1
|
Bibi A, Bartekova M, Gandhi S, Greco S, Madè A, Sarkar M, Stopa V, Tastsoglou S, de Gonzalo-Calvo D, Devaux Y, Emanueli C, Hatzigeorgiou AG, Nossent AY, Zhou Z, Martelli F. Circular RNA regulatory role in pathological cardiac remodelling. Br J Pharmacol 2025; 182:316-339. [PMID: 38830749 DOI: 10.1111/bph.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiac remodelling involves structural, cellular and molecular alterations in the heart after injury, resulting in progressive loss of heart function and ultimately leading to heart failure. Circular RNAs (circRNAs) are a recently rediscovered class of non-coding RNAs that play regulatory roles in the pathogenesis of cardiovascular diseases, including heart failure. Thus, a more comprehensive understanding of the role of circRNAs in the processes governing cardiac remodelling may set the ground for the development of circRNA-based diagnostic and therapeutic strategies. In this review, the current knowledge about circRNA origin, conservation, characteristics and function is summarized. Bioinformatics and wet-lab methods used in circRNA research are discussed. The regulatory function of circRNAs in cardiac remodelling mechanisms such as cell death, cardiomyocyte hypertrophy, inflammation, fibrosis and metabolism is highlighted. Finally, key challenges and opportunities in circRNA research are discussed, and orientations for future work to address the pharmacological potential of circRNAs in heart failure are proposed. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Shrey Gandhi
- Institute of Immunology, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Moumita Sarkar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Spyros Tastsoglou
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
2
|
Hu K, Guo J, Zeng J, Shao Y, Wu B, Mo J, Mo G. Current state of research on copper complexes in the treatment of breast cancer. Open Life Sci 2024; 19:20220840. [PMID: 38585632 PMCID: PMC10997149 DOI: 10.1515/biol-2022-0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024] Open
Abstract
Breast cancer, a malignancy originating from the epithelium or ductal epithelium of the breast, is not only highly prevalent in women but is also the leading cause of cancer-related deaths in women worldwide. Research has indicated that breast cancer incidence is increasing in younger women, prompting significant interest from scientists actively researching breast cancer treatment. Copper is highly accumulated in breast cancer cells, leading to the development of copper complexes that cause immunogenic cell death, apoptosis, oxidative stress, redox-mediated cell death, and autophagy by regulating the expression of key cell death proteins or assisting in the onset of cell death. However, they have not yet been applied to clinical therapy due to their solubility in physiological buffers and their different and unpredictable mechanisms of action. Herein, we review existing relevant studies, summarize the detailed mechanisms by which they exert anti-breast cancer effects, and propose a potential mechanism by which copper complexes may exert antitumor effects by causing copper death in breast cancer cells. Since copper death in breast cancer is closely related to prognosis and immune infiltration, further copper complex research may provide an opportunity to mitigate the high incidence and mortality rates associated with breast cancer.
