1
|
Abusaliya A, Kim HH, Vetrivel P, Bhosale PB, Jeong SH, Park MY, Lee SJ, Kim GS. Transcriptome analysis revealed the genes and major pathways involved in prunetrin treated hepatocellular carcinoma cells. Front Pharmacol 2024; 15:1400186. [PMID: 39555097 PMCID: PMC11563786 DOI: 10.3389/fphar.2024.1400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Liver cancer represents a complex and severe ailment that poses tough challenges to global healthcare. Transcriptome sequencing plays a crucial role in enhancing our understanding of cancer biology and accelerating the development of more effective methods for cancer diagnosis and treatment. In the course of our current investigation, we identified a total of 1,149 differentially expressed genes (DEGs), encompassing 499 upregulated and 650 downregulated genes, subsequent to prunetrin (PUR) treatment. Our methodology encompassed gene and pathway enrichment analysis, functional annotation, KEGG pathway assessments, and protein-protein interaction (PPI) analysis of the DEGs. The preeminent genes within the DEGs were found to be associated with apoptotic processes, cell cycle regulation, the PI3k/Akt pathway, the MAPK pathway, and the mTOR pathway. Furthermore, key apoptotic-related genes exhibited close interconnections and cluster analysis found three interacting hub genes namely, TP53, TGFB1 and CASP8. Validation of these genes was achieved through GEPIA and western blotting. Collectively, our findings provide insights into the functional landscape of liver cancer-related genes, shedding light on the molecular mechanisms driving disease progression and highlighting potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abuyaseer Abusaliya
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hun Hwan Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Preethi Vetrivel
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Se Hyo Jeong
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Yeong Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Si Joon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Gon Sup Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
2
|
Song YJ, Shinn MK, Bangru S, Wang Y, Sun Q, Hao Q, Chaturvedi P, Freier SM, Perez-Pinera P, Nelson ER, Belmont AS, Guttman M, Prasanth SG, Kalsotra A, Pappu RV, Prasanth KV. Chromatin-associated lncRNA-splicing factor condensates regulate hypoxia responsive RNA processing of genes pre-positioned near nuclear speckles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621310. [PMID: 39554052 PMCID: PMC11565956 DOI: 10.1101/2024.10.31.621310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hypoxia-induced alternative splicing (AS) regulates tumor progression and metastasis. Little is known about how such AS is controlled and whether higher-order genome and nuclear domain (ND) organizations dictate these processes. We observe that hypoxia-responsive alternatively spliced genes position near nuclear speckle (NS), the ND that enhances splicing efficiency. NS-resident MALAT1 long noncoding RNA, induced in response to hypoxia, regulates hypoxia-responsive AS. MALAT1 achieves this by organizing the SR-family of splicing factor, SRSF1, near NS and regulating the binding of SRSF1 to pre-mRNAs. Mechanistically, MALAT1 enhances the recruitment of SRSF1 to elongating RNA polymerase II (pol II) by promoting the formation of phase-separated condensates of SRSF1, which are preferentially recognized by pol II. During hypoxia, MALAT1 regulates spatially organized AS by establishing a threshold SRSF1 concentration near NSs, potentially by forming condensates, critical for pol II-mediated recruitment of SRSF1 to pre-mRNAs.
Collapse
|
3
|
Wang J, Zhang Y, Li Z. Advancements in Understanding the Role of Circular RNA in Osteosarcoma. Mol Biotechnol 2024; 66:2157-2167. [PMID: 37661210 DOI: 10.1007/s12033-023-00838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
Osteosarcoma, the most prevalent primary malignant bone tumor and the third most frequent cancer in children and adolescents worldwide, still poses a significant therapeutic challenge. Even though combined chemotherapy and surgical resection have improved survival rates up to 60%, the prognosis for most patients with metastatic osteosarcoma continues to be dismal. The specific pathogenesis and key regulators of tumor invasion and metastasis remain largely elusive. Circular RNAs (circRNAs), novel endogenous non-coding RNA molecules that form covalently closed continuous loops through splicing, play a crucial role in the development, progression, clinical diagnosis, and treatment of various diseases. Recently, an escalating number of circular structures have been identified in osteosarcoma. Understanding their role in osteosarcoma is advantageous for early detection, diagnosis, and treatment of this disease. The primary function of circRNA involves its unique ability to bind specifically to miRNA, although their biological functions also extend to interacting with proteins, regulating gene transcription, and serving as translation templates. In this review, we explore the mechanisms and clinical applications of circRNAs in the pathogenesis and progression of osteosarcoma, with a particular emphasis on the regulatory mechanisms and functions of circRNAs as miRNA sponges in osteosarcoma development.
