1
|
Thore S, Fribourg S, Mackereth CD. 1H, 15N and 13C resonance assignments of a minimal CPSF73-CPSF100 C-terminal heterodimer. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:43-48. [PMID: 36723825 DOI: 10.1007/s12104-023-10118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/26/2022] [Indexed: 06/02/2023]
Abstract
The initial pre-mRNA transcript in eukaryotes is processed by a large multi-protein complex in order to correctly cleave the 3' end, and to subsequently add the polyadenosine tail. This cleavage and polyadenylation specificity factor (CPSF) is composed of separate subunits, with structural information available for both isolated subunits and also larger assembled complexes. Nevertheless, certain key components of CPSF still lack high-resolution atomic data. One such region is the heterodimer formed between the first and second C-terminal domains of the endonuclease CPSF73, with those from the catalytically inactive CPSF100. Here we report the backbone and sidechain resonance assignments of a minimal C-terminal heterodimer of CPSF73-CPSF100 derived from the parasite Encephalitozoon cuniculi. The assignment process used several amino-acid specific labeling strategies, and the chemical shift values allow for secondary structure prediction.
Collapse
Affiliation(s)
- Stéphane Thore
- Univ. Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, F-33000, Bordeaux, France
| | - Sébastien Fribourg
- Univ. Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, F-33000, Bordeaux, France
| | - Cameron D Mackereth
- Univ. Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600, Pessac, France.
| |
Collapse
|
2
|
Slight Variations in the Sequence Downstream of the Polyadenylation Signal Significantly Increase Transgene Expression in HEK293T and CHO Cells. Int J Mol Sci 2022; 23:ijms232415485. [PMID: 36555130 PMCID: PMC9779314 DOI: 10.3390/ijms232415485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Compared to transcription initiation, much less is known about transcription termination. In particular, large-scale mutagenesis studies have, so far, primarily concentrated on promoter and enhancer, but not terminator sequences. Here, we used a massively parallel reporter assay (MPRA) to systematically analyze the influence of short (8 bp) sequence variants (mutations) located downstream of the polyadenylation signal (PAS) on the steady-state mRNA level of the upstream gene, employing an eGFP reporter and human HEK293T cells as a model system. In total, we evaluated 227,755 mutations located at different overlapping positions within +17..+56 bp downstream of the PAS for their ability to regulate the reporter gene expression. We found that the positions +17..+44 bp downstream of the PAS are more essential for gene upregulation than those located more distal to the PAS, and that the mutation sequences ensuring high levels of eGFP mRNA expression are extremely T-rich. Next, we validated the positive effect of a couple of mutations identified in the MPRA screening on the eGFP and luciferase protein expression. The most promising mutation increased the expression of the reporter proteins 13-fold and sevenfold on average in HEK293T and CHO cells, respectively. Overall, these findings might be useful for further improving the efficiency of production of therapeutic products, e.g., recombinant antibodies.
