostics Guidelines for Validation of Next-Generation Sequencing-Based Somatic Variant Detection in Hematologic Malignancies. Ann Lab Med 2019; 39:515-523. [PMID: 31240878 PMCID: PMC6660343 DOI: 10.3343/alm.2019.39.6.515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/31/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
Next-generation sequencing (NGS) is currently used in the clinical setting for targeted therapies and diagnosis of hematologic malignancies. Accurate detection of somatic variants is challenging because of tumor purity, heterogeneity, and the complexity of genetic alterations, with various issues ranging from high detection design to test implementation. This article presents guidelines developed through consensus among a panel of experts from the Korean Society for Genetic Diagnostics. They are based on experiences with the validation processes of NGS-based somatic panels for hematologic malignancies, with reference to previous international recommendations. These guidelines describe basic parameters with emphasis on the design of a validation protocol for NGS-based somatic panels to be used in practice. In addition, they suggest thresholds of key metrics, including minimum coverage, mean coverage with uniformity index, and minimum variant allele frequency, for the initial diagnosis of hematologic malignancies.
Collapse
Affiliation(s)
- Heyjin Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Jae Won Yun
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Jin Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Hee Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Won Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | | |
Collapse
|
47
|
Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long and the short of it. Genome Biol 2019; 20:246. [PMID: 31747936 PMCID: PMC6868818 DOI: 10.1186/s13059-019-1828-7] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
Recent research into structural variants (SVs) has established their importance to medicine and molecular biology, elucidating their role in various diseases, regulation of gene expression, ethnic diversity, and large-scale chromosome evolution-giving rise to the differences within populations and among species. Nevertheless, characterizing SVs and determining the optimal approach for a given experimental design remains a computational and scientific challenge. Multiple approaches have emerged to target various SV classes, zygosities, and size ranges. Here, we review these approaches with respect to their ability to infer SVs across the full spectrum of large, complex variations and present computational methods for each approach.
Collapse
Affiliation(s)
- Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, USA
| | - Nastassia Gobet
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Diana Ivette Cruz-Dávalos
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Ninon Mounier
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Christophe Dessimoz
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution & Environment, University College London, London, UK.
- Department of Computer Science, University College London, London, UK.
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
48
|
Barresi V, Cosentini I, Scuderi C, Napoli S, Di Bella V, Spampinato G, Condorelli DF. Fusion Transcripts of Adjacent Genes: New Insights into the World of Human Complex Transcripts in Cancer. Int J Mol Sci 2019; 20:ijms20215252. [PMID: 31652751 PMCID: PMC6862657 DOI: 10.3390/ijms20215252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022] Open
Abstract
The awareness of genome complexity brought a radical approach to the study of transcriptome, opening eyes to single RNAs generated from two or more adjacent genes according to the present consensus. This kind of transcript was thought to originate only from chromosomal rearrangements, but the discovery of readthrough transcription opens the doors to a new world of fusion RNAs. In the last years many possible intergenic cis-splicing mechanisms have been proposed, unveiling the origins of transcripts that contain some exons of both the upstream and downstream genes. In some cases, alternative mechanisms, such as trans-splicing and transcriptional slippage, have been proposed. Five databases, containing validated and predicted Fusion Transcripts of Adjacent Genes (FuTAGs), are available for the scientific community. A comparative analysis revealed that two of them contain the majority of the results. A complete analysis of the more widely characterized FuTAGs is provided in this review, including their expression pattern in normal tissues and in cancer. Gene structure, intergenic splicing patterns and exon junction sequences have been determined and here reported for well-characterized FuTAGs. The available functional data and the possible roles in cancer progression are discussed.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Ilaria Cosentini
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Chiara Scuderi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Salvatore Napoli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Virginia Di Bella
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
49
|
Abstract
Oncogenic somatic chromosomal rearrangements involving the NTRK1, NTRK2 or NTRK3 genes (NTRK gene fusions) occur in up to 1% of all solid tumors, and have been reported across a wide range of tumor types. The fusion proteins encoded by such rearranged sequences have constitutively activated TRK tyrosine kinase domains, providing novel therapeutic anticancer targets. The potential clinical effectiveness of TRK inhibition in patients with tumors harboring NTRK gene fusions is being assessed in phase I and II trials of TRK inhibitors, such as larotrectinib and entrectinib. Clinical trial results have demonstrated that larotrectinib is generally well tolerated and has shown high response rates that are durable across tumor types. These data validate NTRK gene fusions as actionable genomic alterations. In this review, we present the clinical data, discuss the different approaches that might be used to routinely screen tumors to indicate the presence of NTRK gene fusions, explore the issue of acquired resistance to TRK inhibition, and reflect on the wider regulatory considerations for tumor site agnostic TRK inhibitor drug development.
Collapse
Affiliation(s)
- Shivaani Kummar
- Division of Medical Oncology, Stanford University School of Medicine, 780 Welch Road, Rm CJ250L, Palo Alto, CA, 94305, USA.
| | - Ulrik N Lassen
- Department of Oncology, Rigshospitalet, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
50
|
Methods for Identifying Patients with Tropomyosin Receptor Kinase (TRK) Fusion Cancer. Pathol Oncol Res 2019; 26:1385-1399. [PMID: 31256325 PMCID: PMC7297824 DOI: 10.1007/s12253-019-00685-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/11/2019] [Indexed: 11/01/2022]
Abstract
NTRK gene fusions affecting the tropomyosin receptor kinase (TRK) protein family have been found to be oncogenic drivers in a broad range of cancers. Small molecule inhibitors targeting TRK activity, such as the recently Food and Drug Administration-approved agent larotrectinib (Vitrakvi®), have shown promising efficacy and safety data in the treatment of patients with TRK fusion cancers. NTRK gene fusions can be detected using several different approaches, including fluorescent in situ hybridization, reverse transcription polymerase chain reaction, immunohistochemistry, next-generation sequencing, and ribonucleic acid-based multiplexed assays. Identifying patients with cancers that harbor NTRK gene fusions will optimize treatment outcomes by providing targeted precision therapy.
Collapse
|