1
|
Chang PK. The Aspergillus flavus hacA Gene in the Unfolded Protein Response Pathway Is a Candidate Target for Host-Induced Gene Silencing. J Fungi (Basel) 2024; 10:719. [PMID: 39452671 PMCID: PMC11508391 DOI: 10.3390/jof10100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Fungal HacA/Hac1 transcription factors play a crucial role in regulating the unfolded protein response (UPR). The UPR helps cells to maintain endoplasmic reticulum (ER) protein homeostasis, which is critical for growth, development, and virulence. The Aspergillus flavus hacA gene encodes a domain rich in basic and acidic amino acids (Bsc) and a basic leucine zipper (bZip) domain, and features a non-conventional intron (Nt20). In this study, CRISPR/Cas9 was utilized to dissect the Bsc-coding, bZip-coding, and Nt20 sequences to elucidate the relationship between genotype and phenotype. In the Bsc and bZip experimental sets, all observed mutations in both coding sequences were in frame, suggesting that out-of-frame mutations are lethal. The survival rate of transformants in the Nt20 experiment set was low, at approximately 7%. Mutations in the intron primarily consisted of out-of-frame insertions and deletions. In addition to the wild-type-like conidial morphology, the mutants exhibited varied colony morphologies, including sclerotial, mixed (conidial and sclerotial), and mycelial morphologies. An ER stress test using dithiothreitol revealed that the sclerotial and mycelial mutants were much more sensitive than the conidial mutants. Additionally, the mycelial mutants were unable to produce aflatoxin but still produced aspergillic acid and kojic acid. RNAi experiments targeting the region encompassing Bsc and bZip indicated that transformant survival rates generally decreased, with a small number of transformants displaying phenotypic changes. Defects in the hacA gene at the DNA and transcript levels affected the survival, growth, and development of A. flavus. Thus, this gene may serve as a promising target for future host-induced gene-silencing strategies aimed at controlling infection and reducing aflatoxin contamination in crops.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Allen Toussaint Boulevard, New Orleans, LA 70124, USA
| |
Collapse
|
2
|
Gorczyca M, Korpys-Woźniak P, Celińska E. An Interplay between Transcription Factors and Recombinant Protein Synthesis in Yarrowia lipolytica at Transcriptional and Functional Levels-The Global View. Int J Mol Sci 2024; 25:9450. [PMID: 39273402 PMCID: PMC11395014 DOI: 10.3390/ijms25179450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Transcriptional regulatory networks (TRNs) associated with recombinant protein (rProt) synthesis in Yarrowia lipolytica are still under-described. Yet, it is foreseen that skillful manipulation with TRNs would enable global fine-tuning of the host strain's metabolism towards a high-level-producing phenotype. Our previous studies investigated the transcriptomes of Y. lipolytica strains overproducing biochemically different rProts and the functional impact of transcription factors (TFs) overexpression (OE) on rProt synthesis capacity in this species. Hence, much knowledge has been accumulated and deposited in public repositories. In this study, we combined both biological datasets and enriched them with further experimental data to investigate an interplay between TFs and rProts synthesis in Y. lipolytica at transcriptional and functional levels. Technically, the RNAseq datasets were extracted and re-analyzed for the TFs' expression profiles. Of the 140 TFs in Y. lipolytica, 87 TF-encoding genes were significantly deregulated in at least one of the strains. The expression profiles were juxtaposed against the rProt amounts from 125 strains co-overexpressing TF and rProt. In addition, several strains bearing knock-outs (KOs) in the TF loci were analyzed to get more insight into their actual involvement in rProt synthesis. Different profiles of the TFs' transcriptional deregulation and the impact of their OE or KO on rProts synthesis were observed, and new engineering targets were pointed.
Collapse
Affiliation(s)
- Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| | - Paulina Korpys-Woźniak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| |
Collapse
|
3
|
Zhu X, Li M, Zhu R, Xin Y, Guo Z, Gu Z, Zhang L, Guo Z. Up Front Unfolded Protein Response Combined with Early Protein Secretion Pathway Engineering in Yarrowia lipolytica to Attenuate ER Stress Caused by Enzyme Overproduction. Int J Mol Sci 2023; 24:16426. [PMID: 38003616 PMCID: PMC10670989 DOI: 10.3390/ijms242216426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Engineering the yeast Yarrowia lipolytica as an efficient host to produce recombinant proteins remains a longstanding goal for applied biocatalysis. During the protein overproduction, the accumulation of unfolded and misfolded proteins causes ER stress and cell dysfunction in Y. lipolytica. In this study, we evaluated the effects of several potential ER chaperones and translocation components on relieving ER stress by debottlenecking the protein synthetic machinery during the production of the endogenous lipase 2 and the E. coli β-galactosidase. Our results showed that improving the activities of the non-dominant translocation pathway (SRP-independent) boosted the production of the two proteins. While the impact of ER chaperones is protein dependent, the nucleotide exchange factor Sls1p for protein folding catalyst Kar2p is recognized as a common contributor enhancing the secretion of the two enzymes. With the identified protein translocation components and ER chaperones, we then exemplified how these components can act synergistically with Hac1p to enhance recombinant protein production and relieve the ER stress on cell growth. Specifically, the yeast overexpressing Sls1p and cytosolic heat shock protein Ssa8p and Ssb1p yielded a two-fold increase in Lip2p secretion compared with the control, while co-overexpressing Ssa6p, Ssb1p, Sls1p and Hac1p resulted in a 90% increase in extracellular β-galp activity. More importantly, the cells sustained a maximum specific growth rate (μmax) of 0.38 h-1 and a biomass yield of 0.95 g-DCW/g-glucose, only slightly lower than that was obtained by the wild type strain. This work demonstrated engineering ER chaperones and translocation as useful strategies to facilitate the development of Y. lipolytica as an efficient protein-manufacturing platform.