Collapse
|
3
|
Li J, Yue L, Li Z, Zhang W, Zhang B, Zhao F, Dong X. aCPSF1 cooperates with terminator U-tract to dictate archaeal transcription termination efficacy. eLife 2021; 10:70464. [PMID: 34964713 PMCID: PMC8716108 DOI: 10.7554/elife.70464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, aCPSF1 was reported to function as the long-sought global transcription termination factor of archaea; however, the working mechanism remains elusive. This work, through analyzing transcript-3′end-sequencing data of Methanococcus maripaludis, found genome-wide positive correlations of both the terminator uridine(U)-tract and aCPSF1 with hierarchical transcription termination efficacies (TTEs). In vitro assays determined that aCPSF1 specifically binds to the terminator U-tract with U-tract number-related binding affinity, and in vivo assays demonstrated the two elements are indispensable in dictating high TTEs, revealing that aCPSF1 and the terminator U-tract cooperatively determine high TTEs. The N-terminal KH domains equip aCPSF1 with specific-binding capacity to terminator U-tract and the aCPSF1-terminator U-tract cooperation; while the nuclease activity of aCPSF1 was also required for TTEs. aCPSF1 also guarantees the terminations of transcripts with weak intrinsic terminator signals. aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota exhibited similar U-tract cooperation in dictating TTEs. Therefore, aCPSF1 and the intrinsic U-rich terminator could work in a noteworthy two-in-one termination mode in archaea, which may be widely employed by archaeal phyla; using one trans-action factor to recognize U-rich terminator signal and cleave transcript 3′-end, the archaeal aCPSF1-dependent transcription termination may represent a simplified archetypal mode of the eukaryotic RNA polymerase II termination machinery.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenting Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- University of Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Gutierrez PA, Baughman K, Sun Y, Tong L. A real-time fluorescence assay for CPSF73, the nuclease for pre-mRNA 3'-end processing. RNA (NEW YORK, N.Y.) 2021; 27:1148-1154. [PMID: 34230059 PMCID: PMC8457007 DOI: 10.1261/rna.078764.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/17/2021] [Indexed: 05/09/2023]
Abstract
CPSF73 is the endonuclease that catalyzes the cleavage reaction for 3'-end processing of mRNA precursors (pre-mRNAs) in two distinct machineries, a canonical machinery for the majority of pre-mRNAs and a U7 snRNP (U7 machinery) for replication-dependent histone pre-mRNAs in animal cells. CPSF73 also possesses 5'-3' exonuclease activity in the U7 machinery, degrading the downstream cleavage product after the endonucleolytic cleavage. Recent studies show that CPSF73 is a potential target for developing anticancer, antimalarial, and antiprotozoal drugs, spurring interest in identifying new small-molecule inhibitors against this enzyme. CPSF73 nuclease activity has so far been demonstrated using a gel-based end-point assay, using radiolabeled or fluorescently labeled RNA substrates. By taking advantage of unique properties of the U7 machinery, we have developed a novel, real-time fluorescence assay for the nuclease activity of CPSF73. This assay is facile and high-throughput, and should also be helpful for the discovery of new CPSF73 inhibitors.
Collapse
Affiliation(s)
- Pedro A Gutierrez
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Kirk Baughman
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Yadong Sun
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
5
|
U7 deciphered: the mechanism that forms the unusual 3' end of metazoan replication-dependent histone mRNAs. Biochem Soc Trans 2021; 49:2229-2240. [PMID: 34351387 DOI: 10.1042/bst20210323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
In animal cells, replication-dependent histone mRNAs end with a highly conserved stem-loop structure followed by a 4- to 5-nucleotide single-stranded tail. This unique 3' end distinguishes replication-dependent histone mRNAs from all other eukaryotic mRNAs, which end with a poly(A) tail produced by the canonical 3'-end processing mechanism of cleavage and polyadenylation. The pioneering studies of Max Birnstiel's group demonstrated nearly 40 years ago that the unique 3' end of animal replication-dependent histone mRNAs is generated by a distinct processing mechanism, whereby histone mRNA precursors are cleaved downstream of the stem-loop, but this cleavage is not followed by polyadenylation. The key role is played by the U7 snRNP, a complex of a ∼60 nucleotide U7 snRNA and many proteins. Some of these proteins, including the enzymatic component CPSF73, are shared with the canonical cleavage and polyadenylation machinery, justifying the view that the two metazoan pre-mRNA 3'-end processing mechanisms have a common evolutionary origin. The studies on U7 snRNP culminated in the recent breakthrough of reconstituting an entirely recombinant human machinery that is capable of accurately cleaving histone pre-mRNAs, and determining its structure in complex with a pre-mRNA substrate (with 13 proteins and two RNAs) that is poised for the cleavage reaction. The structure uncovered an unanticipated network of interactions within the U7 snRNP and a remarkable mechanism of activating catalytically dormant CPSF73 for the cleavage. This work provides a conceptual framework for understanding other eukaryotic 3'-end processing machineries.
