1
|
Corbi D, Amon A. Decreasing mitochondrial RNA polymerase activity reverses biased inheritance of hypersuppressive mtDNA. PLoS Genet 2021; 17:e1009808. [PMID: 34665800 PMCID: PMC8555793 DOI: 10.1371/journal.pgen.1009808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/29/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Faithful inheritance of mitochondrial DNA (mtDNA) is crucial for cellular respiration/oxidative phosphorylation and mitochondrial membrane potential. However, how mtDNA is transmitted to progeny is not fully understood. We utilized hypersuppressive mtDNA, a class of respiratory deficient Saccharomyces cerevisiae mtDNA that is preferentially inherited over wild-type mtDNA (rho+), to uncover the factors governing mtDNA inheritance. We found that some regions of rho+ mtDNA persisted while others were lost after a specific hypersuppressive takeover indicating that hypersuppressive preferential inheritance may partially be due to active destruction of rho+ mtDNA. From a multicopy suppression screen, we found that overexpression of putative mitochondrial RNA exonuclease PET127 reduced biased inheritance of a subset of hypersuppressive genomes. This suppression required PET127 binding to the mitochondrial RNA polymerase RPO41 but not PET127 exonuclease activity. A temperature-sensitive allele of RPO41 improved rho+ mtDNA inheritance over a specific hypersuppressive mtDNA at semi-permissive temperatures revealing a previously unknown role for rho+ transcription in promoting hypersuppressive mtDNA inheritance.
Collapse
Affiliation(s)
- Daniel Corbi
- David H. Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
2
|
Wang W, Deng Z, Liu G, Yang J, Zhou W, Zhang C, Shen W, Zhang Y. Platelet-derived extracellular vesicles promote the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes via CXCR2 signaling. Exp Ther Med 2021; 22:1120. [PMID: 34504574 PMCID: PMC8383774 DOI: 10.3892/etm.2021.10554] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Platelet-derived extracellular vesicles (PEVs), which are generated from the plasma membrane during platelet activation, may be involved in the inflammatory processes of rheumatoid arthritis (RA). The motility of RA fibroblast-like synoviocytes (RA-FLS) plays a key role in the development of synovial inflammation and joint erosion. However, the effects of PEVs on the motility of RA-FLS remain unclear. Thus, the present study aimed to investigate the active contents and potential molecular mechanisms underlying the role of PEVs in regulating the migration and invasion of RA-FLS. The results demonstrated that PEVs contain certain chemokines associated with cell migration and invasion, including C-C motif chemokine ligand 5, C-X-C motif chemokine ligand (CXCL)4 and CXCL7. Furthermore, SB225002, an antagonist of C-X-C motif chemokine receptor 2 (CXCR2; a CXCL7 receptor), partially prevented the migration and invasion of RA-FLS induced by PEVs, suggesting that PEVs may activate a CXCR2-mediated signaling pathway in RA-FLS. In addition, SB225002 antagonized the phosphorylation of IκB and NF-κB in RA-FLS induced by PEVs. Taken together, the results of the present study suggested that PEVs may promote the migration and invasion of RA-FLS by activating the NF-κB pathway mediated by the CXCR2 signaling pathway.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Department of Rheumatology, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Zijing Deng
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Guiping Liu
- Department of Rheumatology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Jie Yang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Wei Zhou
- Department of Internal Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Chen Zhang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Weigan Shen
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Yu Zhang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| |
Collapse
|
3
|
The pentatricopeptide repeat protein Rmd9 recognizes the dodecameric element in the 3'-UTRs of yeast mitochondrial mRNAs. Proc Natl Acad Sci U S A 2021; 118:2009329118. [PMID: 33876744 DOI: 10.1073/pnas.2009329118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stabilization of messenger RNA is an important step in posttranscriptional gene regulation. In the nucleus and cytoplasm of eukaryotic cells it is generally achieved by 5' capping and 3' polyadenylation, whereas additional mechanisms exist in bacteria and organelles. The mitochondrial mRNAs in the yeast Saccharomyces cerevisiae comprise a dodecamer sequence element that confers RNA stability and 3'-end processing via an unknown mechanism. Here, we isolated the protein that binds the dodecamer and identified it as Rmd9, a factor that is known to stabilize yeast mitochondrial RNA. We show that Rmd9 associates with mRNA around dodecamer elements in vivo and that recombinant Rmd9 specifically binds the element in vitro. The crystal structure of Rmd9 bound to its dodecamer target reveals that Rmd9 belongs to the family of pentatricopeptide (PPR) proteins and uses a previously unobserved mode of specific RNA recognition. Rmd9 protects RNA from degradation by the mitochondrial 3'-exoribonuclease complex mtEXO in vitro, indicating that recognition and binding of the dodecamer element by Rmd9 confers stability to yeast mitochondrial mRNAs.