Collapse
Affiliation(s)
- Xingyu Zhu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Moying Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Rui Zhu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Xin
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zitao Guo
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013, China;
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Liang Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhongpeng Guo
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
4
|
Ishiwata-Kimata Y, Kimata Y. Fundamental and Applicative Aspects of the Unfolded Protein Response in Yeasts. J Fungi (Basel) 2023; 9:989. [PMID: 37888245 PMCID: PMC10608004 DOI: 10.3390/jof9100989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Upon the dysfunction or functional shortage of the endoplasmic reticulum (ER), namely, ER stress, eukaryotic cells commonly provoke a protective gene expression program called the unfolded protein response (UPR). The molecular mechanism of UPR has been uncovered through frontier genetic studies using Saccharomyces cerevisiae as a model organism. Ire1 is an ER-located transmembrane protein that directly senses ER stress and is activated as an RNase. During ER stress, Ire1 promotes the splicing of HAC1 mRNA, which is then translated into a transcription factor that induces the expression of various genes, including those encoding ER-located molecular chaperones and protein modification enzymes. While this mainstream intracellular UPR signaling pathway was elucidated in the 1990s, new intriguing insights have been gained up to now. For instance, various additional factors allow UPR evocation strictly in response to ER stress. The UPR machineries in other yeasts and fungi, including pathogenic species, are another important research topic. Moreover, industrially beneficial yeast strains carrying an enforced and enlarged ER have been produced through the artificial and constitutive induction of the UPR. In this article, we review canonical and up-to-date insights concerning the yeast UPR, mainly from the viewpoint of the functions and regulation of Ire1 and HAC1.
Collapse
Affiliation(s)
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
5
|
Korpys-Woźniak P, Celińska E. Molecular background of HAC1-driven improvement in the secretion of recombinant protein in Yarrowia lipolytica based on comparative transcriptomics. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00801. [PMID: 37234569 PMCID: PMC10206436 DOI: 10.1016/j.btre.2023.e00801] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023]
Abstract
While the unfolded protein response (UPR) and its major regulator - transcription factor Hac1 are well-conserved across Eukarya, species-specific variations are repeatedly reported. Here we investigated molecular mechanisms by which co-over-expression of HAC1 improves secretion of a recombinant protein (r-Prot) in Yarrowia lipolytica, using comparative transcriptomics. Co-over-expression of HAC1 caused an >2-fold increase in secreted r-Prot, but its intracellular levels were decreased. The unconventional splicing rate of the HAC1 mRNA was counted through transcript sequencing. Multiple biological processes were affected in the HAC1-and-r-Prot co-over-expressing strain, including ribosome biogenesis, nuclear and mitochondrial events, cell cycle arrest, attenuation of gene expression by RNA polymerase III and II, as well as modulation of proteolysis and RNA metabolism; but whether the HAC1 co-over-expression/induction was the actual causative agent for these changes, was not always clear. We settled that the expression of the "conventional" HAC1 targets (KAR2 and PDI1) is not affected by its over-expression.