Collapse
Affiliation(s)
- Kui Hu
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jingna Guo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jiemin Zeng
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Yunhao Shao
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Binhua Wu
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| | - Jian Mo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Guixi Mo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
3
|
Yang JH, Tsitsipatis D, Gorospe M. Stoichiometry of long noncoding RNA interactions with other RNAs: Insights from OIP5-AS1. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1841. [PMID: 38576135 DOI: 10.1002/wrna.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Long noncoding (lnc)RNAs modulate gene expression programs in a range of developmental processes in different organs. In skeletal muscle, lncRNAs have been implicated in myogenesis, the process whereby muscle precursor cells form muscle fibers during embryonic development and regenerate muscle fibers in the adult. Here, we discuss OIP5-AS1, a lncRNA that is highly expressed in skeletal muscle and is capable of coordinating protein expression programs during myogenesis. Given that several myogenic functions of OIP5-AS1 involve interactions with MEF2C mRNA and with the microRNA miR-7, it was critical to carefully evaluate the precise levels of OIP5-AS1 during myogenesis. We discuss the approaches used to examine lncRNA copy number using OIP5-AS1 as an example, focusing on quantification by quantitative PCR analysis with reference to nucleic acids of known abundance, by droplet digital (dd)PCR measurement, and by microscopic visualization of individual lncRNAs in cells. We discuss considerations of RNA stoichiometry in light of developmental processes in which lncRNAs are implicated. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Institute of Biomedical Sciences, National Sun Yat-set University, Kaohsiung, Taiwan
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Yu L, Zheng J, Yu J, Zhang Y, Hu H. Circ_0067934: a circular RNA with roles in human cancer. Hum Cell 2023; 36:1865-1876. [PMID: 37592109 PMCID: PMC10587307 DOI: 10.1007/s13577-023-00962-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
A circular RNA (circRNA) is a non-coding RNA (ncRNA) derived from reverse splicing from pre-mRNA and is characterized by the absence of a cap structure at the 5' end and a poly-adenylated tail at the 3' end. Owing to the development of RNA sequencing and bioinformatics approaches in recent years, the important clinical value of circRNAs has been increasingly revealed. Circ_0067934 is an RNA molecule of 170 nucleotides located on chromosome 3q26.2. Circ_0067934 is formed via the reverse splicing of exons 15 and 16 in PRKCI (protein kinase C Iota). Recent studies revealed the upregulation or downregulation of circ_0067934 in various tumors. The expression of circ_0067934 was found to be correlated with tumor size, TNM stage, and poor prognosis. Based on experiments with cancer cells, circ_0067934 promotes cancer cell proliferation, migratory activity, and invasion when overexpressed or downregulated. The potential mechanism involves the binding of circ_0067934 to microRNAs (miRNAs; miR-545, miR-1304, miR-1301-3p, miR-1182, miR-7, and miR-1324) to regulate the post-transcriptional expression of genes. Other mechanisms include inhibition of the Wnt/β-catenin and PI3K/AKT signaling pathways. Here, we summarized the biological functions and possible mechanisms of circ_0067934 in different tumors to enable further exploration of its translational applications in clinical diagnosis, therapy, and prognostic assessments.
Collapse
Affiliation(s)
- Liqing Yu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Jiacheng Zheng
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Jiali Yu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Yujun Zhang
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The First Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Huoli Hu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
| |
Collapse
|
5
|
Jiang C, Zhang J, Wang W, Shan Z, Sun F, Tan Y, Tong Y, Qiu Y. Extracellular vesicles in gastric cancer: role of exosomal lncRNA and microRNA as diagnostic and therapeutic targets. Front Physiol 2023; 14:1158839. [PMID: 37664422 PMCID: PMC10469264 DOI: 10.3389/fphys.2023.1158839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, play a crucial role in intercellular communication and have emerged as important mediators in the development and progression of gastric cancer. This review discusses the current understanding of the role of EVs, particularly exosomal lncRNA and microRNA, in gastric cancer and their potential as diagnostic and therapeutic targets. Exosomes are small membrane-bound particles secreted by both cancer cells and stromal cells within the tumor microenvironment. They contain various ncRNA and biomolecules, which can be transferred to recipient cells to promote tumor growth and metastasis. In this review, we highlighted the importance of exosomal lncRNA and microRNA in gastric cancer. Exosomal lncRNAs have been shown to regulate gene expression by interacting with transcription factors or chromatin-modifying enzymes, which regulate gene expression by binding to target mRNAs. We also discuss the potential use of exosomal lncRNAs and microRNAs as diagnostic biomarkers for gastric cancer. Exosomes can be isolated from various bodily fluids, including blood, urine, and saliva. They contain specific molecules that reflect the molecular characteristics of the tumor, making them promising candidates for non-invasive diagnostic tests. Finally, the potential of targeting exosomal lncRNAs and microRNAs as a therapeutic strategy for gastric cancer were reviewed as wee. Inhibition of specific molecules within exosomes has been shown to suppress tumor growth and metastasis in preclinical models. In conclusion, this review article provides an overview of the current understanding of the role of exosomal lncRNA and microRNA in gastric cancer. We suggest that further research into these molecules could lead to new diagnostic tools and therapeutic strategies for this deadly disease.
