1
|
Wu X, Cai P, Yao L, Zhou YJ. Genetic tools for metabolic engineering of Pichia pastoris. ENGINEERING MICROBIOLOGY 2023; 3:100094. [PMID: 39628915 PMCID: PMC11611016 DOI: 10.1016/j.engmic.2023.100094] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 12/06/2024]
Abstract
The methylotrophic yeast Pichia pastoris (also known as Komagataella phaffii) is widely used as a yeast cell factory for producing heterologous proteins. Recently, it has gained attention for its potential in producing chemicals from inexpensive feedstocks, which requires efficient genetic engineering platforms. This review provides an overview of the current advances in developing genetic tools for metabolic engineering of P. pastoris. The topics cover promoters, terminators, plasmids, genome integration sites, and genetic editing systems, with a special focus on the development of CRISPR/Cas systems and their comparison to other genome editing tools. Additionally, this review highlights the prospects of multiplex genome integration, fine-tuning gene expression, and single-base editing systems. Overall, the aim of this review is to provide valuable insights into current genetic engineering and discuss potential directions for future efforts in developing efficient genetic tools in P. pastoris.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lun Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of7 Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of7 Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Makeeva A, Muzaev D, Shubert M, Ianshina T, Sidorin A, Sambuk E, Rumyantsev A, Padkina M. Alternative PCR-Based Approaches for Generation of Komagataella phaffii Strains. Microorganisms 2023; 11:2297. [PMID: 37764140 PMCID: PMC10536657 DOI: 10.3390/microorganisms11092297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Komagataella phaffii (Pichia pastoris) is a widely known microbial host for recombinant protein production and an emerging model organism in fundamental research. The development of new materials and techniques on this yeast improves heterologous protein synthesis. One of the most prominent ways to enhance protein production efficiency is to select K. phaffii strains with multiple expression cassettes and generate MutS strains using various vectors. In this study, we demonstrate approaches to expand the applications of pPICZ series vectors. Procedures based on PCR amplification and in vivo cloning allow rapid exchange of selectable markers. The combination of PCR amplification with split-marker-mediated transformation allows the development of K. phaffii MutS strains with two expression cassettes using pPICZ vectors. Both PCR-based approaches were applied to efficiently produce interleukin-2 mimetic Neo-2/15 in K. phaffii. The described techniques provide alternative ways to generate and improve K. phaffii strains without the need for obtaining new specific vectors or additional cloning of expression cassettes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrey Rumyantsev
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Marina Padkina
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| |
Collapse
|
3
|
Nishi T, Ito Y, Nakamura Y, Yamaji T, Hashiba N, Tamai M, Yasohara Y, Ishii J, Kondo A. One-Step In Vivo Assembly of Multiple DNA Fragments and Genomic Integration in Komagataella phaffii. ACS Synth Biol 2022; 11:644-654. [PMID: 35094517 DOI: 10.1021/acssynbio.1c00302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The methylotrophic yeast species Komagataella phaffii (synonym: Pichia pastoris) is widely used as a host for recombinant protein production. Although several genetic engineering techniques are being employed on K. phaffii, advanced methods such as in vivo DNA assembly in this yeast species are required for synthetic biology applications. In this study, we established a technique for accomplishing one-step in vivo assembly of multiple DNA fragments and genomic integration in K. phaffii. To concurrently achieve an accurate multiple DNA assembly and a high-efficient integration into the target genomic locus in vivo, a K. phaffii strain, lacking a non-homologous end joining-related protein, DNA ligase IV (Dnl4p), that has been reported to improve gene targeting efficiency by homologous recombination, was used. Using green fluorescent protein along with the lycopene biosynthesis, we showed that our method that included a Dnl4p-defective strain permits direct and easy engineering of K. phaffii strains.