Collapse
|
4
|
Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem 2020; 295:18406-18425. [PMID: 33127643 PMCID: PMC7939475 DOI: 10.1074/jbc.rev120.011202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | - Kalyan Das
- Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
| |
Collapse
|
5
|
Gupta A, Shrivastava D, Shakya AK, Gupta K, Pratap JV, Habib S. PfKsgA1 functions as a transcription initiation factor and interacts with the N-terminal region of the mitochondrial RNA polymerase of Plasmodium falciparum. Int J Parasitol 2020; 51:23-37. [PMID: 32896572 DOI: 10.1016/j.ijpara.2020.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
The small mitochondrial genome (mtDNA) of the malaria parasite is known to transcribe its genes polycistonically, although promoter element(s) have not yet been identified. An unusually large Plasmodium falciparum candidate mitochondrial phage-like RNA polymerase (PfmtRNAP) with an extended N-terminal region is encoded by the parasite nuclear genome. Using specific antibodies against the enzyme, we established that PfmtRNAP was targeted exclusively to the mitochondrion and interacted with mtDNA. Phylogenetic analysis showed that it is part of a separate apicomplexan clade. A search for PfmtRNAP-associated transcription initiation factors using sequence homology and in silico protein-protein interaction network analysis identified PfKsgA1. PfKsgA1 is a dual cytosol- and mitochondrion-targeted protein that functions as a small subunit rRNA dimethyltransferase in ribosome biogenesis. Chromatin immunoprecipitation showed that PfKsgA1 interacts with mtDNA, and in vivo crosslinking and pull-down experiments confirmed PfmtRNAP-PfKsgA1 interaction. The ability of PfKsgA1 to serve as a transcription initiation factor was demonstrated by complementation of yeast mitochondrial transcription factor Mtf1 function in Rpo41-driven in vitro transcription. Pull-down experiments using PfKsgA1 and PfmtRNAP domains indicated that the N-terminal region of PfmtRNAP interacts primarily with the PfKsgA1 C-terminal domain with some contacts being made with the linker and N-terminal domain of PfKsgA1. In the absence of full-length recombinant PfmtRNAP, solution structures of yeast mitochondrial RNA polymerase Rpo41 complexes with Mtf1 or PfKsgA1 were determined by small-angle X-ray scattering. Protein interaction interfaces thus identified matched with those reported earlier for Rpo41-Mtf1 interaction and overlaid with the PfmtRNAP-interfacing region identified experimentally for PfKsgA1. Our results indicate that in addition to a role in mitochondrial ribosome biogenesis, PfKsgA1 has an independent function as a transcription initiation factor for PfmtRNAP.
Collapse
Affiliation(s)
- Ankit Gupta
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Deepti Shrivastava
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar Shakya
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kirti Gupta
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - J V Pratap
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Saman Habib
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
De Silva D, Poliquin S, Zeng R, Zamudio-Ochoa A, Marrero N, Perez-Martinez X, Fontanesi F, Barrientos A. The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation. Nucleic Acids Res 2017; 45:6628-6643. [PMID: 28520979 PMCID: PMC5499750 DOI: 10.1093/nar/gkx426] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022] Open
Abstract
Members of the DEAD-box family are often multifunctional proteins involved in several RNA transactions. Among them, yeast Saccharomyces cerevisiae Mss116 participates in mitochondrial intron splicing and, under cold stress, also in mitochondrial transcription elongation. Here, we show that Mss116 interacts with the mitoribosome assembly factor Mrh4, is required for efficient mitoribosome biogenesis, and consequently, maintenance of the overall mitochondrial protein synthesis rate. Additionally, Mss116 is required for efficient COX1 mRNA translation initiation and elongation. Mss116 interacts with a COX1 mRNA-specific translational activator, the pentatricopeptide repeat protein Pet309. In the absence of Mss116, Pet309 is virtually absent, and although mitoribosome loading onto COX1 mRNA can occur, activation of COX1 mRNA translation is impaired. Mutations abolishing the helicase activity of Mss116 do not prevent the interaction of Mss116 with Pet309 but also do not allow COX1 mRNA translation. We propose that Pet309 acts as an adaptor protein for Mss116 action on the COX1 mRNA 5΄-UTR to promote efficient Cox1 synthesis. Overall, we conclude that the different functions of Mss116 in the biogenesis and functioning of the mitochondrial translation machinery depend on Mss116 interplay with its protein cofactors.
Collapse
Affiliation(s)
- Dasmanthie De Silva
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sarah Poliquin
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rui Zeng
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angelica Zamudio-Ochoa
- Departamento de Genetica Molecular, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Natalie Marrero
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xochitl Perez-Martinez
- Departamento de Genetica Molecular, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Bourens M, Barrientos A. A CMC1-knockout reveals translation-independent control of human mitochondrial complex IV biogenesis. EMBO Rep 2017; 18:477-494. [PMID: 28082314 DOI: 10.15252/embr.201643103] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022] Open
Abstract
Defects in mitochondrial respiratory chain complex IV (CIV) frequently cause encephalocardiomyopathies. Human CIV assembly involves 14 subunits of dual genetic origin and multiple nucleus-encoded ancillary factors. Biogenesis of the mitochondrion-encoded copper/heme-containing COX1 subunit initiates the CIV assembly process. Here, we show that the intermembrane space twin CX9C protein CMC1 forms an early CIV assembly intermediate with COX1 and two assembly factors, the cardiomyopathy proteins COA3 and COX14. A TALEN-mediated CMC1 knockout HEK293T cell line displayed normal COX1 synthesis but decreased CIV activity owing to the instability of newly synthetized COX1. We demonstrate that CMC1 stabilizes a COX1-COA3-COX14 complex before the incorporation of COX4 and COX5a subunits. Additionally, we show that CMC1 acts independently of CIV assembly factors relevant to COX1 metallation (COX10, COX11, and SURF1) or late stability (MITRAC7). Furthermore, whereas human COX14 and COA3 have been proposed to affect COX1 mRNA translation, our data indicate that CMC1 regulates turnover of newly synthesized COX1 prior to and during COX1 maturation, without affecting the rate of COX1 synthesis.