Collapse
Affiliation(s)
- Chengyao Jiang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Wentao Wang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Zexing Shan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Fan Sun
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yuen Tan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yilin Tong
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, Irimia M, Kadener S, Kristensen LS, Legnini I, Morlando M, Jarlstad Olesen MT, Pasterkamp RJ, Preibisch S, Rajewsky N, Suenkel C, Kjems J. Best practice standards for circular RNA research. Nat Methods 2022; 19:1208-1220. [PMID: 35618955 PMCID: PMC9759028 DOI: 10.1038/s41592-022-01487-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/16/2022] [Indexed: 12/26/2022]
Abstract
Circular RNAs (circRNAs) are formed in all domains of life and via different mechanisms. There has been an explosion in the number of circRNA papers in recent years; however, as a relatively young field, circRNA biology has an urgent need for common experimental standards for isolating, analyzing, expressing and depleting circRNAs. Here we propose a set of guidelines for circRNA studies based on the authors' experience. This Perspective will specifically address the major class of circRNAs in Eukarya that are generated by a spliceosome-catalyzed back-splicing event. We hope that the implementation of best practice principles for circRNA research will help move the field forward and allow a better functional understanding of this fascinating group of RNAs.
Collapse
Affiliation(s)
- Anne F Nielsen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| | - Albrecht Bindereif
- Department of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Irene Bozzoni
- Department of Biology and Biotechnology, Charles Darwin, and Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Sapienza University of Rome, Rome, Italy
| | - Mor Hanan
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- TargoVax - Clinical Science, Oslo, Norway
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | | | | | - Ivano Legnini
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mariangela Morlando
- Department of Pharmaceutical Sciences, 'Department of Excellence 2018-2022', University of Perugia, Perugia, Italy
| | | | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Stephan Preibisch
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- HHMI Janelia Research campus, Ashburn, VA, USA
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christin Suenkel
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Lonza - Drug Product Services, Basel, Switzerland
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
7
|
Identification of Novel Circular RNAs of the Human Protein Arginine Methyltransferase 1 (PRMT1) Gene, Expressed in Breast Cancer Cells. Genes (Basel) 2022; 13:genes13071133. [PMID: 35885916 PMCID: PMC9316507 DOI: 10.3390/genes13071133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs) constitute a type of RNA formed through back-splicing. In breast cancer, circRNAs are implicated in tumor onset and progression. Although histone methylation by PRMT1 is largely involved in breast cancer development and metastasis, the effect of circular transcripts deriving from this gene has not been examined. In this study, total RNA was extracted from four breast cancer cell lines and reversely transcribed using random hexamer primers. Next, first- and second-round PCRs were performed using gene-specific divergent primers. Sanger sequencing followed for the determination of the sequence of each novel PRMT1 circRNA. Lastly, bioinformatics analysis was conducted to predict the functions of the novel circRNAs. In total, nine novel circRNAs were identified, comprising both complete and truncated exons of the PRMT1 gene. Interestingly, we demonstrated that the back-splice junctions consist of novel splice sites of the PRMT1 exons. Moreover, the circRNA expression pattern differed among these four breast cancer cell lines. All the novel circRNAs are predicted to act as miRNA and/or protein sponges, while five circRNAs also possess an open reading frame. In summary, we described the complete sequence of nine novel circRNAs of the PRMT1 gene, comprising distinct back-splice junctions and probably having different molecular properties.
Collapse
|
8
|
Utilization and Potential of RNA-Based Therapies in Cardiovascular Disease. JACC Basic Transl Sci 2022; 7:956-969. [PMID: 36317129 PMCID: PMC9617127 DOI: 10.1016/j.jacbts.2022.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
RNA-based therapeutics have the potential to reach previously “undruggable” pathways in cardiovascular disease RNA-based therapeutics constitute a vast array of technologies, including unique forms, chemistries, and modalities of delivery Rapid development of RNA-based vaccines was made possible by decades of foundational work Specificity and efficacy of targeting and determination of mechanism(s) of action remain a distinct challenge
Cardiovascular disease (CVD) remains the largest cause of mortality worldwide. The development of new effective therapeutics is a major unmet need. The current review focuses broadly on the concept of nucleic acid (NA)–based therapies, considering the use of various forms of NAs, including mRNAs, miRNAs, siRNA, and guide RNAs, the latter specifically for the purpose of CRISPR-Cas directed gene editing. We describe the current state-of-the-art of RNA target discovery and development, the status of RNA therapeutics in the context of CVD, and some of the challenges and hurdles to be overcome.