Collapse
Affiliation(s)
- Jin Wang
- Department of Orthopedics, Wuwei People's Hospital, Xuanwu Street, Liangzhou District, Wuwei, Gansu, 730030, People's Republic of China
| | - Yan Zhang
- Department of Outpatient, Liangzhou District Huangyang Hospital, Wuwei, Gansu, 733000, People's Republic of China
| | - Zicai Li
- Department of Orthopedics, Wuwei People's Hospital, Xuanwu Street, Liangzhou District, Wuwei, Gansu, 730030, People's Republic of China.
| |
Collapse
|
4
|
Villagra UMM, da Cunha BR, Polachini GM, Henrique T, Stefanini ACB, de Castro TB, da Silva CHTP, Feitosa OA, Fukuyama EE, López RVM, Dias-Neto E, Nunes FD, Severino P, Tajara EH. Expression of Truncated Products at the 5'-Terminal Region of RIPK2 and Evolutive Aspects that Support Their Biological Importance. Genome Biol Evol 2024; 16:evae106. [PMID: 38752399 PMCID: PMC11221433 DOI: 10.1093/gbe/evae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Alternative splicing is the process of generating different mRNAs from the same primary transcript, which contributes to increase the transcriptome and proteome diversity. Abnormal splicing has been associated with the development of several diseases including cancer. Given that mutations and abnormal levels of the RIPK2 transcript and RIP-2 protein are frequent in tumors, and that RIP-2 modulates immune and inflammatory responses, we investigated alternative splicing events that result in partial deletions of the kinase domain at the N-terminus of RIP-2. We also investigated the structure and expression of the RIPK2 truncated variants and isoforms in different environments. In addition, we searched data throughout Supraprimates evolution that could support the biological importance of RIPK2 alternatively spliced products. We observed that human variants and isoforms were differentially regulated following temperature stress, and that the truncated transcript was more expressed than the long transcript in tumor samples. The inverse was found for the longer protein isoform. The truncated variant was also detected in chimpanzee, gorilla, hare, pika, mouse, rat, and tree shrew. The fact that the same variant has been preserved in mammals with divergence times up to 70 million years raises the hypothesis that it may have a functional significance.
Collapse
Affiliation(s)
- Ulises M M Villagra
- Faculty of Exact Sciences, Biotechnology and Molecular Biology Institute (IBBM), National University of La Plata-CCT, CONICET, La Plata, Argentina
| | - Bianca R da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Giovana M Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Ana Carolina Buzzo Stefanini
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Tialfi Bergamin de Castro
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Microbial Pathogenesis Department, University of Maryland Baltimore, School of Dentistry, Baltimore, MD, USA
| | - Carlos H T P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Olavo A Feitosa
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Erica E Fukuyama
- Head and Neck Surgery Department, Arnaldo Vieira de Carvalho Cancer Institute, São Paulo, SP, Brazil
| | - Rossana V M López
- Comprehensive Center for Precision Oncology, Center for Translational Research in Oncology, State of São Paulo Cancer Institute—ICESP, Clinics Hospital, Sao Paulo University Medical School, São Paulo, SP, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Fabio D Nunes
- Department of Stomatology, School of Dentistry, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Patricia Severino
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Zhuo W, Zeng Z, Hu Y, Hu P, Han S, Wang D, Wang F, Zhao Y, Huang Y, Wang J, Lv G, Wang H, Li Y, Zhao E, Cai K, Zhao G. Metabolic stress-induced reciprocal loop of long noncoding RNA ZFAS1 and ZEB1 promotes epithelial-mesenchymal transition and metastasis of pancreatic cancer cells. Cancer Sci 2023; 114:3623-3635. [PMID: 37488751 PMCID: PMC10475775 DOI: 10.1111/cas.15905] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Pancreatic cancer (PC) development faces significant metabolic stress due to metabolic reprogramming and a distinct hypovascular nature, often leading to glucose and glutamine depletion. However, the adaption mechanisms by which PC adapts to these metabolic challenges have not yet been completely explored. Here, we found that metabolic stress induced by glucose and glutamine deprivation led to an overexpression of ZNFX1 antisense RNA 1 (ZFAS1). This overexpression played a significant role in instigating PC cell epithelial-mesenchymal transition (EMT) and metastasis. Mechanistically, ZFAS1 enhanced the interaction between AMPK, a key kinase, and ZEB1, the primary regulator of EMT. This interaction resulted in the phosphorylation and subsequent stabilization of ZEB1. Interestingly, ZEB1 also reciprocally influenced the transcription of ZFAS1 by binding to its promoter. Furthermore, when ZFAS1 was depleted, the nutrient deprivation-induced EMT of PC cells and lung metastasis in nude mice were significantly inhibited. Our investigations also revealed that ZFAS1-rich exosomes released from cells suffering glucose and glutamine deprivation promoted the EMT and metastasis of recipient PC cells. Corroborating these findings, a correlated upregulation of ZFAS1 and ZEB1 expression was observed in PC tissues and was associated with a poor overall survival rate for patients. Our findings highlight the involvement of a long noncoding RNA-driven metabolic adaptation in promoting EMT and metastasis of PC, suggesting ZFAS1 as a promising novel therapeutic target for PC metabolic treatment.