Collapse
Affiliation(s)
- Myriam Bourens
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA .,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Ruminski DJ, Watson PY, Mahen EM, Fedor MJ. A DEAD-box RNA helicase promotes thermodynamic equilibration of kinetically trapped RNA structures in vivo. RNA (NEW YORK, N.Y.) 2016; 22:416-27. [PMID: 26759451 PMCID: PMC4748819 DOI: 10.1261/rna.055178.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/05/2015] [Indexed: 05/24/2023]
Abstract
RNAs must assemble into specific structures in order to carry out their biological functions, but in vitro RNA folding reactions produce multiple misfolded structures that fail to exchange with functional structures on biological time scales. We used carefully designed self-cleaving mRNAs that assemble through well-defined folding pathways to identify factors that differentiate intracellular and in vitro folding reactions. Our previous work showed that simple base-paired RNA helices form and dissociate with the same rate and equilibrium constants in vivo and in vitro. However, exchange between adjacent secondary structures occurs much faster in vivo, enabling RNAs to quickly adopt structures with the lowest free energy. We have now used this approach to probe the effects of an extensively characterized DEAD-box RNA helicase, Mss116p, on a series of well-defined RNA folding steps in yeast. Mss116p overexpression had no detectable effect on helix formation or dissociation kinetics or on the stability of interdomain tertiary interactions, consistent with previous evidence that intracellular factors do not affect these folding parameters. However, Mss116p overexpression did accelerate exchange between adjacent helices. The nonprocessive nature of RNA duplex unwinding by DEAD-box RNA helicases is consistent with a branch migration mechanism in which Mss116p lowers barriers to exchange between otherwise stable helices by the melting and annealing of one or two base pairs at interhelical junctions. These results suggest that the helicase activity of DEAD-box proteins like Mss116p distinguish intracellular RNA folding pathways from nonproductive RNA folding reactions in vitro and allow RNA structures to overcome kinetic barriers to thermodynamic equilibration in vivo.
Collapse
Affiliation(s)
- Dana J Ruminski
- Department of Chemical Physiology, Department of Cell and Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Peter Y Watson
- Department of Chemical Physiology, Department of Cell and Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Elisabeth M Mahen
- Department of Chemical Physiology, Department of Cell and Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Martha J Fedor
- Department of Chemical Physiology, Department of Cell and Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
9
|
Brown TA, Tkachuk AN, Clayton DA. Mitochondrial Transcription Factor A (TFAM) Binds to RNA Containing 4-Way Junctions and Mitochondrial tRNA. PLoS One 2015; 10:e0142436. [PMID: 26545237 PMCID: PMC4636309 DOI: 10.1371/journal.pone.0142436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/21/2015] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is maintained within nucleoprotein complexes known as nucleoids. These structures are highly condensed by the DNA packaging protein, mitochondrial Transcription Factor A (TFAM). Nucleoids also include RNA, RNA:DNA hybrids, and are associated with proteins involved with RNA processing and mitochondrial ribosome biogenesis. Here we characterize the ability of TFAM to bind various RNA containing substrates in order to determine their role in TFAM distribution and function within the nucleoid. We find that TFAM binds to RNA-containing 4-way junctions but does not bind appreciably to RNA hairpins, internal loops, or linear RNA:DNA hybrids. Therefore the RNA within nucleoids largely excludes TFAM, and its distribution is not grossly altered with removal of RNA. Within the cell, TFAM binds to mitochondrial tRNAs, consistent with our RNA 4-way junction data. Kinetic binding assays and RNase-insensitive TFAM distribution indicate that DNA remains the preferred substrate within the nucleoid. However, TFAM binds to tRNA with nanomolar affinity and these complexes are not rare. TFAM-immunoprecipitated tRNAs have processed ends, suggesting that binding is not specific to RNA precursors. The amount of each immunoprecipitated tRNA is not well correlated with tRNA celluar abundance, indicating unequal TFAM binding preferences. TFAM-mt-tRNA interaction suggests potentially new functions for this protein.