Collapse
|
6
|
Sun Y, Aik WS, Yang XC, Marzluff WF, Dominski Z, Tong L. Reconstitution and biochemical assays of an active human histone pre-mRNA 3'-end processing machinery. Methods Enzymol 2021; 655:291-324. [PMID: 34183127 DOI: 10.1016/bs.mie.2021.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In animal cells, replication-dependent histone pre-mRNAs are processed at the 3'-end by an endonucleolytic cleavage carried out by the U7 snRNP, a machinery that contains the U7 snRNA and many protein subunits. Studies on the composition of this machinery and understanding of its role in 3'-end processing were greatly facilitated by the development of an in vitro system utilizing nuclear extracts from mammalian cells 35 years ago and later from Drosophila cells. Most recently, recombinant expression and purification of the components of the machinery have enabled the full reconstitution of an active machinery and its complex with a model pre-mRNA substrate, using 13 proteins and 2 RNAs, and the determination of the structure of this active machinery. This chapter presents protocols for preparing nuclear extracts containing endogenous processing machinery, for assembling semi-recombinant and fully reconstituted machineries, and for histone pre-mRNA 3'-end processing assays with these samples.
Collapse
Affiliation(s)
- Yadong Sun
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Wei Shen Aik
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, United States.
| |
Collapse
|
7
|
Yue L, Li J, Zhang B, Qi L, Li Z, Zhao F, Li L, Zheng X, Dong X. The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of Archaea via a 3'-end cleavage mode. Nucleic Acids Res 2020; 48:9589-9605. [PMID: 32857850 PMCID: PMC7515710 DOI: 10.1093/nar/gkaa702] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 01/16/2023] Open
Abstract
Transcription termination defines accurate transcript 3′-ends and ensures programmed transcriptomes, making it critical to life. However, transcription termination mechanisms remain largely unknown in Archaea. Here, we reported the physiological significance of the newly identified general transcription termination factor of Archaea, the ribonuclease aCPSF1, and elucidated its 3′-end cleavage triggered termination mechanism. The depletion of Mmp-aCPSF1 in Methanococcus maripaludis caused a genome-wide transcription termination defect and disordered transcriptome. Transcript-3′end-sequencing revealed that transcriptions primarily terminate downstream of a uridine-rich motif where Mmp-aCPSF1 performed an endoribonucleolytic cleavage, and the endoribonuclease activity was determined to be essential to the in vivo transcription termination. Co-immunoprecipitation and chromatin-immunoprecipitation detected interactions of Mmp-aCPSF1 with RNA polymerase and chromosome. Phylogenetic analysis revealed that the aCPSF1 orthologs are ubiquitously distributed among the archaeal phyla, and two aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota could replace Mmp-aCPSF1 to terminate transcription of M. maripaludis. Therefore, the aCPSF1 dependent termination mechanism could be widely employed in Archaea, including Lokiarchaeota belonging to Asgard Archaea, the postulated archaeal ancestor of Eukaryotes. Strikingly, aCPSF1-dependent archaeal transcription termination reported here exposes a similar 3′-cleavage mode as the eukaryotic RNA polymerase II termination, thus would shed lights on understanding the evolutionary linking between archaeal and eukaryotic termination machineries.