Collapse
Affiliation(s)
- Teruyuki Nishi
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Biotechnology Research Laboratories, Pharma & Supplemental Nutrition Solutions Vehicle, Kaneka Corporation, Takasago 676-8688, Japan
| | - Yoichiro Ito
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
| | - Yasuyuki Nakamura
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
| | - Taiki Yamaji
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe 650-0047, Japan
| | - Noriko Hashiba
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe 650-0047, Japan
| | - Masaya Tamai
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe 650-0047, Japan
| | - Yoshihiko Yasohara
- Biotechnology Research Laboratories, Pharma & Supplemental Nutrition Solutions Vehicle, Kaneka Corporation, Takasago 676-8688, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| |
Collapse
|
4
|
Gao J, Xu J, Zuo Y, Ye C, Jiang L, Feng L, Huang L, Xu Z, Lian J. Synthetic Biology Toolkit for Marker-Less Integration of Multigene Pathways into Pichia pastoris via CRISPR/Cas9. ACS Synth Biol 2022; 11:623-633. [PMID: 35080853 DOI: 10.1021/acssynbio.1c00307] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pichia pastoris, an important methylotrophic yeast, is currently mainly used for the expression of recombinant proteins and has great potential applications in the production of value-added compounds (e.g., chemical and natural products). However, the construction of P. pastoris cell factories is largely hindered by the lack of genetic tools for the manipulation of multigene biosynthetic pathways. Therefore, the present study aimed to establish a CRISPR-based synthetic biology toolkit for the integration and assembly of multigene biosynthetic pathways into the chromosome of P. pastoris. First, 23 intergenic regions were selected and characterized as potential integration sites, with a focus on the integration efficiency and heterologous gene expression levels. In addition, a panel of constitutive and methanol-inducible promoters with different strengths (weak, medium, and strong promoters) were characterized to control the expression of biosynthetic pathway genes to the desirable levels. With a series of gRNA plasmids (for single-locus, two-loci, and three-loci integration) and donor plasmids (containing homology arms for integration and promoters and terminators for driving heterologous gene expression) as major components, a CRISPR-based synthetic biology toolkit was established, which enabled the integration of one locus, two loci, and three loci with efficiencies as high as ∼100, ∼93, and ∼75%, respectively, in P. pastoris GS115 strain. Finally, the application of the toolkit was demonstrated by the construction of a series of P. pastoris cell factories, which could produce 2,3-butanediol, β-carotene, zeaxanthin, and astaxanthin with methanol as the sole carbon and energy source. The P. pastoris synthetic biology toolkit is highly standardized and can be employed to construct P. pastoris cell factories with high efficiency.
Collapse
Affiliation(s)
- Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Junhao Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Yimeng Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Leijie Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linjuan Feng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Rinnofner C, Felber M, Pichler H. Strains and Molecular Tools for Recombinant Protein Production in Pichia pastoris. Methods Mol Biol 2022; 2513:79-112. [PMID: 35781201 DOI: 10.1007/978-1-0716-2399-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Within the last two decades, the methylotrophic yeast Pichia pastoris (Komagataella phaffii) has become an important alternative to E. coli or mammalian cell lines for the production of recombinant proteins. Easy handling, strong promoters, and high cell density cultivations as well as the capability of posttranslational modifications are some of the major benefits of this yeast. The high secretion capacity and low level of endogenously secreted proteins further promoted the rapid development of a versatile Pichia pastoris toolbox. This chapter reviews common and new "Pichia tools" and their specific features. Special focus is given to expression strains, such as different methanol utilization, protease-deficient or glycoengineered strains, combined with application highlights. Different promoters and signal sequences are also discussed.
Collapse
Affiliation(s)
- Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.
- Bisy GmbH, Hofstaetten/Raab, Austria.
| | - Michael Felber
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
6
|
Gao J, Jiang L, Lian J. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synth Syst Biotechnol 2021; 6:110-119. [PMID: 33997361 PMCID: PMC8113645 DOI: 10.1016/j.synbio.2021.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023] Open
Abstract
The methylotrophic yeast Pichia pastoris (a.k.a. Komagataella phaffii) is one of the most commonly used hosts for industrial production of recombinant proteins. As a non-conventional yeast, P. pastoris has unique biological characteristics and its expression system has been well developed. With the advances in synthetic biology, more efforts have been devoted to developing P. pastoris into a chassis for the production of various high-value compounds, such as natural products. This review begins with the introduction of synthetic biology tools for the engineering of P. pastoris, including vectors, promoters, and terminators for heterologous gene expression as well as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated System (CRISPR/Cas) for genome editing. This review is then followed by examples of the production of value-added natural products in metabolically engineered P. pastoris strains. Finally, challenges and outlooks in developing P. pastoris as a synthetic biology chassis are prospected.