Collapse
Affiliation(s)
- Timothy A. Brown
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail:
| | - Ariana N. Tkachuk
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - David A. Clayton
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| |
Collapse
|
10
|
Roloff GA, Henry MF. Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria. Mol Biol Cell 2015; 26:2885-94. [PMID: 26108620 PMCID: PMC4571327 DOI: 10.1091/mbc.e15-04-0222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
Expression of genes encoded by the mitochondrial genome is dependent on gene-specific translational activators. Mam33, the yeast homologue of p32/gC1qR/C1QBP/HABP1, promotes the translation of Cox1, a core catalytic subunit of respiratory chain complex IV. Three mitochondrial DNA–encoded proteins, Cox1, Cox2, and Cox3, comprise the core of the cytochrome c oxidase complex. Gene-specific translational activators ensure that these respiratory chain subunits are synthesized at the correct location and in stoichiometric ratios to prevent unassembled protein products from generating free oxygen radicals. In the yeast Saccharomyces cerevisiae, the nuclear-encoded proteins Mss51 and Pet309 specifically activate mitochondrial translation of the largest subunit, Cox1. Here we report that Mam33 is a third COX1 translational activator in yeast mitochondria. Mam33 is required for cells to adapt efficiently from fermentation to respiration. In the absence of Mam33, Cox1 translation is impaired, and cells poorly adapt to respiratory conditions because they lack basal fermentative levels of Cox1.
Collapse
Affiliation(s)
- Gabrielle A Roloff
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, and Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Michael F Henry
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, and Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
11
|
Zamudio-Ochoa A, Camacho-Villasana Y, García-Guerrero AE, Pérez-Martínez X. The Pet309 pentatricopeptide repeat motifs mediate efficient binding to the mitochondrial COX1 transcript in yeast. RNA Biol 2014; 11:953-67. [PMID: 25181249 PMCID: PMC4179968 DOI: 10.4161/rna.29780] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial synthesis of Cox1, the largest subunit of the cytochrome c oxidase complex, is controlled by Mss51 and Pet309, two mRNA-specific translational activators that act via the COX1 mRNA 5′-UTR through an unknown mechanism. Pet309 belongs to the pentatricopeptide repeat (PPR) protein family, which is involved in RNA metabolism in mitochondria and chloroplasts, and its sequence predicts at least 12 PPR motifs in the central portion of the protein. Deletion of these motifs selectively disrupted translation but not accumulation of the COX1 mRNA. We used RNA coimmunoprecipitation assays to show that Pet309 interacts with the COX1 mRNA in vivo and that this association is present before processing of the COX1 mRNA from the ATP8/6 polycistronic mRNA. This association was not affected by deletion of 8 of the PPR motifs but was undetectable after deletion of the entire 12-PPR region. However, interaction of the Pet309 protein lacking 12 PPR motifs with the COX1 mRNA was detected after overexpression of the mutated form of the protein, suggesting that deletion of this region decreased the binding affinity for the COX1 mRNA without abolishing it entirely. Moreover, binding of Pet309 to the COX1 mRNA was affected by deletion of Mss51. This work demonstrates an in vivo physical interaction between a yeast mitochondrial translational activator and its target mRNA and shows the cooperativity of the PPR domains of Pet309 in interaction with the COX1 mRNA.
Collapse
Affiliation(s)
- Angélica Zamudio-Ochoa
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| | - Yolanda Camacho-Villasana
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| | - Aldo E García-Guerrero
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| | - Xochitl Pérez-Martínez
- Departamento de Genética Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México
| |
Collapse
|
12
|
Markov DA, Wojtas ID, Tessitore K, Henderson S, McAllister WT. Yeast DEAD box protein Mss116p is a transcription elongation factor that modulates the activity of mitochondrial RNA polymerase. Mol Cell Biol 2014; 34:2360-9. [PMID: 24732805 PMCID: PMC4054322 DOI: 10.1128/mcb.00160-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/20/2014] [Accepted: 04/01/2014] [Indexed: 01/08/2023] Open
Abstract
DEAD box proteins have been widely implicated in regulation of gene expression. Here, we show that the yeast Saccharomyces cerevisiae DEAD box protein Mss116p, previously known as a mitochondrial splicing factor, also acts as a transcription factor that modulates the activity of the single-subunit mitochondrial RNA polymerase encoded by RPO41. Binding of Mss116p stabilizes paused mitochondrial RNA polymerase elongation complexes in vitro and favors the posttranslocated state of the enzyme, resulting in a lower concentration of nucleotide substrate required to escape the pause; this mechanism of action is similar to that of elongation factors that enhance the processivity of multisubunit RNA polymerases. In a yeast strain in which the RNA splicing-related functions of Mss116p are dispensable, overexpression of RPO41 or MSS116 increases cell survival from colonies that were exposed to low temperature, suggesting a role for Mss116p in enhancing the efficiency of mitochondrial transcription under stress conditions.
