Wawiórka L, Krokowski D, Gordiyenko Y, Krowarsch D, Robinson CV, Adam I, Grankowski N, Tchórzewski M. In vivo formation of Plasmodium falciparum ribosomal stalk - a unique mode of assembly without stable heterodimeric intermediates.
Biochim Biophys Acta Gen Subj 2014;
1850:150-8. [PMID:
25450178 DOI:
10.1016/j.bbagen.2014.10.015]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/19/2014] [Accepted: 10/15/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND
The ribosomal stalk composed of P-proteins constitutes a structure on the large ribosomal particle responsible for recruitment of translation factors and stimulation of factor-dependent GTP hydrolysis during translation. The main components of the stalk are P-proteins, which form a pentamer. Despite the conserved basic function of the stalk, the P-proteins do not form a uniform entity, displaying heterogeneity in the primary structure across the eukaryotic lineage. The P-proteins from protozoan parasites are among the most evolutionarily divergent stalk proteins.
METHODS
We have assembled P-stalk complex of Plasmodium falciparum in vivo in bacterial system using tricistronic expression cassette and provided its characteristics by biochemical and biophysical methods.
RESULTS
All three individual P-proteins, namely uL10/P0, P1 and P2, are indispensable for acquisition of a stable structure of the P stalk complex and the pentameric uL10/P0-(P1-P2)₂form represents the most favorable architecture for parasite P-proteins.
CONCLUSION
The formation of P. falciparum P-stalk is driven by trilateral interaction between individual elements which represents unique mode of assembling, without stable P1-P2 heterodimeric intermediate.
GENERAL SIGNIFICANCE
On the basis of our mass-spectrometry analysis supported by the bacterial two-hybrid assay and biophysical analyses, a unique pathway of the parasite stalk assembling has been proposed. We suggest that the absence of P1/P2 heterodimer, and the formation of a stable pentamer in the presence of all three proteins, indicate a one-step formation to be the main pathway for the vital ribosomal stalk assembly, whereas the P2 homo-oligomer may represent an off-pathway product with physiologically important nonribosomal role.
Collapse