Collapse
Affiliation(s)
- Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingyan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
8
|
Yang XC, Sun Y, Aik WS, Marzluff WF, Tong L, Dominski Z. Studies with recombinant U7 snRNP demonstrate that CPSF73 is both an endonuclease and a 5'-3' exonuclease. RNA (NEW YORK, N.Y.) 2020; 26:1345-1359. [PMID: 32554553 PMCID: PMC7491329 DOI: 10.1261/rna.076273.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 05/24/2023]
Abstract
Metazoan replication-dependent histone pre-mRNAs are cleaved at the 3' end by U7 snRNP, an RNA-guided endonuclease that contains U7 snRNA, seven proteins of the Sm ring, FLASH, and four polyadenylation factors: symplekin, CPSF73, CPSF100, and CstF64. A fully recombinant U7 snRNP was recently reconstituted from all 13 components for functional and structural studies and shown to accurately cleave histone pre-mRNAs. Here, we analyzed the activity of recombinant U7 snRNP in more detail. We demonstrate that in addition to cleaving histone pre-mRNAs endonucleolytically, reconstituted U7 snRNP acts as a 5'-3' exonuclease that degrades the downstream product generated from histone pre-mRNAs as a result of the endonucleolytic cleavage. Surprisingly, recombinant U7 snRNP also acts as an endonuclease on single-stranded DNA substrates. All these activities depend on the ability of U7 snRNA to base-pair with the substrate and on the presence of the amino-terminal domain (NTD) of symplekin in either cis or trans, and are abolished by mutations within the catalytic center of CPSF73, or by binding of the NTD to the SSU72 phosphatase of RNA polymerase II. Altogether, our results demonstrate that recombinant U7 snRNP functionally mimics its endogenous counterpart and provide evidence that CPSF73 is both an endonuclease and a 5'-3' exonuclease, consistent with the activity of other members of the β-CASP family. Our results also raise the intriguing possibility that CPSF73 may be involved in some aspects of DNA metabolism in vivo.
Collapse
Affiliation(s)
- Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yadong Sun
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Wei Shen Aik
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
9
|
Sha QQ, Zhang J, Fan HY. A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals†. Biol Reprod 2020; 101:579-590. [PMID: 30715134 DOI: 10.1093/biolre/ioz012] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 01/01/2023] Open
Abstract
In mammals, maternal-to-zygotic transition (MZT), or oocyte-to-embryo transition, begins with oocyte meiotic resumption due to the sequential translational activation and destabilization of dormant maternal transcripts stored in the ooplasm. It then continues with the elimination of maternal transcripts during oocyte maturation and fertilization and ends with the full transcriptional activation of the zygotic genome during embryonic development. A hallmark of MZT in mammals is its reliance on translation and the utilization of stored RNAs and proteins, rather than de novo transcription of genes, to sustain meiotic maturation and early development. Impaired maternal mRNA clearance at the onset of MZT prevents zygotic genome activation and causes early arrest of developing embryos. In this review, we discuss recent advances in our knowledge of the mechanisms whereby mRNA translation and degradation are controlled by cytoplasmic polyadenylation and deadenylation which set up the competence of maturing oocyte to accomplish MZT. The emphasis of this review is on the mouse as a model organism for mammals and BTG4 as a licensing factor of MZT under the translational control of the MAPK cascade.
Collapse
Affiliation(s)
- Qian-Qian Sha
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jue Zhang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Plant Ribonuclease J: An Essential Player in Maintaining Chloroplast RNA Quality Control for Gene Expression. PLANTS 2020; 9:plants9030334. [PMID: 32151111 PMCID: PMC7154860 DOI: 10.3390/plants9030334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022]
Abstract
RNA quality control is an indispensable but poorly understood process that enables organisms to distinguish functional RNAs from nonfunctional or inhibitory ones. In chloroplasts, whose gene expression activities are required for photosynthesis, retrograde signaling, and plant development, RNA quality control is of paramount importance, as transcription is relatively unregulated. The functional RNA population is distilled from this initial transcriptome by a combination of RNA-binding proteins and ribonucleases. One of the key enzymes is RNase J, a 5′→3′ exoribonuclease and an endoribonuclease that has been shown to trim 5′ RNA termini and eliminate deleterious antisense RNA. In the absence of RNase J, embryo development cannot be completed. Land plant RNase J contains a highly conserved C-terminal domain that is found in GT-1 DNA-binding transcription factors and is not present in its bacterial, archaeal, and algal counterparts. The GT-1 domain may confer specificity through DNA and/or RNA binding and/or protein–protein interactions and thus be an element in the mechanisms that identify target transcripts among diverse RNA populations. Further understanding of chloroplast RNA quality control relies on discovering how RNase J is regulated and how its specificity is imparted.