Collapse
|
9
|
Guo X, Piao H. Research Progress of circRNAs in Glioblastoma. Front Cell Dev Biol 2021; 9:791892. [PMID: 34881248 PMCID: PMC8645988 DOI: 10.3389/fcell.2021.791892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded covalently closed non-coding RNAs without a 5' cap structure or 3' terminal poly (A) tail, which are expressed in a variety of tissues and cells with conserved, stable and specific characteristics. Glioblastoma (GBM) is the most aggressive and lethal tumor in the central nervous system, characterized by high recurrence and mortality rates. The specific expression of circRNAs in GBM has demonstrated their potential to become new biomarkers for the development of GBM. The specific expression of circRNAs in GBM has shown their potential as new biomarkers for GBM cell proliferation, apoptosis, migration and invasion, which provides new ideas for GBM treatment. In this paper, we will review the biological properties and functions of circRNAs and their biological roles and clinical applications in GBM.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Cao C, Shu X. Suppression of circ_0008932 inhibits tumor growth and metastasis in osteosarcoma by targeting miR-145-5p. Exp Ther Med 2021; 22:1106. [PMID: 34504560 PMCID: PMC8383749 DOI: 10.3892/etm.2021.10540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/17/2021] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is a common type of primary malignant tumor. Although the pathogenesis of OS has been extensively studied, the underlying molecular mechanisms have remained to be fully elucidated. Accumulating evidence has revealed that dysregulation of various circular RNAs (circRNAs) is associated with tumorigenesis and recent studies have indicated that circRNA circ_0008932 is aberrantly expressed in tumors. In the present study, the expression and detailed function of circ_0008932 in OS were elucidated. The levels of circ_0008932 in OS samples and cell lines were examined using reverse transcription-quantitative PCR. A cell model with circ_0008932 knockdown was generated using specific small interfering RNA (si-circ_0008932). Cell viability was determined by a Cell Counting Kit-8 assay, the cell migratory/invasive capacity was evaluated using Transwell assays and cell apoptosis was assessed by flow cytometry. The results suggested that circ_0008932 was upregulated in most primary OS tumors, suggesting that circ_0008932 is associated with the development of OS. In the in vitro assays, si-circ_0008932 inhibited the proliferation, migration and invasion of OS cells, while apoptosis was promoted. A luciferase reporter assay revealed that circ_0008932 may downregulate microRNA (miR)-145-5p through direct binding. Furthermore, the expression of miR-145-5p was negatively correlated with circ_0008932 levels in OS specimens. In addition, further functional studies indicated that miR-145-5p inhibitors eliminated the effects caused by si-circ_0008932 in OS cells. In comparison, the changes in the biological behavior of OS cells transfected with si-circ_0008932 were enhanced by miR-145-5p. In summary, circ_0008932 may be a novel oncogenic factor during the progression and development of OS by targeting miR-145-5p; more importantly, circ_0008932 may be a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Chenggang Cao
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital/Chongqing First People's Hospital, Chongqing 400011, P.R. China
| | - Xiaolei Shu
- Department of Radiation Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, P.R. China
| |
Collapse
|
11
|
Systematic Identification of circRNAs in Alzheimer's Disease. Genes (Basel) 2021; 12:genes12081258. [PMID: 34440432 PMCID: PMC8391980 DOI: 10.3390/genes12081258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Mammalian circRNAs are covalently closed circular RNAs often generated through backsplicing of precursor linear RNAs. Although their functions are largely unknown, they have been found to influence gene expression at different levels and in a wide range of biological processes. Here, we investigated if some circRNAs may be differentially abundant in Alzheimer’s Disease (AD). We identified and analyzed publicly available RNA-sequencing data from the frontal lobe, temporal cortex, hippocampus, and plasma samples reported from persons with AD and persons who were cognitively normal, focusing on circRNAs shared across these datasets. We identified an overlap of significantly changed circRNAs among AD individuals in the various brain datasets, including circRNAs originating from genes strongly linked to AD pathology such as DOCK1, NTRK2, APC (implicated in synaptic plasticity and neuronal survival) and DGL1/SAP97, TRAPPC9, and KIF1B (implicated in vesicular traffic). We further predicted the presence of circRNA isoforms in AD using specialized statistical analysis packages to create approximations of entire circRNAs. We propose that the catalog of differentially abundant circRNAs can guide future investigation on the expression and splicing of the host transcripts, as well as the possible roles of these circRNAs in AD pathogenesis.