Collapse
|
6
|
Does Saccharomyces cerevisiae Require Specific Post-Translational Silencing against Leaky Translation of Hac1up? Microorganisms 2021; 9:microorganisms9030620. [PMID: 33802931 PMCID: PMC8002603 DOI: 10.3390/microorganisms9030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/24/2022] Open
Abstract
HAC1 encodes a key transcription factor that transmits the unfolded protein response (UPR) from the endoplasmic reticulum (ER) to the nucleus and regulates downstream UPR genes in Saccharomyces cerevisiae. In response to the accumulation of unfolded proteins in the ER, Ire1p oligomers splice HAC1 pre-mRNA (HAC1u) via a non-conventional process and allow the spliced HAC1 (HAC1i) to be translated efficiently. However, leaky splicing and translation of HAC1u may occur in non-UPR cells to induce undesirable UPR. To control accidental UPR activation, multiple fail-safe mechanisms have been proposed to prevent leaky HAC1 splicing and translation and to facilitate rapid degradation of translated Hac1up and Hac1ip. Among proposed regulatory mechanisms is a degron sequence encoded at the 5′ end of the HAC1 intron that silences Hac1up expression. To investigate the necessity of an intron-encoded degron sequence that specifically targets Hac1up for degradation, we employed publicly available transcriptomic data to quantify leaky HAC1 splicing and translation in UPR-induced and non-UPR cells. As expected, we found that HAC1u is only efficiently spliced into HAC1i and efficiently translated into Hac1ip in UPR-induced cells. However, our analysis of ribosome profiling data confirmed frequent occurrence of leaky translation of HAC1u regardless of UPR induction, demonstrating the inability of translation fail-safe to completely inhibit Hac1up production. Additionally, among 32 yeast HAC1 surveyed, the degron sequence is highly conserved by Saccharomyces yeast but is poorly conserved by all other yeast species. Nevertheless, the degron sequence is the most conserved HAC1 intron segment in yeasts. These results suggest that the degron sequence may indeed play an important role in mitigating the accumulation of Hac1up to prevent accidental UPR activation in the Saccharomyces yeast.
Collapse
|
7
|
Bitencourt TA, Lang EAS, Sanches PR, Peres NTA, Oliveira VM, Fachin AL, Rossi A, Martinez-Rossi NM. HacA Governs Virulence Traits and Adaptive Stress Responses in Trichophyton rubrum. Front Microbiol 2020; 11:193. [PMID: 32153523 PMCID: PMC7044415 DOI: 10.3389/fmicb.2020.00193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
The ability of fungi to sense environmental stressors and appropriately respond is linked to secretory system functions. The dermatophyte infection process depends on an orchestrated signaling regulation that triggers the transcription of genes responsible for adherence and penetration of the pathogen into host-tissue. A high secretion system is activated to support the host-pathogen interaction and assures maintenance of the dermatophyte infection. The gateway of secretion machinery is the endoplasmic reticulum (ER), which is the primary site for protein folding and transport. Current studies have shown that ER stress that affects adaptive responses is primarily regulated by UPR and supports fungal pathogenicity; this has been assessed for yeasts and Aspergillus fumigatus, in regard to how these fungi cope with host environmental stressors. Fungal UPR consists of a transmembrane kinase sensor (Ire1/IreA) and a downstream target Hac1/HacA. The active form of Hac is achieved via non-spliceosomal intron removal promoted by endonuclease activity of Ire1/IreA. Here, we assessed features of HacA and its involvement in virulence and susceptibility in Trichophyton rubrum. Our results showed that exposure to antifungals and ER-stressing agents initiated the activation of HacA from T. rubrum. Interestingly, the activation occurs when a 20 nt fragment is removed from part of the exon-2 and part of intron-2, which in turn promotes the arisen of the DNA binding site motif and a dimer interface domain. Further, we found changes in the cell wall and cellular membrane composition in the ΔhacA mutant as well as an increase in susceptibility toward azole and cell wall disturbing agents. Moreover, the ΔhacA mutant presented significant defects in important virulence traits like thermotolerance and growth on keratin substrates. For instance, the development of the ΔhacA mutant was impaired in co-culture with keratinocytes or human nail fragments. Changes in the pro-inflammatory cytokine release were verified for the ΔhacA mutant during the co-culture assay, which might be related to differences in pathogen-associated molecular patterns (PAMPs) in the cell wall. Together, these results suggested that HacA is an integral part of T. rubrum physiology and virulence, implying that it is an important molecular target for antidermatophytic therapy.