Collapse
|
11
|
Hill CH, Boreikaitė V, Kumar A, Casañal A, Kubík P, Degliesposti G, Maslen S, Mariani A, von Loeffelholz O, Girbig M, Skehel M, Passmore LA. Activation of the Endonuclease that Defines mRNA 3' Ends Requires Incorporation into an 8-Subunit Core Cleavage and Polyadenylation Factor Complex. Mol Cell 2019; 73:1217-1231.e11. [PMID: 30737185 PMCID: PMC6436931 DOI: 10.1016/j.molcel.2018.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/02/2018] [Accepted: 12/21/2018] [Indexed: 01/19/2023]
Abstract
Cleavage and polyadenylation factor (CPF/CPSF) is a multi-protein complex essential for formation of eukaryotic mRNA 3' ends. CPF cleaves pre-mRNAs at a specific site and adds a poly(A) tail. The cleavage reaction defines the 3' end of the mature mRNA, and thus the activity of the endonuclease is highly regulated. Here, we show that reconstitution of specific pre-mRNA cleavage with recombinant yeast proteins requires incorporation of the Ysh1 endonuclease into an eight-subunit "CPFcore" complex. Cleavage also requires the accessory cleavage factors IA and IB, which bind substrate pre-mRNAs and CPF, likely facilitating assembly of an active complex. Using X-ray crystallography, electron microscopy, and mass spectrometry, we determine the structure of Ysh1 bound to Mpe1 and the arrangement of subunits within CPFcore. Together, our data suggest that the active mRNA 3' end processing machinery is a dynamic assembly that is licensed to cleave only when all protein factors come together at the polyadenylation site.
Collapse
Affiliation(s)
- Chris H Hill
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Ana Casañal
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Peter Kubík
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Ottilie von Loeffelholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, Université de Strasbourg, Strasbourg, France; Centre National de la Recherche Scientifique UMR 7104, Illkirch, Université de Strasbourg, Strasbourg, France; INSERM U964, Illkirch, Université de Strasbourg, Strasbourg, France
| | - Mathias Girbig
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
12
|
Pettinati I, Grzechnik P, Ribeiro de Almeida C, Brem J, McDonough MA, Dhir S, Proudfoot NJ, Schofield CJ. Biosynthesis of histone messenger RNA employs a specific 3' end endonuclease. eLife 2018; 7:e39865. [PMID: 30507380 PMCID: PMC6303110 DOI: 10.7554/elife.39865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Replication-dependent (RD) core histone mRNA produced during S-phase is the only known metazoan protein-coding mRNA presenting a 3' stem-loop instead of the otherwise universal polyA tail. A metallo β-lactamase (MBL) fold enzyme, cleavage and polyadenylation specificity factor 73 (CPSF73), is proposed to be the sole endonuclease responsible for 3' end processing of both mRNA classes. We report cellular, genetic, biochemical, substrate selectivity, and crystallographic studies providing evidence that an additional endoribonuclease, MBL domain containing protein 1 (MBLAC1), is selective for 3' processing of RD histone pre-mRNA during the S-phase of the cell cycle. Depletion of MBLAC1 in cells significantly affects cell cycle progression thus identifying MBLAC1 as a new type of S-phase-specific cancer target.
Collapse
Affiliation(s)
| | - Pawel Grzechnik
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Jurgen Brem
- Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | | | - Somdutta Dhir
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Nick J Proudfoot
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | | |
Collapse
|
13
|
Levy S, Allerston CK, Liveanu V, Habib MR, Gileadi O, Schuster G. Identification of LACTB2, a metallo-β-lactamase protein, as a human mitochondrial endoribonuclease. Nucleic Acids Res 2016; 44:1813-32. [PMID: 26826708 PMCID: PMC4770246 DOI: 10.1093/nar/gkw050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/19/2016] [Indexed: 11/23/2022] Open
Abstract
Post-transcriptional control of mitochondrial gene expression, including the
processing and generation of mature transcripts as well as their degradation, is a
key regulatory step in gene expression in human mitochondria. Consequently,
identification of the proteins responsible for RNA processing and degradation in this
organelle is of great importance. The metallo-β-lactamase (MBL) is a candidate
protein family that includes ribo- and deoxyribonucleases. In this study, we
discovered a function for LACTB2, an orphan MBL protein found in mammalian
mitochondria. Solving its crystal structure revealed almost perfect alignment of the
MBL domain with CPSF73, as well as to other ribonucleases of the MBL superfamily.