Collapse
Affiliation(s)
- Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Tominaga M, Nozaki K, Umeno D, Ishii J, Kondo A. Robust and flexible platform for directed evolution of yeast genetic switches. Nat Commun 2021; 12:1846. [PMID: 33758180 PMCID: PMC7988172 DOI: 10.1038/s41467-021-22134-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/26/2021] [Indexed: 01/31/2023] Open
Abstract
A wide repertoire of genetic switches has accelerated prokaryotic synthetic biology, while eukaryotic synthetic biology has lagged in the model organism Saccharomyces cerevisiae. Eukaryotic genetic switches are larger and more complex than prokaryotic ones, complicating the rational design and evolution of them. Here, we present a robust workflow for the creation and evolution of yeast genetic switches. The selector system was designed so that both ON- and OFF-state selection of genetic switches is completed solely by liquid handling, and it enabled parallel screen/selection of different motifs with different selection conditions. Because selection threshold of both ON- and OFF-state selection can be flexibly tuned, the desired selection conditions can be rapidly pinned down for individual directed evolution experiments without a prior knowledge either on the library population. The system's utility was demonstrated using 20 independent directed evolution experiments, yielding genetic switches with elevated inducer sensitivities, inverted switching behaviours, sensory functions, and improved signal-to-noise ratio (>100-fold induction). The resulting yeast genetic switches were readily integrated, in a plug-and-play manner, into an AND-gated carotenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Masahiro Tominaga
- grid.31432.370000 0001 1092 3077Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kenta Nozaki
- grid.31432.370000 0001 1092 3077Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Daisuke Umeno
- grid.136304.30000 0004 0370 1101Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, Chiba, Japan
| | - Jun Ishii
- grid.31432.370000 0001 1092 3077Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan ,grid.31432.370000 0001 1092 3077Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- grid.31432.370000 0001 1092 3077Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan ,grid.31432.370000 0001 1092 3077Engineering Biology Research Center, Kobe University, Kobe, Japan ,grid.31432.370000 0001 1092 3077Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Kobe, Japan ,grid.7597.c0000000094465255Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| |
Collapse
|
8
|
A Stable, Autonomously Replicating Plasmid Vector Containing Pichia pastoris Centromeric DNA. Appl Environ Microbiol 2018; 84:AEM.02882-17. [PMID: 29802190 DOI: 10.1128/aem.02882-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/20/2018] [Indexed: 01/07/2023] Open
Abstract
The methylotrophic yeast Pichia pastoris is widely used to produce recombinant proteins, taking advantage of this species' high-density cell growth and strong ability to secrete proteins. Circular plasmids containing the P. pastoris-specific autonomously replicating sequence (PARS1) permit transformation of P. pastoris with higher efficiency than obtained following chromosomal integration by linearized DNA. Unfortunately, however, existing autonomously replicating plasmids are known to be inherently unstable. In this study, we used transcriptome sequencing (RNA-seq) data and genome sequence information to independently identify, on each of the four chromosomes, centromeric DNA sequences consisting of long inverted repeat sequences. By examining the chromosome 2 centromeric DNA sequence (Cen2) in detail, we demonstrate that an ∼111-bp region located at one end of the putative centromeric sequence had autonomous replication activity. In addition, the full-length Cen2 sequence, which contains two long inverted repeat sequences and a nonrepetitive central core region, is needed for the accurate replication and distribution of plasmids in P. pastoris Thus, we constructed a new, stable, autonomously replicating plasmid vector that harbors the entire Cen2 sequence; this episome facilitates genetic manipulation in P. pastoris, providing high transformation efficiency and plasmid stability.IMPORTANCE Secretory production of recombinant proteins is the most important application of the methylotrophic yeast Pichia pastoris, a species that permits mass production of heterologous proteins. To date, the genetic engineering of P. pastoris has relied largely on integrative vectors due to the lack of user-friendly tools. Autonomously replicating Pichia plasmids are expected to facilitate genetic manipulation; however, the existing systems, which use autonomously replicating sequences (ARSs) such as the P. pastoris-specific ARS (PARS1), are known to be inherently unstable for plasmid replication and distribution. Recently, the centromeric DNA sequences of P. pastoris were identified in back-to-back studies published by several groups; therefore, a new episomal plasmid vector with centromere DNA as a tool for genetic manipulation of P. pastoris is ready to be developed.