Collapse
Affiliation(s)
- Tamires A. Bitencourt
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Elza A. S. Lang
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pablo R. Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Nalu T. A. Peres
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanderci M. Oliveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana Lúcia Fachin
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Zhou Q, Su Z, Jiao L, Wang Y, Yang K, Li W, Yan Y. High-Level Production of a Thermostable Mutant of Yarrowia lipolytica Lipase 2 in Pichia pastoris. Int J Mol Sci 2019; 21:ijms21010279. [PMID: 31906187 PMCID: PMC6982173 DOI: 10.3390/ijms21010279] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 11/16/2022] Open
Abstract
As a promising biocatalyst, Yarrowia lipolytica lipase 2 (YlLip2) is limited in its industrial applications due to its low thermostability. In this study, a thermostable YlLip2 mutant was overexpressed in Pichia pastoris and its half-life time was over 30 min at 80 °C. To obtain a higher protein secretion level, the gene dosage of the mutated lip2 gene was optimized and the lipase activity was improved by about 89%. Then, the YlLip2 activity of the obtained strain further increased from 482 to 1465 U/mL via optimizing the shaking flask culture conditions. Subsequently, Hac1p and Vitreoscilla hemoglobin (VHb) were coexpressed with the YlLip2 mutant to reduce the endoplasmic reticulum stress and enhance the oxygen uptake efficiency in the recombinant strains, respectively. Furthermore, high-density fermentations were performed in a 3 L bioreactor and the production of the YlLip2 mutant reached 9080 U/mL. The results demonstrated that the expression level of the thermostable YlLip2 mutant was predominantly enhanced via the combination of these strategies in P. pastoris, which forms a consolidated basis for its large-scale production and future industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunjun Yan
- Correspondence: ; Tel.: +86-27-8779-2213
| |
Collapse
|
9
|
Xia X. Translation Control of HAC1 by Regulation of Splicing in Saccharomyces cerevisiae. Int J Mol Sci 2019; 20:ijms20122860. [PMID: 31212749 PMCID: PMC6627864 DOI: 10.3390/ijms20122860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Hac1p is a key transcription factor regulating the unfolded protein response (UPR) induced by abnormal accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. The accumulation of unfolded/misfolded proteins is sensed by protein Ire1p, which then undergoes trans-autophosphorylation and oligomerization into discrete foci on the ER membrane. HAC1 pre-mRNA, which is exported to the cytoplasm but is blocked from translation by its intron sequence looping back to its 5’UTR to form base-pair interaction, is transported to the Ire1p foci to be spliced, guided by a cis-acting bipartite element at its 3’UTR (3’BE). Spliced HAC1 mRNA can be efficiently translated. The resulting Hac1p enters the nucleus and activates, together with coactivators, a large number of genes encoding proteins such as protein chaperones to restore and maintain ER homeostasis and secretary protein quality control. This review details the translation regulation of Hac1p production, mediated by the nonconventional splicing, in the broad context of translation control and summarizes the evolution and diversification of the UPR signaling pathway among fungal, metazoan and plant lineages.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 9A7, Canada.
| |
Collapse
|
10
|
Vandermies M, Fickers P. Bioreactor-Scale Strategies for the Production of Recombinant Protein in the Yeast Yarrowia lipolytica. Microorganisms 2019; 7:E40. [PMID: 30704141 PMCID: PMC6406515 DOI: 10.3390/microorganisms7020040] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/02/2023] Open
Abstract
Recombinant protein production represents a multibillion-dollar market. Therefore, it constitutes an important research field both in academia and industry. The use of yeast as a cell factory presents several advantages such as ease of genetic manipulation, growth at high cell density, and the possibility of post-translational modifications. Yarrowia lipolytica is considered as one of the most attractive hosts due to its ability to metabolize raw substrate, to express genes at a high level, and to secrete protein in large amounts. In recent years, several reviews have been dedicated to genetic tools developed for this purpose. Though the construction of efficient cell factories for recombinant protein synthesis is important, the development of an efficient process for recombinant protein production in a bioreactor constitutes an equally vital aspect. Indeed, a sports car cannot drive fast on a gravel road. The aim of this review is to provide a comprehensive snapshot of process tools to consider for recombinant protein production in bioreactor using Y. lipolytica as a cell factory, in order to facilitate the decision-making for future strain and process engineering.
Collapse
Affiliation(s)
- Marie Vandermies
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, University of Liège⁻Gembloux AgroBio Tech, 5030 Gembloux, Belgium.
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, University of Liège⁻Gembloux AgroBio Tech, 5030 Gembloux, Belgium.
| |
Collapse
|
11
|
Abstract
The unfolded protein response (UPR) responds to the build-up of misfolded proteins in the endoplasmic reticulum. The UPR has wide-ranging functions from fungal pathogenesis to applications in biotechnology. The UPR is regulated through the splicing of an unconventional intron in the HAC1 gene. This intron has been described in many fungal species and is of variable length. Until now it was believed that some members of the CTG-Ser1 clade such as C. parapsilosis did not contain an intron in HAC1, suggesting that the UPR was regulated in a different manner. Here we demonstrate that HAC1 plays an important role in regulating the UPR in C. parapsilosis. We also identified an unusually long intron (626 bp) in C. parapsilosisHAC1. Further analysis showed that HAC1 orthologs in several species in the CTG-Ser1 clade contain long introns. The unfolded protein response (UPR) in the endoplasmic reticulum (ER) is well conserved in eukaryotes from metazoa to yeast. The transcription factor HAC1 is a major regulator of the UPR in many eukaryotes. Deleting HAC1 in the yeast Candida parapsilosis rendered cells more sensitive to DTT, a known inducer of the UPR. The deletion strain was also sensitive to Congo red, calcofluor white, and the antifungal drug ketoconazole, indicating that HAC1 has a role in cell wall maintenance. Transcriptomic analysis revealed that treatment of the wild type with DTT resulted in the increased expression of 368 genes. Comparison with mutant cells treated with DTT reveals that expression of 137 of these genes requires HAC1. Enriched GO term analysis includes response to ER stress, cell wall biogenesis and glycosylation. Orthologs of many of these are associated with UPR in Saccharomyces cerevisiae and Candida albicans. Unconventional splicing of an intron from HAC1 mRNA is required to produce a functional transcription factor. The spliced intron varies in length from 19 bases in C. albicans to 379 bases in Candida glabrata, but has not been previously identified in Candida parapsilosis and related species. We used RNA-seq data and in silico analysis to identify the HAC1 intron in 12 species in the CTG-Ser1 clade. We show that the intron has undergone major contractions and expansions in this clade, reaching up to 848 bases. Exposure to DTT induced splicing of the long intron in C. parapsilosisHAC1, inducing the UPR. IMPORTANCE The unfolded protein response (UPR) responds to the build-up of misfolded proteins in the endoplasmic reticulum. The UPR has wide-ranging functions from fungal pathogenesis to applications in biotechnology. The UPR is regulated through the splicing of an unconventional intron in the HAC1 gene. This intron has been described in many fungal species and is of variable length. Until now it was believed that some members of the CTG-Ser1 clade such as C. parapsilosis did not contain an intron in HAC1, suggesting that the UPR was regulated in a different manner. Here we demonstrate that HAC1 plays an important role in regulating the UPR in C. parapsilosis. We also identified an unusually long intron (626 bp) in C. parapsilosisHAC1. Further analysis showed that HAC1 orthologs in several species in the CTG-Ser1 clade contain long introns.