Recombinant human LACTB2 displayed robust endoribonuclease activity on ssRNA with a
preference for cleavage after purine-pyrimidine sequences. Mutational analysis
identified an extended RNA-binding site. Knockdown of LACTB2 in cultured cells caused
a moderate but significant accumulation of many mitochondrial transcripts, and its
overexpression led to the opposite effect. Furthermore, manipulation of LACTB2
expression resulted in cellular morphological deformation and cell death. Together,
this study discovered that LACTB2 is an endoribonuclease that is involved in the
turnover of mitochondrial RNA, and is essential for mitochondrial function in human
cells.
Collapse
Affiliation(s)
- Shiri Levy
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Charles K Allerston
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Varda Liveanu
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Mouna R Habib
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Opher Gileadi
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Gadi Schuster
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
14
|
Delineating the structural blueprint of the pre-mRNA 3'-end processing machinery. Mol Cell Biol 2014; 34:1894-910. [PMID: 24591651 DOI: 10.1128/mcb.00084-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing of mRNA precursors (pre-mRNAs) by polyadenylation is an essential step in gene expression. Polyadenylation consists of two steps, cleavage and poly(A) synthesis, and requires multiple cis elements in the pre-mRNA and a megadalton protein complex bearing the two essential enzymatic activities. While genetic and biochemical studies remain the major approaches in characterizing these factors, structural biology has emerged during the past decade to help understand the molecular assembly and mechanistic details of the process. With structural information about more proteins and higher-order complexes becoming available, we are coming closer to obtaining a structural blueprint of the polyadenylation machinery that explains both how this complex functions and how it is regulated and connected to other cellular processes.
Collapse
|
15
|
Sabath I, Skrajna A, Yang XC, Dadlez M, Marzluff WF, Dominski Z. 3'-End processing of histone pre-mRNAs in Drosophila: U7 snRNP is associated with FLASH and polyadenylation factors. RNA (NEW YORK, N.Y.) 2013; 19:1726-44. [PMID: 24145821 PMCID: PMC3884669 DOI: 10.1261/rna.040360.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
3'-End cleavage of animal replication-dependent histone pre-mRNAs is controlled by the U7 snRNP. Lsm11, the largest component of the U7-specific Sm ring, interacts with FLASH, and in mammalian nuclear extracts these two proteins form a platform that recruits the CPSF73 endonuclease and other polyadenylation factors to the U7 snRNP. FLASH is limiting, and the majority of the U7 snRNP in mammalian extracts exists as a core particle consisting of the U7 snRNA and the Sm ring. Here, we purified the U7 snRNP from Drosophila nuclear extracts and characterized its composition by mass spectrometry. In contrast to the mammalian U7 snRNP, a significant fraction of the Drosophila U7 snRNP contains endogenous FLASH and at least six subunits of the polyadenylation machinery: symplekin, CPSF73, CPSF100, CPSF160, WDR33, and CstF64. The same composite U7 snRNP is recruited to histone pre-mRNA for 3'-end processing. We identified a motif in Drosophila FLASH that is essential for the recruitment of the polyadenylation complex to the U7 snRNP and analyzed the role of other factors, including SLBP and Ars2, in 3'-end processing of Drosophila histone pre-mRNAs. SLBP that binds the upstream stem-loop structure likely recruits a yet-unidentified essential component(s) to the processing machinery. In contrast, Ars2, a protein previously shown to interact with FLASH in mammalian cells, is dispensable for processing in Drosophila. Our studies also demonstrate that Drosophila symplekin and three factors involved in cleavage and polyadenylation-CPSF, CstF, and CF Im-are present in Drosophila nuclear extracts in a stable supercomplex.