Collapse
|
9
|
Yang J, Nie L, Chen B, Liu Y, Kong Y, Wang H, Diao L. Hygromycin-resistance vectors for gene expression inPichia pastoris. Yeast 2014; 31:115-25. [DOI: 10.1002/yea.3001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Junjie Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai People's Republic of China
- Shanghai Research Centre of Industrial Biotechnology; Shanghai People's Republic of China
| | - Lei Nie
- Zhejiang Hisun Pharmaceutical Co. Ltd; Taizhou Zhejiang People's Republic of China
| | - Biao Chen
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai People's Republic of China
- Shanghai Research Centre of Industrial Biotechnology; Shanghai People's Republic of China
| | - Yingmiao Liu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai People's Republic of China
- Shanghai Research Centre of Industrial Biotechnology; Shanghai People's Republic of China
| | - Yimeng Kong
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai People's Republic of China
- University of the Chinese Academy of Sciences; Beijing People's Republic of China
| | - Haibin Wang
- Zhejiang Hisun Pharmaceutical Co. Ltd; Taizhou Zhejiang People's Republic of China
| | - Liuyang Diao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai People's Republic of China
- Shanghai Research Centre of Industrial Biotechnology; Shanghai People's Republic of China
| |
Collapse
|
10
|
Abstract
Within the last two decades, the methylotrophic yeast Pichia pastoris has become an important alternative to E. coli or mammalian cell lines for the production of recombinant proteins. Easy handling, strong promoters, and high cell density cultivations as well as the capability of posttranslational modifications are some of the major benefits of this yeast. The high secretion capacity and low level of endogenously secreted proteins further promoted the rapid development of a versatile Pichia pastoris toolbox. This chapter reviews common and new "Pichia tools" and their specific features. Special focus is given to expression strains, such as different methanol utilization, protease-deficient or glycoengineered strains, combined with application highlights. Different promoters and signal sequences are also discussed.
Collapse
|
11
|
Qian Y, Xu X, Qian NX, Dhar V, You L, Xing Z, Huang C, Pan SH, Li ZJ. WITHDRAWN: Aminoglycoside phosphotransferase II gene as primary selection marker for Pichia pastoris producing full-length monoclonal antibody. Protein Expr Purif 2012:S1046-5928(12)00238-0. [PMID: 22982086 DOI: 10.1016/j.pep.2012.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/08/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Yueming Qian
- Biologics Process Sciences, Global Manufacturing and Supply, Bristol-Myers Squibb, 6000 Thompson Road, East Syracuse, NY 13057, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Young CL, Raden DL, Caplan JL, Czymmek KJ, Robinson AS. Cassette series designed for live-cell imaging of proteins and high-resolution techniques in yeast. Yeast 2012; 29:119-36. [PMID: 22473760 DOI: 10.1002/yea.2895] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 02/27/2012] [Indexed: 12/22/2022] Open
Abstract
During the past decade, it has become clear that protein function and regulation are highly dependent upon intracellular localization. Although fluorescent protein variants are ubiquitously used to monitor protein dynamics, localization and abundance; fluorescent light microscopy techniques often lack the resolution to explore protein heterogeneity and cellular ultrastructure. Several approaches have been developed to identify, characterize and monitor the spatial localization of proteins and complexes at the suborganelle level, yet many of these techniques have not been applied to yeast. Thus, we have constructed a series of cassettes containing codon-optimized epitope tags, fluorescent protein variants that cover the full spectrum of visible light, a TetCys motif used for fluorescein arsenical hairpin (FlAsH)-based localization, and the first evaluation in yeast of a photoswitchable variant, mEos2, to monitor discrete subpopulations of proteins via confocal microscopy. This series of modules, complete with six different selection markers, provides the optimal flexibility during live-cell imaging and multicolour labelling in vivo. Furthermore, high-resolution imaging techniques include the yeast-enhanced TetCys motif, which is compatible with diaminobenzidine photo-oxidation used for protein localization by electron microscopy, and mEos2, which is ideal for super-resolution microscopy. We have examined the utility of our cassettes by analysing all probes fused to the C-terminus of Sec61, a polytopic membrane protein of the endoplasmic reticulum of moderate protein concentration, in order to directly compare fluorescent probes, their utility and technical applications. Our series of cassettes expand the repertoire of molecular tools available to advance targeted spatiotemporal investigations using multiple live-cell, super-resolution or electron microscopy imaging techniques.
Collapse
Affiliation(s)
- Carissa L Young
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | | | | | | | | |
Collapse
|
13
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|