Collapse
|
12
|
Hansenula polymorpha Hac1p Is Critical to Protein N-Glycosylation Activity Modulation, as Revealed by Functional and Transcriptomic Analyses. Appl Environ Microbiol 2015; 81:6982-93. [PMID: 26231645 DOI: 10.1128/aem.01440-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/23/2015] [Indexed: 12/13/2022] Open
Abstract
Aggregation of misfolded protein in the endoplasmic reticulum (ER) induces a cellular protective response to ER stress, the unfolded protein response (UPR), which is mediated by a basic leucine zipper (bZIP) transcription factor, Hac1p/Xbp1. In this study, we identified and studied the molecular functions of a HAC1 homolog from the thermotolerant yeast Hansenula polymorpha (HpHAC1). We found that the HpHAC1 mRNA contains a nonconventional intron of 177 bp whose interaction with the 5' untranslated region is responsible for the translational inhibition of the HpHAC1 mRNA. The H. polymorpha hac1-null (Hphac1Δ) mutant strain grew slowly, even under normal growth conditions, and was less thermotolerant than the wild-type (WT) strain. The mutant strain was also more sensitive to cell wall-perturbing agents and to the UPR-inducing agents dithiothreitol (DTT) and tunicamycin (TM). Using comparative transcriptome analysis of the WT and Hphac1Δ strains treated with DTT and TM, we identified HpHAC1-dependent core UPR targets, which included genes involved in protein secretion and processing, particularly those required for N-linked protein glycosylation. Notably, different glycosylation and processing patterns of the vacuolar glycoprotein carboxypeptidase Y were observed in the WT and Hphac1Δ strains. Moreover, overexpression of active HpHac1p significantly increased the N-linked glycosylation efficiency and TM resistance. Collectively, our results suggest that the function of HpHac1p is important not only for UPR induction but also for efficient glycosylation in H. polymorpha.
Collapse
|
13
|
Abstract
The gateway to the secretory pathway is the endoplasmic reticulum (ER), an organelle that is responsible for the accurate folding, post-translational modification and final assembly of up to a third of the cellular proteome. When secretion levels are high, errors in protein biogenesis can lead to the accumulation of abnormally folded proteins, which threaten ER homeostasis. The unfolded protein response (UPR) is an adaptive signaling pathway that counters a buildup in misfolded and unfolded proteins by increasing the expression of genes that support ER protein folding capacity. Fungi, like other eukaryotic cells that are specialized for secretion, rely upon the UPR to buffer ER stress caused by fluctuations in secretory demand. However, emerging evidence is also implicating the UPR as a central regulator of fungal pathogenesis. In this review, we discuss how diverse fungal pathogens have adapted ER stress response pathways to support the expression of virulence-related traits that are necessary in the host environment.