Collapse
Affiliation(s)
- Dmitriy A Markov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Ireneusz D Wojtas
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Kassandra Tessitore
- Summer Undergraduate Research Experience Program, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Simmone Henderson
- Graduate School of Biomedical Sciences, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - William T McAllister
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| |
Collapse
|
13
|
Molodtsov V, Anikin M, McAllister WT. The presence of an RNA:DNA hybrid that is prone to slippage promotes termination by T7 RNA polymerase. J Mol Biol 2014; 426:3095-3107. [PMID: 24976131 DOI: 10.1016/j.jmb.2014.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 11/17/2022]
Abstract
Intrinsic termination signals for multisubunit bacterial RNA polymerases (RNAPs) encode a GC-rich stem-loop structure followed by a polyuridine [poly(U)] tract, and it has been proposed that steric clash of the stem-loop with the exit pore of the RNAP imposes a shearing force on the RNA in the downstream RNA:DNA hybrid, resulting in misalignment of the active site. The structurally unrelated T7 RNAP terminates at a similar type of signal (TΦ), suggesting a common mechanism for termination. In the absence of a hairpin (passive conditions), T7 RNAP slips efficiently in both homopolymeric A and U tracts, and we have found that replacement of the U tract in TΦ with a slippage-prone A tract still allows efficient termination. Under passive conditions, incorporation of a single G residue following a poly(U) tract (which is the situation during termination at TΦ) results in a "locked" complex that is unable to extend the transcript. Our results support a model in which transmission of the shearing force generated by steric clash of the hairpin with the exit pore is promoted by the presence of a slippery tracts downstream, resulting in alterations in the active site and the formation of a locked complex that represents an early step in the termination pathway.
Collapse
Affiliation(s)
- Vadim Molodtsov
- Graduate Program in Cell and Molecular Biology, Rowan University School of Osteopathic Medicine, 42 East Laurel Road, UDP 2200, Stratford, NJ 08084, USA; Department of Cell Biology, Rowan University School of Osteopathic Medicine, 42 East Laurel Road, UDP 2200, Stratford, NJ 08084, USA
| | - Michael Anikin
- Department of Cell Biology, Rowan University School of Osteopathic Medicine, 42 East Laurel Road, UDP 2200, Stratford, NJ 08084, USA
| | - William T McAllister
- Department of Cell Biology, Rowan University School of Osteopathic Medicine, 42 East Laurel Road, UDP 2200, Stratford, NJ 08084, USA.
| |
Collapse
|
14
|
Turk EM, Das V, Seibert RD, Andrulis ED. The mitochondrial RNA landscape of Saccharomyces cerevisiae. PLoS One 2013; 8:e78105. [PMID: 24143261 PMCID: PMC3797045 DOI: 10.1371/journal.pone.0078105] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are essential organelles that harbor a reduced genome, and expression of that genome requires regulated metabolism of its transcriptome by nuclear-encoded proteins. Despite extensive investigation, a comprehensive map of the yeast mitochondrial transcriptome has not been developed and all of the RNA-metabolizing proteins have not been identified, both of which are prerequisites to elucidating the basic RNA biology of mitochondria. Here, we present a mitochondrial transcriptome map of the yeast S288C reference strain. Using RNAseq and bioinformatics, we show the expression level of all transcripts, revise all promoter, origin of replication, and tRNA annotations, and demonstrate for the first time the existence of alternative splicing, mirror RNAs, and a novel RNA processing site in yeast mitochondria. The transcriptome map has revealed new aspects of mitochondrial RNA biology and we expect it will serve as a valuable resource. As a complement to the map, we present our compilation of all known yeast nuclear-encoded ribonucleases (RNases), and a screen of this dataset for those that are imported into mitochondria. We sought to identify RNases that are refractory to recovery in traditional mitochondrial screens due to an essential function or eclipsed accumulation in another cellular compartment. Using this in silico approach, the essential RNase of the nuclear and cytoplasmic exosome, Dis3p, emerges as a strong candidate. Bioinformatics and in vivo analyses show that Dis3p has a conserved and functional mitochondrial-targeting signal (MTS). A clean and marker-less chromosomal deletion of the Dis3p MTS results in a defect in the decay of intron and mirror RNAs, thus revealing a role for Dis3p in mitochondrial RNA decay.
Collapse
Affiliation(s)
- Edward M. Turk
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Science Department, Gilmour Academy, Gates Mills, Ohio, United States of America
| | - Vaijayanti Das
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Ryan D. Seibert
- Science Department, Gilmour Academy, Gates Mills, Ohio, United States of America
| | - Erik D. Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
15
|
Herbert CJ, Golik P, Bonnefoy N. Yeast PPR proteins, watchdogs of mitochondrial gene expression. RNA Biol 2013; 10:1477-94. [PMID: 24184848 DOI: 10.4161/rna.25392] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
PPR proteins are a family of ubiquitous RNA-binding factors, found in all the Eukaryotic lineages, and are particularly numerous in higher plants. According to recent bioinformatic analyses, yeast genomes encode from 10 (in S. pombe) to 15 (in S. cerevisiae) PPR proteins. All of these proteins are mitochondrial and very often interact with the mitochondrial membrane. Apart from the general factors, RNA polymerase and RNase P, most yeast PPR proteins are involved in the stability and/or translation of mitochondrially encoded RNAs. At present, some information concerning the target RNA(s) of most of these proteins is available, the next challenge will be to refine our understanding of the function of the proteins and to resolve the yeast PPR-RNA-binding code, which might differ significantly from the plant PPR code.