Collapse
Affiliation(s)
- Wenfeng Zhuo
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhu Zeng
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuhang Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ping Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shengbo Han
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Decai Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yong Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yan Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jie Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guozheng Lv
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongda Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yang Li
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Eryang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
6
|
Dubourg V, Schulz MC, Terpe P, Ruhs S, Kopf M, Gekle M. Hypothesis-generating analysis of the impact of non-damaging metabolic acidosis on the transcriptome of different cell types: Integrated stress response (ISR) modulation as general transcriptomic reaction to non-respiratory acidic stress? PLoS One 2023; 18:e0290373. [PMID: 37624790 PMCID: PMC10456223 DOI: 10.1371/journal.pone.0290373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Extracellular pH is an important parameter influencing cell function and fate. Microenvironmental acidosis accompanies different pathological situations, including inflammation, hypoxia and ischemia. Research focussed mainly on acidification of the tumour micromilieu and the possible consequences on proliferation, migration and drug resistance. Much less is known regarding the impact of microenvironmental acidosis on the transcriptome of non-tumour cells, which are exposed to local acidosis during inflammation, hypoxia, ischemia or metabolic derailment. In the present hypothesis-generating study, we investigated the transcriptional impact of extracellular acidosis on five non-tumour cell types of human and rat origin, combining RNA-Sequencing and extensive bioinformatics analyses. For this purpose, cell type-dependent acidosis resiliences and acidosis-induced transcriptional changes within these resilience ranges were determined, using 56 biological samples. The RNA-Sequencing results were used for dual differential-expression analysis (DESeq and edgeR) and, after appropriate homology mapping, Gene Ontology enrichment analysis (g:Profiler), Ingenuity Pathway Analysis (IPA®), as well as functional enrichment analysis for predicted upstream regulators, were performed. Extracellular acidosis led to substantial, yet different, quantitative transcriptional alterations in all five cell types. Our results identify the regulator of the transcriptional activity NCOA5 as the only general acidosis-responsive gene. Although we observed a species- and cell type-dominated response regarding gene expression regulation, Gene Ontology enrichment analysis and upstream regulator analysis predicted a general acidosis response pattern. Indeed, they suggested the regulation of four general acidosis-responsive cellular networks, which comprised the integrated stress response (ISR), TGF-β signalling, NFE2L2 and TP53. Future studies will have to extend the results of our bioinformatics analyses to cell biological and cell physiological validation experiments, in order to test the refined working hypothesis here.