Collapse
Affiliation(s)
- Karthik Krishnan
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267-0529
| | - David S Askew
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267-0529
| |
Collapse
|
14
|
Guerfal M, Claes K, Knittelfelder O, De Rycke R, Kohlwein SD, Callewaert N. Enhanced membrane protein expression by engineering increased intracellular membrane production. Microb Cell Fact 2013; 12:122. [PMID: 24321035 PMCID: PMC3878919 DOI: 10.1186/1475-2859-12-122] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/03/2013] [Indexed: 01/22/2023] Open
Abstract
Background Membrane protein research is frequently hampered by the low natural abundance of these proteins in cells and typically relies on recombinant gene expression. Different expression systems, like mammalian cells, insect cells, bacteria and yeast are being used, but very few research efforts have been directed towards specific host cell customization for enhanced expression of membrane proteins. Here we show that by increasing the intracellular membrane production by interfering with a key enzymatic step of lipid synthesis, enhanced expression of membrane proteins in yeast is achieved. Results We engineered the oleotrophic yeast, Yarrowia lipolytica, by deleting the phosphatidic acid phosphatase, PAH1, which led to massive proliferation of endoplasmic reticulum (ER) membranes. For all eight tested representatives of different integral membrane protein families, we obtained enhanced protein accumulation levels and in some cases enhanced proteolytic integrity in the ∆pah1 strain. We analysed the adenosine A2AR G-protein coupled receptor case in more detail and found that concomitant induction of the unfolded protein response in the ∆pah1 strain enhanced the specific ligand binding activity of the receptor. These data indicate an improved quality control mechanism for membrane proteins accumulating in yeast cells with proliferated ER. Conclusions We conclude that redirecting the metabolic flux of fatty acids away from triacylglycerol- and sterylester-storage towards membrane phospholipid synthesis by PAH1 gene inactivation, provides a valuable approach to enhance eukaryotic membrane protein production. Complementary to this improvement in membrane protein quantity, UPR co-induction further enhances the quality of the membrane protein in terms of its proper folding and biological activity. Importantly, since these pathways are conserved in all eukaryotes, it will be of interest to investigate similar engineering approaches in other cell types of biotechnological interest, such as insect cells and mammalian cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Nico Callewaert
- Department for Molecular Biomedical Research, Unit for Medical Biotechnology, VIB, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
15
|
Cheon SA, Jung KW, Bahn YS, Kang HA. The unfolded protein response (UPR) pathway in Cryptococcus. Virulence 2013; 5:341-50. [PMID: 24504058 DOI: 10.4161/viru.26774] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Unique and evolutionarily conserved signaling pathways allow an organism to sense, respond to, and adapt to internal and external environmental cues at its biological niche. In eukaryotic cells, the unfolded protein response (UPR) pathway regulates endoplasmic reticulum (ER) homeostasis upon exposure to environmental changes causing ER stress. The UPR pathway of Cryptococcus neoformans, an opportunistic fungal pathogen, which causes life-threatening meningoencephalitis in immunocompromised individuals, consists of the evolutionarily conserved Ire1 kinase, a unique bZIP transcription factor, Hxl1, and the ER-resident molecular chaperone Kar2/BiP. Although the Cryptococcus UPR pathway regulates ER stress, antifungal drug resistance, and virulence in an Ire1/Hxl1-dependent manner, Ire1 has Hxl1-independent roles in capsule biosynthesis and thermotolerance. In this review, we highlight the conserved and unique features of the Cryptococcus UPR pathway compared with other fungal UPR systems and its importance in the pathogenesis of cryptococcosis and discuss future challenges in this field.
Collapse
Affiliation(s)
- Seon Ah Cheon
- Department of Life Science; Research Center for Biomolecules and Biosystems; College of Natural Science; Chung-Ang University; Seoul, Korea; Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul, Korea
| | - Kwang-Woo Jung
- Department of Biotechnology; Center for Fungal Pathogenesis; Yonsei University; Seoul, Korea
| | - Yong-Sun Bahn
- Department of Biotechnology; Center for Fungal Pathogenesis; Yonsei University; Seoul, Korea
| | - Hyun Ah Kang
- Department of Life Science; Research Center for Biomolecules and Biosystems; College of Natural Science; Chung-Ang University; Seoul, Korea
| |
Collapse
|
16
|
Evolution of the unfolded protein response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2458-63. [PMID: 23369734 DOI: 10.1016/j.bbamcr.2013.01.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/07/2013] [Accepted: 01/13/2013] [Indexed: 01/05/2023]
Abstract
The unfolded protein response (UPR) is a network of signaling pathways that responds to stress in the endoplasmic reticulum (ER). The general output of the UPR is to upregulate genes involved in ER function, thus restoring and/or increasing the capacity of the ER to fold and process proteins. In parallel, many organisms have mechanisms for limiting the load on the ER by attenuating translation or degrading ER-targeted mRNAs. Despite broad conservation of these signaling pathways across eukaryotes, interesting variations demonstrate a variety of mechanisms for managing ER stress. How do early-diverging protozoa respond to stress when they lack traditional transcriptional regulation? What is the role of the ER stress sensor Ire1 in fungal species that are missing its main target? Here I describe how diverse species have optimized the UPR to fit their needs. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
17
|
Miyazaki T, Nakayama H, Nagayoshi Y, Kakeya H, Kohno S. Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata. PLoS Pathog 2013; 9:e1003160. [PMID: 23382685 PMCID: PMC3561209 DOI: 10.1371/journal.ppat.1003160] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022] Open
Abstract
Proper protein folding in the endoplasmic reticulum (ER) is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR), is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata.