Collapse
Affiliation(s)
- Christopher J Herbert
- Centre de Génétique Moléculaire du CNRS; UPR3404; FRC3115; Gif-sur-Yvette; Paris, France
| | - Pawel Golik
- Department of Genetics and Biotechnology; Faculty of Biology; University of Warsaw; Pawinskiego 5A; Warsaw, Poland
| | - Nathalie Bonnefoy
- Centre de Génétique Moléculaire du CNRS; UPR3404; FRC3115; Gif-sur-Yvette; Paris, France
| |
Collapse
|
16
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
17
|
Surovtseva YV, Shadel GS. Transcription-independent role for human mitochondrial RNA polymerase in mitochondrial ribosome biogenesis. Nucleic Acids Res 2013; 41:2479-88. [PMID: 23303773 PMCID: PMC3575816 DOI: 10.1093/nar/gks1447] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/07/2012] [Accepted: 12/12/2012] [Indexed: 12/05/2022] Open
Abstract
Human mitochondrial RNA polymerase, POLRMT, is required for mitochondrial DNA (mtDNA) transcription and forms initiation complexes with human mitochondrial transcription factor B2 (h-mtTFB2). However, POLRMT also interacts with the paralogue of h-mtTFB2, h-mtTFB1, which is a 12S ribosomal RNA methyltransferase required for small (28S) mitochondrial ribosome subunit assembly. Herein, we show that POLRMT associates with h-mtTFB1 in 28S mitochondrial ribosome complexes that are stable in the absence of mitochondrial transcription and distinct from transcription complexes containing POLRMT and h-mtTFB2. Overexpression of POLRMT in HeLa cells increases 12S rRNA methylation by h-mtTFB1 and reduces the steady-state levels of mtDNA-encoded proteins and respiration, apparently because of a decrease in fully assembled 55S mitochondrial ribosomes. We propose that POLRMT interacts directly with h-mtTFB1 in 28S mitochondrial ribosomes to augment its 12S rRNA methyltransferase activity, and that together they provide a checkpoint for proper 28S and 55S mitochondrial ribosome assembly. Thus, POLRMT is multi-functional, forming distinct protein complexes that regulate different steps in mitochondrial gene expression, at least one of which does not involve transcription per se. The significance of these results is discussed with regard to the mechanism and regulation of human mitochondrial gene expression and the potential multi-functionality of RNA polymerases in general.
Collapse
Affiliation(s)
- Yulia V. Surovtseva
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA and Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA and Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Russell R, Jarmoskaite I, Lambowitz AM. Toward a molecular understanding of RNA remodeling by DEAD-box proteins. RNA Biol 2012; 10:44-55. [PMID: 22995827 PMCID: PMC3590237 DOI: 10.4161/rna.22210] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DEAD-box proteins are superfamily 2 helicases that function in all aspects of RNA metabolism. They employ ATP binding and hydrolysis to generate tight, yet regulated RNA binding, which is used to unwind short RNA helices non-processively and promote structural transitions of RNA and RNA-protein substrates. In the last few years, substantial progress has been made toward a detailed, quantitative understanding of the structural and biochemical properties of DEAD-box proteins. Concurrently, progress has been made toward a physical understanding of the RNA rearrangements and folding steps that are accelerated by DEAD-box proteins in model systems. Here, we review the recent progress on both of these fronts, focusing on the mitochondrial DEAD-box proteins Mss116 and CYT-19 and their mechanisms in promoting the splicing of group I and group II introns.
Collapse
Affiliation(s)
- Rick Russell
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA.
| | | | | |
Collapse
|
19
|
Mechanism of transcription initiation by the yeast mitochondrial RNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:930-8. [PMID: 22353467 DOI: 10.1016/j.bbagrm.2012.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 02/03/2023]
Abstract
Mitochondria are the major supplier of cellular energy in the form of ATP. Defects in normal ATP production due to dysfunctions in mitochondrial gene expression are responsible for many mitochondrial and aging related disorders. Mitochondria carry their own DNA genome which is transcribed by relatively simple transcriptional machinery consisting of the mitochondrial RNAP (mtRNAP) and one or more transcription factors. The mtRNAPs are remarkably similar in sequence and structure to single-subunit bacteriophage T7 RNAP but they require accessory transcription factors for promoter-specific initiation. Comparison of the mechanisms of T7 RNAP and mtRNAP provides a framework to better understand how mtRNAP and the transcription factors work together to facilitate promoter selection, DNA melting, initiating nucleotide binding, and promoter clearance. This review focuses primarily on the mechanistic characterization of transcription initiation by the yeast Saccharomyces cerevisiae mtRNAP (Rpo41) and its transcription factor (Mtf1) drawing insights from the homologous T7 and the human mitochondrial transcription systems. We discuss regulatory mechanisms of mitochondrial transcription and the idea that the mtRNAP acts as the in vivo ATP "sensor" to regulate gene expression. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
|
20
|
High-throughput genetic identification of functionally important regions of the yeast DEAD-box protein Mss116p. J Mol Biol 2011; 413:952-72. [PMID: 21945532 DOI: 10.1016/j.jmb.2011.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 11/21/2022]
Abstract
The Saccharomyces cerevisiae DEAD-box protein Mss116p is a general RNA chaperone that functions in splicing mitochondrial group I and group II introns. Recent X-ray crystal structures of Mss116p in complex with ATP analogs and single-stranded RNA show that the helicase core induces a bend in the bound RNA, as in other DEAD-box proteins, while a C-terminal extension (CTE) induces a second bend, resulting in RNA crimping. Here, we illuminate these structures by using high-throughput genetic selections, unigenic evolution, and analyses of in vivo splicing activity to comprehensively identify functionally important regions and permissible amino acid substitutions throughout Mss116p. The functionally important regions include those containing conserved sequence motifs involved in ATP and RNA binding or interdomain interactions, as well as previously unidentified regions, including surface loops that may function in protein-protein interactions. The genetic selections recapitulate major features of the conserved helicase motifs seen in other DEAD-box proteins but also show surprising variations, including multiple novel variants of motif III (SAT). Patterns of amino acid substitutions indicate that the RNA bend induced by the helicase core depends on ionic and hydrogen-bonding interactions with the bound RNA; identify a subset of critically interacting residues; and indicate that the bend induced by the CTE results primarily from a steric block. Finally, we identified two conserved regions-one the previously noted post II region in the helicase core and the other in the CTE-that may help displace or sequester the opposite RNA strand during RNA unwinding.