Collapse
Affiliation(s)
- Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marie-Christin Schulz
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Philipp Terpe
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Stefanie Ruhs
- Klinik für Anästhesiologie und Intensivmedizin, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Kopf
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
7
|
Ogbonnaya CN, Alsaedi BSO, Alhussaini AJ, Hislop R, Pratt N, Nabi G. Radiogenomics Reveals Correlation between Quantitative Texture Radiomic Features of Biparametric MRI and Hypoxia-Related Gene Expression in Men with Localised Prostate Cancer. J Clin Med 2023; 12:jcm12072605. [PMID: 37048688 PMCID: PMC10095552 DOI: 10.3390/jcm12072605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVES To perform multiscale correlation analysis between quantitative texture feature phenotypes of pre-biopsy biparametric MRI (bpMRI) and targeted sequence-based RNA expression for hypoxia-related genes. MATERIALS AND METHODS Images from pre-biopsy 3T bpMRI scans in clinically localised PCa patients of various risk categories (n = 15) were used to extract textural features. The genomic landscape of hypoxia-related gene expression was obtained using post-radical prostatectomy tissue for targeted RNA expression profiling using the TempO-sequence method. The nonparametric Games Howell test was used to correlate the differential expression of the important hypoxia-related genes with 28 radiomic texture features. Then, cBioportal was accessed, and a gene-specific query was executed to extract the Oncoprint genomic output graph of the selected hypoxia-related genes from The Cancer Genome Atlas (TCGA). Based on each selected gene profile, correlation analysis using Pearson's coefficients and survival analysis using Kaplan-Meier estimators were performed. RESULTS The quantitative bpMR imaging textural features, including the histogram and grey level co-occurrence matrix (GLCM), correlated with three hypoxia-related genes (ANGPTL4, VEGFA, and P4HA1) based on RNA sequencing using the TempO-Seq method. Further radiogenomic analysis, including data accessed from the cBioportal genomic database, confirmed that overexpressed hypoxia-related genes significantly correlated with a poor survival outcomes, with a median survival ratio of 81.11:133.00 months in those with and without alterations in genes, respectively. CONCLUSION This study found that there is a correlation between the radiomic texture features extracted from bpMRI in localised prostate cancer and the hypoxia-related genes that are differentially expressed. The analysis of expression data based on cBioportal revealed that these hypoxia-related genes, which were the focus of the study, are linked to an unfavourable survival outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Chidozie N Ogbonnaya
- Division of Imaging Science and Technology, University of Dundee, Dundee DD1 4HN, UK
- College of Basic Medical Sciences, Abia State University, Uturu 441103, Nigeria
| | - Basim S O Alsaedi
- Statistics Department, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Abeer J Alhussaini
- Division of Imaging Science and Technology, University of Dundee, Dundee DD1 4HN, UK
- Department of Medical Imaging, Al-Amiri Hospital, Ministry of Health, Sulaibikhat 1300, Kuwait
| | - Robert Hislop
- Cytogenetic, Human Genetics Unit, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Norman Pratt
- Cytogenetic, Human Genetics Unit, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Ghulam Nabi
- Division of Imaging Science and Technology, University of Dundee, Dundee DD1 4HN, UK
- School of Medicine, Ninewells Hospital, Dundee DD1 9SY, UK
| |
Collapse
|
8
|
Mbugua SN. Targeting Tumor Microenvironment by Metal Peroxide Nanoparticles in Cancer Therapy. Bioinorg Chem Appl 2022; 2022:5041399. [PMID: 36568636 PMCID: PMC9788889 DOI: 10.1155/2022/5041399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Solid tumors have a unique tumor microenvironment (TME), which includes hypoxia, low acidity, and high hydrogen peroxide and glutathione (GSH) levels, among others. These unique factors, which offer favourable microenvironments and nourishment for tumor development and spread, also serve as a gateway for specific and successful cancer therapies. A good example is metal peroxide structures which have been synthesized and utilized to enhance oxygen supply and they have shown great promise in the alleviation of hypoxia. In a hypoxic environment, certain oxygen-dependent treatments such as photodynamic therapy and radiotherapy fail to respond and therefore modulating the hypoxic tumor microenvironment has been found to enhance the antitumor impact of certain drugs. Under acidic environments, the hydrogen peroxide produced by the reaction of metal peroxides with water not only induces oxidative stress but also produces additional oxygen. This is achieved since hydrogen peroxide acts as a reactive substrate for molecules such as catalyse enzymes, alleviating tumor hypoxia observed in the tumor microenvironment. Metal ions released in the process can also offer distinct bioactivity in their own right. Metal peroxides used in anticancer therapy are a rapidly evolving field, and there is good evidence that they are a good option for regulating the tumor microenvironment in cancer therapy. In this regard, the synthesis and mechanisms behind the successful application of metal peroxides to specifically target the tumor microenvironment are highlighted in this review. Various characteristics of TME such as angiogenesis, inflammation, hypoxia, acidity levels, and metal ion homeostasis are addressed in this regard, together with certain forms of synergistic combination treatments.