Collapse
Affiliation(s)
- Taiga Miyazaki
- Department of Molecular Microbiology and Immunology, Nagasaki University School of Medicine, Nagasaki, Japan.
| | | | | | | | | |
Collapse
|
18
|
Ogrydziak DM, Nicaud JM. Characterization of Yarrowia lipolytica XPR2 multi-copy strains over-producing alkaline extracellular protease - a system for rapidly increasing secretory pathway cargo loads. FEMS Yeast Res 2012; 12:938-48. [PMID: 22909173 DOI: 10.1111/j.1567-1364.2012.00846.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 01/07/2023] Open
Abstract
Upon transfer to alkaline extracellular protease (AEP) induction medium, strain 773-2 (50 integrated copies of XPR2), derived from highly inbred strain E129, grew for at least 10 h before AEP production began, and then growth rate decreased before increasing again; by then, cells had lost copies of XPR2 (Le Dall et al., 1994). Slowing of growth following AEP induction suggested that increased secretory pathway cargo load was affecting cell growth and that such a system had potential for secretion stress studies. Development of W29-derived XPR2 multi-copy strains and improved AEP induction conditions realized this potential. AEP production was sixfold higher than for 773-2. Rapid AEP induction and slowing of growth by 3 h minimized loss of XPR2 gene copies. Two strains, examined in more detail, differed in initial AEP productivity, extent of slowing of growth during AEP induction, and subsequent recovery of growth rate and AEP productivity demonstrating that the system provides a range of secretion stresses and ensuing adaptations. W29-derived strains should be more 'wild type' than 773-2 for secretory pathway components and their regulation. They should provide an excellent system for kinetic analysis of gene expression responses to acute increases in secretory pathway cargo load.
Collapse
Affiliation(s)
- David M Ogrydziak
- Department of Food Science and Technology, University of California, Davis, USA.
| | | |
Collapse
|
19
|
Kabran P, Rossignol T, Gaillardin C, Nicaud JM, Neuvéglise C. Alternative splicing regulates targeting of malate dehydrogenase in Yarrowia lipolytica. DNA Res 2012; 19:231-44. [PMID: 22368181 PMCID: PMC3372373 DOI: 10.1093/dnares/dss007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. The splicing pattern was found to govern the cellular localization of malate dehydrogenase, an enzyme of the central carbon metabolism. This ubiquitous enzyme is involved in the tricarboxylic acid cycle in mitochondria and in the glyoxylate cycle, which takes place in peroxisomes and the cytosol. In Saccharomyces cerevisiae, three genes encode three compartment-specific enzymes. In contrast, only two genes exist in Y. lipolytica. One gene (YlMDH1, YALI0D16753g) encodes a predicted mitochondrial protein, whereas the second gene (YlMDH2, YALI0E14190g) generates the cytosolic and peroxisomal forms through the alternative use of two 3'-splice sites in the second intron. Both splicing variants were detected in cDNA libraries obtained from cells grown under different conditions. Mutants expressing the individual YlMdh2p isoforms tagged with fluorescent proteins confirmed that they localized to either the cytosolic or the peroxisomal compartment.
Collapse
|
20
|
Cheon SA, Jung KW, Chen YL, Heitman J, Bahn YS, Kang HA. Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hxl1, for controlling pathogenicity of Cryptococcus neoformans. PLoS Pathog 2011; 7:e1002177. [PMID: 21852949 PMCID: PMC3154848 DOI: 10.1371/journal.ppat.1002177] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/07/2011] [Indexed: 01/23/2023] Open
Abstract
In eukaryotic cells, the unfolded protein response (UPR) pathway plays a crucial role in cellular homeostasis of the endoplasmic reticulum (ER) during exposure to diverse environmental conditions that cause ER stress. Here we report that the human fungal pathogen Cryptococcus neoformans has evolved a unique UPR pathway composed of an evolutionarily conserved Ire1 protein kinase and a novel bZIP transcription factor encoded by HXL1 (HAC1 and XBP1-Like gene 1). C. neoformans HXL1 encodes a protein lacking sequence homology to any known fungal or mammalian Hac1/Xbp1 protein yet undergoes the UPR-induced unconventional splicing in an Ire1-dependent manner upon exposure to various stresses. The structural organization of HXL1 and its unconventional splicing is widely conserved in C. neoformans strains of divergent serotypes. Notably, both C. neoformans ire1 and hxl1 mutants exhibited extreme growth defects at 37°C and hypersensitivity to ER stress and cell wall destabilization. All of the growth defects of the ire1 mutant were suppressed by the spliced active form of Hxl1, supporting that HXL1 mRNA is a downstream target of Ire1. Interestingly, however, the ire1 and hxl1 mutants showed differences in thermosensitivity, expression patterns for a subset of genes, and capsule synthesis, indicating that Ire1 has both Hxl1-dependent and -independent functions in C. neoformans. Finally, Ire1 and Hxl1 were shown to be critical for virulence of C. neoformans, suggesting UPR signaling as a novel antifungal therapeutic target. The unfolded protein response (UPR) is a widely conserved signaling pathway in eukaryotic cells and protects cells from the ER stress causing accumulation of toxic unfolded or misfolded proteins. Nevertheless, the UPR pathway has been poorly exploited as a therapeutic target for treatment of eukaryotic fungal pathogens, mainly due to its evolutionarily conserved features. The present study reports unique evolution of the UPR pathway in the basidiomycetous human fungal pathogen, Cryptococcus neoformans, which causes life-threatening meningoencephalitis in both immunocompromised and immunocompetent individuals. Here, for the first time we identified and characterized the C. neoformans UPR pathway, which is composed of an evolutionarily conserved and a distinct signaling component, an ER stress sensor Ire1 and its downstream bZIP transcription factor Hxl1, respectively. Intriguingly, Cryptococcus Hxl1 is very divergent from yeast Hac1 and human Xbp1, but subject to Ire1-mediated unconventional splicing. The Ire1-Hxl1-dependent UPR pathway functions not only in the major response to ER stress, but also plays critical roles in controlling cell wall integrity, growth at host physiological temperature, antifungal drug susceptibility, and virulence of C. neoformans. Therefore we propose Hxl1 is an ideal target for antifungal drug development, based on its marked divergence from the host Xbp1 transcription factor.