Collapse
|
12
|
Vromman M, Yigit N, Verniers K, Lefever S, Vandesompele J, Volders PJ. Validation of Circular RNAs Using RT-qPCR After Effective Removal of Linear RNAs by Ribonuclease R. Curr Protoc 2021; 1:e181. [PMID: 34232572 DOI: 10.1002/cpz1.181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that have been shown to play a role in normal development, homeostasis, and disease, including cancer. CircRNAs are formed through a process called back-splicing, which results in a covalently closed loop with a nonlinear back-spliced junction (BSJ). In general, circRNA BSJs are predicted in RNA sequencing data using one of numerous circRNA detection algorithms. Selected circRNAs are then typically validated using an orthogonal method such as reverse transcription quantitative PCR (RT-qPCR) with circRNA-specific primers. However, linear transcripts originating from endogenous trans-splicing can lead to false-positive signals both in RNA sequencing and in RT-qPCR experiments. Therefore, it is essential to perform the RT-qPCR validation step only after linear RNAs have been degraded using an exonuclease such as ribonuclease R (RNase R). Several RNase R protocols are available for circRNA detection using RNA sequencing or RT-qPCR. These protocols-which vary in enzyme concentration, RNA input amount, incubation times, and cleanup steps-typically lack a detailed validated standard protocol and fail to provide a range of conditions that deliver accurate results. As such, some protocols use RNase R concentrations that are too high, resulting in partial degradation of the target circRNAs. Here, we describe an optimized workflow for circRNA validation, combining RNase R treatment and RT-qPCR. First, we outline the steps for circRNA primer design and qPCR assay validation. Then, we describe RNase R treatment of total RNA and, importantly, a subsequent essential buffer cleanup step. Lastly, we outline the steps to perform the RT-qPCR and discuss the downstream data analyses. © 2021 Wiley Periodicals LLC. Basic Protocol 1: CircRNA primer design and qPCR assay validation Basic Protocol 2: RNase R treatment, cleanup, and RT-qPCR.
Collapse
Affiliation(s)
- Marieke Vromman
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium.,OncoRNALab, Cancer Research Institute Ghent, Ghent, Belgium
| | - Nurten Yigit
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium.,OncoRNALab, Cancer Research Institute Ghent, Ghent, Belgium
| | - Kimberly Verniers
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium.,OncoRNALab, Cancer Research Institute Ghent, Ghent, Belgium
| | - Steve Lefever
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium.,OncoRNALab, Cancer Research Institute Ghent, Ghent, Belgium
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium.,OncoRNALab, Cancer Research Institute Ghent, Ghent, Belgium
| | - Pieter-Jan Volders
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium.,OncoRNALab, Cancer Research Institute Ghent, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| |
Collapse
|
13
|
Li S, Liu J, Liu S, Jiao W, Wang X. Mesenchymal stem cell-derived extracellular vesicles prevent the development of osteoarthritis via the circHIPK3/miR-124-3p/MYH9 axis. J Nanobiotechnology 2021; 19:194. [PMID: 34193158 PMCID: PMC8244143 DOI: 10.1186/s12951-021-00940-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background Extracellular vesicles (EVs) secreted by mesenchymal stem cells (MSCs) may play a vital role in a variety of biological processes, including cartilage regeneration. However, few studies reported their potential in the development of osteoarthritis (OA) previously. In this study, we explored the biological roles and underlying mechanism of MSCs-EVs in OA. Results Co-culture experiments revealed that MSCs-EVs could promote the expression of collagen type II alpha 1 chain (COL2A1), SRY-box transcription factor 9 (SOX9) and Aggrecan while negatively regulate the expression of chondrocyte hypertrophy markers matrix metallopeptidase 13 (MMP-13) and RUNX family transcription factor 2 (Runx2) in mouse chondrocytes in the OA model. Besides, the results of cell experiments indicated that MSCs-EVs could notably weaken the suppression of chondrocyte proliferation, migration and the promotion of