Collapse
Affiliation(s)
- Simon Ngigi Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| |
Collapse
|
9
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Mechanism underlying circRNA dysregulation in the TME of digestive system cancer. Front Immunol 2022; 13:951561. [PMID: 36238299 PMCID: PMC9550895 DOI: 10.3389/fimmu.2022.951561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a new series of noncoding RNAs (ncRNAs) that have been reported to be expressed in eukaryotic cells and have a variety of biological functions in the regulation of cancer pathogenesis and progression. The TME, as a microscopic ecological environment, consists of a variety of cells, including tumor cells, immune cells and other normal cells, ECM and a large number of signaling molecules. The crosstalk between circRNAs and the TME plays a complicated role in affecting the malignant behaviors of digestive system cancers. Herein, we summarize the mechanisms underlying aberrant circRNA expression in the TME of the digestive system cancers, including immune surveillance, angiogenesis, EMT, and ECM remodelling. The regulation of the TME by circRNA is expected to be a new therapeutic method.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| |
Collapse
|
10
|
RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther 2022; 7:334. [PMID: 36138023 PMCID: PMC9499983 DOI: 10.1038/s41392-022-01175-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
RNA modifications have become hot topics recently. By influencing RNA processes, including generation, transportation, function, and metabolization, they act as critical regulators of cell biology. The immune cell abnormality in human diseases is also a research focus and progressing rapidly these years. Studies have demonstrated that RNA modifications participate in the multiple biological processes of immune cells, including development, differentiation, activation, migration, and polarization, thereby modulating the immune responses and are involved in some immune related diseases. In this review, we present existing knowledge of the biological functions and underlying mechanisms of RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, and adenosine-to-inosine (A-to-I) RNA editing, and summarize their critical roles in immune cell biology. Via regulating the biological processes of immune cells, RNA modifications can participate in the pathogenesis of immune related diseases, such as cancers, infection, inflammatory and autoimmune diseases. We further highlight the challenges and future directions based on the existing knowledge. All in all, this review will provide helpful knowledge as well as novel ideas for the researchers in this area.
Collapse
|
11
|
Wang W, Guo MN, Li N, Pang DQ, Wu JH. Glutamine deprivation impairs function of infiltrating CD8 + T cells in hepatocellular carcinoma by inducing mitochondrial damage and apoptosis. World J Gastrointest Oncol 2022; 14:1124-1140. [PMID: 35949216 PMCID: PMC9244988 DOI: 10.4251/wjgo.v14.i6.1124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The functions of infiltrating CD8+ T cells are often impaired due to tumor cells causing nutrient deprivation in the tumor microenvironment. Thus, the mechanisms of CD8+ T cell dysfunction have become a hot research topic, and there is increased interest on how changes in metabolomics correlate with CD8+ T cell dysfunction.
AIM To investigate whether and how glutamine metabolism affects the function of infiltrating CD8+ T cells in hepatocellular carcinoma.
METHODS Immunohistochemical staining and immunofluorescence were performed on surgically resected liver tissues from patients. Differentially expressed genes in infiltrating CD8+ T cells in hepatocellular carcinoma were detected using RNA sequencing. Activated CD8+ T cells were co-cultured with Huh-7 cells for 3 d. The function and mitochondrial status of CD8+ T cells were analyzed by flow cytometry, quantitative real-time polymerase chain reaction, and transmission electron microscopy. Next, CD8+ T cells were treated with the mitochondrial protective and damaging agents. Functional alterations in CD8+ T cells were detected by flow cytometry. Then, complete medium without glutamine was used to culture cells and their functional changes and mitochondrial status were detected.
RESULTS There were a large number of infiltrating PD-1+CD8+ T cells in liver cancer tissues. Next, we co-cultured CD8+ T cells and Huh-7 cells to explore the regulatory effect of hepatoma cells on CD8+ T cells. Flow cytometry results revealed increased PD-1 expression and decreased secretion of perforin (PRF1) and granzyme B (GZMB) by CD8+ T cells in the co-culture group. Meanwhile, JC-1 staining was decreased and the levels of reactive oxygen species and apoptosis were increased in CD8+ T cells of the co-culture group; additionally, the mitochondria of these cells were swollen. When CD8+ T cells were treated with the mitochondrial protective and damaging agents, their function was restored and inhibited, respectively, through the mitochondrial damage and apoptotic pathways. Subsequently, complete medium without glutamine was used to culture cells. As expected, CD8+ T cells showed functional downregulation, mitochondrial damage, and apoptosis.