Collapse
Affiliation(s)
- Seon Ah Cheon
- Department of Life Science, Research Center for Biomolecules and Biosystems, College of Natural Science, Chung-Ang University, Seoul, Korea
- Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Kwang-Woo Jung
- Department of Biotechnology, Center for Fungal Pathogenesis, Yonsei University, Seoul, Korea
| | - Ying-Lien Chen
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yong-Sun Bahn
- Department of Biotechnology, Center for Fungal Pathogenesis, Yonsei University, Seoul, Korea
- * E-mail: (YSB); (HAK)
| | - Hyun Ah Kang
- Department of Life Science, Research Center for Biomolecules and Biosystems, College of Natural Science, Chung-Ang University, Seoul, Korea
- * E-mail: (YSB); (HAK)
| |
Collapse
|
21
|
Hooks KB, Griffiths-Jones S. Conserved RNA structures in the non-canonical Hac1/Xbp1 intron. RNA Biol 2011; 8:552-6. [PMID: 21593604 DOI: 10.4161/rna.8.4.15396] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The unconventional splicing of Hac1 by the ribonuclease Ire1 is a key event in the activation of the unfolded protein response (UPR) in Saccharomyces cerevisiae. This splicing is independent of the spliceosome and is mediated by a secondary structure at the intron-exon boundaries of the mRNA. Similar unconventional splicing was also described for the gene Xbp1 in human, mouse, C. elegans and D. melanogaster, and for Hac1 in five other fungi. We used reported RNA structures to build a multiple sequence alignment and the Infernal package to search for homologous structures. We identified homologous non-canonical intron structures in 128 out of 156 searched eukaryotic genomes. Our results show that the sequence of the Hac1/Xbp1 intron is highly conserved only around the splice sites recognized by Ire1. The consensus structure of the Hac1/Xbp1 mRNA is well conserved in Fungi and Metazoa and resembles structures previously described. We show that a typical Hac1/Xbp1 intron is very short, only 20-26 bases, whereas yeast species have a long intron (> 100 bases). We identified six species with unambiguous Hac1/Xbp1 homologs that have lost the non-canonical intron structure. We propose that these species use a different mechanism to regulate the UPR.
Collapse
|
22
|
Dragosits M, Mattanovich D, Gasser B. Induction and measurement of UPR and osmotic stress in the yeast Pichia pastoris. Methods Enzymol 2011; 489:165-88. [PMID: 21266230 DOI: 10.1016/b978-0-12-385116-1.00010-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Unfolded protein response (UPR) is a major reaction to intrinsic stress of eukaryotic organisms and is also related to environmental stress reactions. Among yeasts, stress regulation has mainly been investigated in Saccharomyces cerevisiae, while other species with biotechnological or medical interest are less well understood. Pichia pastoris as one example has emerged as a favorite production platform for recombinant proteins during the last two decades. UPR and environmental stress are well known to interfere with the production of recombinant proteins as well as other technologically relevant processes, so that the demand for well-documented protocols to measure such stress reactions has strongly increased. Here, we describe protocols for the induction of UPR and osmotic stress, as well as for the quantitative measurement of cellular stress reactions at the levels of transcripts, proteins, and metabolites. As such protocols need to be adapted for a new species of interest, the guidelines presented here should enable researchers to study P. pastoris directly without the hassle to modify standard protocols designed for the model organism S. cerevisiae first.
Collapse
Affiliation(s)
- Martin Dragosits
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
23
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|