Collapse
|
21
|
Solution structures of DEAD-box RNA chaperones reveal conformational changes and nucleic acid tethering by a basic tail. Proc Natl Acad Sci U S A 2011; 108:12254-9. [PMID: 21746911 DOI: 10.1073/pnas.1109566108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mitochondrial DEAD-box proteins Mss116p of Saccharomyces cerevisiae and CYT-19 of Neurospora crassa are ATP-dependent helicases that function as general RNA chaperones. The helicase core of each protein precedes a C-terminal extension and a basic tail, whose structural role is unclear. Here we used small-angle X-ray scattering to obtain solution structures of the full-length proteins and a series of deletion mutants. We find that the two core domains have a preferred relative orientation in the open state without substrates, and we visualize the transition to a compact closed state upon binding RNA and adenosine nucleotide. An analysis of complexes with large chimeric oligonucleotides shows that the basic tails of both proteins are attached flexibly, enabling them to bind rigid duplex DNA segments extending from the core in different directions. Our results indicate that the basic tails of DEAD-box proteins contribute to RNA-chaperone activity by binding nonspecifically to large RNA substrates and flexibly tethering the core for the unwinding of neighboring duplexes.
Collapse
|
22
|
Paratkar S, Deshpande AP, Tang GQ, Patel SS. The N-terminal domain of the yeast mitochondrial RNA polymerase regulates multiple steps of transcription. J Biol Chem 2011; 286:16109-20. [PMID: 21454631 DOI: 10.1074/jbc.m111.228023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the yeast (Saccharomyces cerevisiae) mitochondrial (mt) genome is catalyzed by nuclear-encoded proteins that include the core RNA polymerase (RNAP) subunit Rpo41 and the transcription factor Mtf1. Rpo41 is homologous to the single-subunit bacteriophage T7/T3 RNAP. Its ∼80-kDa C-terminal domain is highly conserved among mt RNAPs, but its ∼50-kDa N-terminal domain (NTD) is less conserved and not present in T7/T3 RNAP. To understand the role of the NTD, we have biochemically characterized a series of NTD deletion mutants of Rpo41. Our studies show that NTD regulates multiple steps of transcription initiation. Interestingly, NTD functions in an autoinhibitory manner during initiation, and its partial deletion increases the efficiency of RNA synthesis. Deletion of 1-270 amino acids (DN270) reduces abortive synthesis and increases full-length to abortive RNA ratio relative to full-length (FL) Rpo41. A larger deletion of 1-380 amino acids (DN380), decreases RNA synthesis on duplex but not on premelted promoter. We show that DN380 is defective in promoter opening near the transcription start site. Most strikingly, both DN270 and DN380 catalyze highly processive RNA synthesis on the premelted promoter, and unlike the FL Rpo41, the mutants are not inhibited by Mtf1. Both mutants show weaker interactions with Mtf1, which explains many of our results, and particularly the ability of the mutants to efficiently transition from initiation to elongation. We propose that in vivo the accessory proteins that bind NTD may modulate interactions of Rpo41 with the promoter/Mtf1 to activate and allow timely release from Mtf1 for transition into elongation.
Collapse
Affiliation(s)
- Swaroopa Paratkar
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
23
|
Minczuk M, He J, Duch AM, Ettema TJ, Chlebowski A, Dzionek K, Nijtmans LGJ, Huynen MA, Holt IJ. TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res 2011; 39:4284-99. [PMID: 21278163 PMCID: PMC3105396 DOI: 10.1093/nar/gkq1224] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Here we show that c17orf42, hereafter TEFM (transcription elongation factor of mitochondria), makes a critical contribution to mitochondrial transcription. Inactivation of TEFM in cells by RNA interference results in respiratory incompetence owing to decreased levels of H- and L-strand promoter-distal mitochondrial transcripts. Affinity purification of TEFM from human mitochondria yielded a complex comprising mitochondrial transcripts, mitochondrial RNA polymerase (POLRMT), pentatricopeptide repeat domain 3 protein (PTCD3), and a putative DEAD-box RNA helicase, DHX30. After RNase treatment only POLRMT remained associated with TEFM, and in human cultured cells TEFM formed foci coincident with newly synthesized mitochondrial RNA. Based on deletion mutants, TEFM interacts with the catalytic region of POLRMT, and in vitro TEFM enhanced POLRMT processivity on ss- and dsDNA templates. TEFM contains two HhH motifs and a Ribonuclease H fold, similar to the nuclear transcription elongation regulator Spt6. These findings lead us to propose that TEFM is a mitochondrial transcription elongation factor.