chondrocyte apoptosis via interleukin1β (IL-1β) induction. In addition, MSCs-circHIPK3-EVs (EVs derived from MSCs overexpressing circHIPK3) considerably improved IL-1β-induced chondrocyte injury. Mechanistically, we elucidated that circHIPK3 could directly bind to miR-124-3p and subsequently elevate the expression of the target gene MYH9. Conclusion The findings in our study demonstrated that EVs-circHIPK3 participated in MSCs-EVs-mediated chondrocyte proliferation and migration induction and in chondrocyte apoptosis inhibition via the miR-124-3p/MYH9 axis. This offers a promising novel cell-free therapy for treating OA. Graphic abstract ![]()
Collapse
Affiliation(s)
- Shenglong Li
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.,Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Jie Liu
- Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110002, China
| | - Siyu Liu
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Weijie Jiao
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Xiaohong Wang
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China. .,Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Ulshöfer CJ, Pfafenrot C, Bindereif A, Schneider T. Methods to study circRNA-protein interactions. Methods 2021; 196:36-46. [PMID: 33894379 DOI: 10.1016/j.ymeth.2021.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) have been studied extensively in the last few years, uncovering functional roles in a diverse range of cell types and organisms. As shown for a few cases, these functions may be mediated by trans-acting factors, in particular RNA-binding proteins (RBPs). However, the specific interaction partners for most circRNAs remain unknown. This is mainly due to technical difficulties in their identification and in differentiating between interactors of circRNAs and their linear counterparts. Here we review the currently used methodology to systematically study circRNA-protein complexes (circRNPs), focusing either on a specific RNA or protein, both on the gene-specific or global level, and discuss advantages and challenges of the available approaches.
Collapse
Affiliation(s)
- Corinna J Ulshöfer
- Institute of Biochemistry, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Christina Pfafenrot
- Institute of Biochemistry, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus-Liebig-University of Giessen, 35392 Giessen, Germany.
| | - Tim Schneider
- Institute of Biochemistry, Justus-Liebig-University of Giessen, 35392 Giessen, Germany.
| |
Collapse
|
15
|
Dodbele S, Mutlu N, Wilusz JE. Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep 2021; 22:e52072. [PMID: 33629517 PMCID: PMC7926241 DOI: 10.15252/embr.202052072] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/13/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNAs from thousands of eukaryotic genes can be non-canonically spliced to generate circular RNAs (circRNAs) that have covalently linked ends. Most mature circular RNAs are expressed at low levels, but some have known physiological functions and/or accumulate to higher levels than their associated linear mRNAs. These observations have sparked great interest into this class of previously underappreciated RNAs and prompted the development of new experimental approaches to study them, especially methods to measure or modulate circular RNA expression levels. Nonetheless, each of these approaches has caveats and potential pitfalls that must be controlled for when designing experiments and interpreting results. Here, we provide practical advice, tips, and suggested guidelines for performing robust identification, validation, and functional characterization of circular RNAs. Beyond promoting rigor and reproducibility, these suggestions should help bring clarity to the field, especially how circular RNAs function and whether these transcripts may sponge microRNAs/proteins or serve as templates for translation.
Collapse
Affiliation(s)
- Samantha Dodbele
- Department of Biochemistry and BiophysicsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Nebibe Mutlu
- Department of Biochemistry and BiophysicsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Jeremy E Wilusz
- Department of Biochemistry and BiophysicsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|