Collapse
Affiliation(s)
- Ivan Sabath
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Aleksandra Skrajna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00-901 Warsaw, Poland
| | - Xiao-cui Yang
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00-901 Warsaw, Poland
- Institute of Genetics and Biotechnology, Warsaw University, 02-106 Warsaw, Poland
| | - William F. Marzluff
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Corresponding authorE-mail
| |
Collapse
|
16
|
Dominski Z, Carpousis AJ, Clouet-d'Orval B. Emergence of the β-CASP ribonucleases: highly conserved and ubiquitous metallo-enzymes involved in messenger RNA maturation and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:532-51. [PMID: 23403287 DOI: 10.1016/j.bbagrm.2013.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 01/05/2023]
Abstract
The β-CASP ribonucleases, which are found in the three domains of life, have in common a core of 460 residues containing seven conserved sequence motifs involved in the tight binding of two catalytic zinc ions. A hallmark of these enzymes is their ability to catalyze both endo- and exo-ribonucleolytic degradation. Exo-ribonucleolytic degradation proceeds in the 5' to 3' direction and is sensitive to the phosphorylation state of the 5' end of a transcript. Recent phylogenomic analyses have shown that the β-CASP ribonucleases can be partitioned into two major subdivisions that correspond to orthologs of eukaryal CPSF73 and bacterial RNase J. We discuss the known functions of the CPSF73 and RNase J orthologs, their association into complexes, and their structure as it relates to mechanism of action. Eukaryal CPSF73 is part of a large multiprotein complex that is involved in the maturation of the 3' end of RNA Polymerase II transcripts and the polyadenylation of messenger RNA. RNase J1 and J2 are paralogs in Bacillus subtilis that are involved in the degradation of messenger RNA and the maturation of non-coding RNA. RNase J1 and J2 co-purify as a heteromeric complex and there is recent evidence that they interact with other enzymes to form a bacterial RNA degradosome. Finally, we speculate on the evolutionary origin of β-CASP ribonucleases and on their functions in Archaea. Orthologs of CPSF73 with endo- and exo-ribonuclease activity are strictly conserved throughout the archaea suggesting a role for these enzymes in the maturation and/or degradation of messenger RNA. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
17
|
Phung DK, Rinaldi D, Langendijk-Genevaux PS, Quentin Y, Carpousis AJ, Clouet-d'Orval B. Archaeal β-CASP ribonucleases of the aCPSF1 family are orthologs of the eukaryal CPSF-73 factor. Nucleic Acids Res 2012; 41:1091-103. [PMID: 23222134 PMCID: PMC3553952 DOI: 10.1093/nar/gks1237] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bacterial RNase J and eukaryal cleavage and polyadenylation specificity factor (CPSF-73) are members of the β-CASP family of ribonucleases involved in mRNA processing and degradation. Here we report an in-depth phylogenomic analysis that delineates aRNase J and archaeal CPSF (aCPSF) as distinct orthologous groups and establishes their repartition in 110 archaeal genomes. The aCPSF1 subgroup, which has been inherited vertically and is strictly conserved, is characterized by an N-terminal extension with two K homology (KH) domains and a C-terminal motif involved in dimerization of the holoenzyme. Pab-aCPSF1 (Pyrococcus abyssi homolog) has an endoribonucleolytic activity that preferentially cleaves at single-stranded CA dinucleotides and a 5′–3′ exoribonucleolytic activity that acts on 5′ monophosphate substrates. These activities are the same as described for the eukaryotic cleavage and polyadenylation factor, CPSF-73, when engaged in the CPSF complex. The N-terminal KH domains are important for endoribonucleolytic cleavage at certain specific sites and the formation of stable high molecular weight ribonucleoprotein complexes. Dimerization of Pab-aCPSF is important for exoribonucleolytic activity and RNA binding. Altogether, our results suggest that aCPSF1 performs an essential function and that an enzyme with similar activities was present in the last common ancestor of Archaea and Eukarya.