Collapse
Affiliation(s)
- Michal Minczuk
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cline SD, Lodeiro MF, Marnett LJ, Cameron CE, Arnold JJ. Arrest of human mitochondrial RNA polymerase transcription by the biological aldehyde adduct of DNA, M1dG. Nucleic Acids Res 2010; 38:7546-57. [PMID: 20671026 PMCID: PMC2995074 DOI: 10.1093/nar/gkq656] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The biological aldehydes, malondialdehyde and base propenal, react with DNA to form a prevalent guanine adduct, M1dG. The exocyclic ring of M1dG opens to the acyclic N2-OPdG structure when paired with C but remains closed in single-stranded DNA or when mispaired with T. M1dG is a target of nucleotide excision repair (NER); however, NER is absent in mitochondria. An in vitro transcription system with purified human mitochondrial RNA polymerase (POLRMT) and transcription factors, mtTFA and mtTFB2, was used to determine the effect of M1dG on POLRMT elongation. DNA templates contained a single adduct opposite either C or T downstream of either the light-strand (LSP) or heavy-strand (HSP1) promoter for POLRMT. M1dG in the transcribed strand arrested 60–90% POLRMT elongation complexes with greater arrest by the adduct when opposite T. POLRMT was more sensitive to N2-OPdG and M1dG after initiation at LSP, which suggests promoter-specific differences in the function of POLRMT complexes. A closed-ring analog of M1dG, PdG, blocked ≥95% of transcripts originating from either promoter regardless of base pairing, and the transcripts remained associated with POLRMT complexes after stalling at the adduct. This work suggests that persistent M1dG adducts in mitochondrial DNA hinder the transcription of mitochondrial genes.
Collapse
Affiliation(s)
- Susan D Cline
- Division of Basic Medical Sciences, Mercer University School of Medicine, Mercer, GA 31207, USA.
| | | | | | | | | |
Collapse
|
25
|
Litonin D, Sologub M, Shi Y, Savkina M, Anikin M, Falkenberg M, Gustafsson CM, Temiakov D. Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J Biol Chem 2010; 285:18129-33. [PMID: 20410300 DOI: 10.1074/jbc.c110.128918] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human mitochondrial transcription is driven by a single subunit RNA polymerase and a set of basal transcription factors. The development of a recombinant in vitro transcription system has allowed for a detailed molecular characterization of the individual components and their contribution to transcription initiation. We found that TFAM and TFB2M act synergistically and increase transcription efficiency 100-200-fold as compared with RNA polymerase alone. Both the light-strand promoter (LSP) and the HSP1 promoters displayed maximal levels of in vitro transcription when TFAM was present in an amount equimolar to the DNA template. Importantly, we did not detect any significant transcription activity in the presence of the TFB2M paralog, TFB1M, or when templates containing the putative HSP2 promoter were used. These data confirm previous observations that TFB1M does not function as a bona fide transcription factor and raise questions as to whether HSP2 serves as a functional promoter in vivo. In addition, we did not detect transcription stimulation by the ribosomal protein MRPL12. Thus, only two essential initiation factors, TFAM and TFB2M, and two promoters, LSP and HSP1, are required to drive transcription of the mitochondrial genome.
Collapse
Affiliation(s)
- Dmitry Litonin
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Savkina M, Temiakov D, McAllister WT, Anikin M. Multiple functions of yeast mitochondrial transcription factor Mtf1p during initiation. J Biol Chem 2009; 285:3957-3964. [PMID: 19920143 DOI: 10.1074/jbc.m109.051003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transcription of the yeast mitochondrial genome is carried out by an RNA polymerase (Rpo41p) that is related to single subunit bacteriophage RNA polymerases but requires an additional factor (Mtf1p) for initiation. In this work we show that Mtf1p is involved in multiple roles during initiation including discrimination of upstream base pairs in the promoter, initial melting of three to four base pairs around the site of transcript initiation, and suppression of nonspecific initiation. It, thus, appears that Mtf1p is functionally analogous to initiation factors of multisubunit RNA polymerases, such as sigma. Photocross-linking experiments reveal close proximity between Mtf1p and the promoter DNA and show that the C-terminal domain makes contacts with the template strand in the vicinity of the start site. Interestingly, Mtf1p is related to a class of RNA methyltransferases, suggesting an early evolutionary link between RNA synthesis and processing.
Collapse
Affiliation(s)
- Maria Savkina
- From the Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford Division, Stratford, New Jersey 08084; Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford Division, Stratford, New Jersey 08084
| | - Dmitry Temiakov
- From the Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford Division, Stratford, New Jersey 08084
| | - William T McAllister
- From the Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford Division, Stratford, New Jersey 08084
| | - Michael Anikin
- From the Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford Division, Stratford, New Jersey 08084.
| |
Collapse
|
27
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|