CONCLUSION Glutamine deprivation impairs the function of infiltrating CD8+ T cells in hepatocellular carcinoma through the mitochondrial damage and apoptotic pathways.
Collapse
Affiliation(s)
- Wei Wang
- Department of Laboratory Medicine, Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Meng-Nan Guo
- Department of Laboratory Medicine, Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Ning Li
- Department of Laboratory Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - De-Quan Pang
- Department of Oncology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - Jing-Hua Wu
- Department of Laboratory Medicine, Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| |
Collapse
|
12
|
Chen X, Jia M, Ji J, Zhao Z, Zhao Y. Exosome-Derived Non-Coding RNAs in the Tumor Microenvironment of Colorectal Cancer: Possible Functions, Mechanisms and Clinical Applications. Front Oncol 2022; 12:887532. [PMID: 35646623 PMCID: PMC9133322 DOI: 10.3389/fonc.2022.887532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death and the third most prevalent malignancy. Colorectal tumors exchange information with the surrounding environment and influence each other, which collectively constitutes the tumor microenvironment (TME) of CRC. Many studies have shown that exosome-derived non-coding RNAs (ncRNAs) play important roles in various pathophysiological processes by regulating the TME of CRC. This review summarizes recent findings on the fundamental roles of exosomal ncRNAs in angiogenesis, vascular permeability, tumor immunity, tumor metabolism and drug resistance. Certainly, the in-depth understanding of exosomal ncRNAs will provide comprehensive insights into the clinical application of these molecules against CRC.
Collapse
Affiliation(s)
- Xian Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Mengmeng Jia
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Ji
- School of Public Health, Qingdao University, Qingdao, China
| | - Zhiying Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Duan S, Wang S, Huang T, Wang J, Yuan X. circRNAs: Insight Into Their Role in Tumor-Associated Macrophages. Front Oncol 2021; 11:780744. [PMID: 34926295 PMCID: PMC8671731 DOI: 10.3389/fonc.2021.780744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Currently, it is well known that the tumor microenvironment not only provides energy support for tumor growth but also regulates tumor signaling pathways and promotes the proliferation, invasion, metastasis, and drug resistance of tumor cells. The tumor microenvironment, especially the function and mechanism of tumor-associated macrophages (TAMs), has attracted great attention. TAMs are the most common immune cells in the tumor microenvironment and play a vital role in the occurrence and development of tumors. circular RNA (circRNA) is a unique, widespread, and stable form of non-coding RNA (ncRNA), but little is known about the role of circRNAs in TAMs or how TAMs affect circRNAs. In this review, we summarize the specific manifestations of circRNAs that affect the tumor-associated macrophages and play a significant role in tumor progression. This review helps improve our understanding of the association between circRNAs and TAMs, thereby promoting the development and progress of potential clinical targeted therapies.
Collapse
Affiliation(s)
- Saili Duan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Junpu Wang, ; Xiaoqing Yuan,
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Junpu Wang, ; Xiaoqing Yuan,
| |
Collapse
|
14
|
Zhu G, Chang X, Kang Y, Zhao X, Tang X, Ma C, Fu S. CircRNA: A novel potential strategy to treat thyroid cancer (Review). Int J Mol Med 2021; 48:201. [PMID: 34528697 PMCID: PMC8480381 DOI: 10.3892/ijmm.2021.5034] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer (TC) is the most common type of endocrine cancer. Over the last 50 years, the global incidence of TC has been increasing. The survival rate of TC is higher than that of most other types of cancer, but it depends on numerous factors, including the specific type of TC and stage of the disease. Circular RNAs (circRNAs) are a new class of long noncoding RNA with a closed loop structure that have a critical role in the complex gene regulatory network that controls the emergence of TC. The most important function of circRNAs is their ability to specifically bind to microRNAs. In addition, the biological functions of circRNAs also include interactions with proteins, regulation of the transcription of genes and acting as translation templates. Based on the characteristics of circRNAs, they have been identified as potential biomarkers for the diagnosis of tumors. In the present review, the function and significance of circRNAs and their potential clinical implications for TC were summarized. Furthermore, possible treatment approaches involving the use of mesenchymal stem cells (MSCs) and exosomes derived from MSCs as carriers to load and transport circRNAs were discussed.
Collapse
Affiliation(s)
- Guomao Zhu
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xingyu Chang
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yuchen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xinzhu Zhao
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xulei Tang
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Chengxu Ma
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Songbo Fu
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|