Collapse
Affiliation(s)
- Duy Khanh Phung
- Centre National de la Recherche Scientifique, LMGM and Université de Toulouse, UPS, F-31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
18
|
Mischo HE, Proudfoot NJ. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:174-85. [PMID: 23085255 PMCID: PMC3793857 DOI: 10.1016/j.bbagrm.2012.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
Abstract
Termination of transcription by RNA polymerase II requires two distinct processes: The formation of a defined 3′ end of the transcribed RNA, as well as the disengagement of RNA polymerase from its DNA template. Both processes are intimately connected and equally pivotal in the process of functional messenger RNA production. However, research in recent years has elaborated how both processes can additionally be employed to control gene expression in qualitative and quantitative ways. This review embraces these new findings and attempts to paint a broader picture of how this final step in the transcription cycle is of critical importance to many aspects of gene regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Hannah E Mischo
- Cancer Research UK London Research Institute, Blanche Lane South Mimms, Herts, UK.
| | | |
Collapse
|
19
|
A complex containing the CPSF73 endonuclease and other polyadenylation factors associates with U7 snRNP and is recruited to histone pre-mRNA for 3'-end processing. Mol Cell Biol 2012; 33:28-37. [PMID: 23071092 DOI: 10.1128/mcb.00653-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Animal replication-dependent histone pre-mRNAs are processed at the 3' end by endonucleolytic cleavage that is not followed by polyadenylation. The cleavage reaction is catalyzed by CPSF73 and depends on the U7 snRNP and its integral component, Lsm11. A critical role is also played by the 220-kDa protein FLASH, which interacts with Lsm11. Here we demonstrate that the N-terminal regions of these two proteins form a platform that tightly interacts with a unique combination of polyadenylation factors: symplekin, CstF64, and all CPSF subunits, including the endonuclease CPSF73. The interaction is inhibited by alterations in each component of the FLASH/Lsm11 complex, including point mutations in FLASH that are detrimental for processing. The same polyadenylation factors are associated with the endogenous U7 snRNP and are recruited in a U7-dependent manner to histone pre-mRNA. Collectively, our studies identify the molecular mechanism that recruits the CPSF73 endonuclease to histone pre-mRNAs, reveal an unexpected complexity of the U7 snRNP, and suggest that in animal cells polyadenylation factors assemble into two alternative complexes-one specifically crafted to generate polyadenylated mRNAs and the other to generate nonpolyadenylated histone mRNAs that end with the stem-loop.
Collapse
|
20
|
Yang Q, Doublié S. Structural biology of poly(A) site definition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:732-47. [PMID: 21823232 DOI: 10.1002/wrna.88] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
3' processing is an essential step in the maturation of all messenger RNAs (mRNAs) and is a tightly coupled two-step reaction: endonucleolytic cleavage at the poly(A) site is followed by the addition of a poly(A) tail, except for metazoan histone mRNAs, which are cleaved but not polyadenylated. The recognition of a poly(A) site is coordinated by the sequence elements in the mRNA 3' UTR and associated protein factors. In mammalian cells, three well-studied sequence elements, UGUA, AAUAAA, and GU-rich, are recognized by three multisubunit factors: cleavage factor I(m) (CFI(m) ), cleavage and polyadenylation specificity factor (CPSF), and cleavage stimulation factor (CstF), respectively. In the yeast Saccharomyces cerevisiae, UA repeats and A-rich sequence elements are recognized by Hrp1p and cleavage factor IA. Structural studies of protein-RNA complexes have helped decipher the mechanisms underlying sequence recognition and shed light on the role of protein factors in poly(A) site selection and 3' processing machinery assembly. In this review we focus on the interactions between the mRNA cis-elements and the protein factors (CFI(m) , CPSF, CstF, and homologous factors from yeast and other eukaryotes) that define the poly(A) site. WIREs RNA 2011 2 732-747 DOI: 10.1002/wrna.88 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Qin Yang
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, USA
| | | |
Collapse
|