1
|
Jiang J, Fang G, Wu C, Wang P, Zhang Y, Zhang C, Wu F, Shan Z, Liu Q, Liu X. The Addition of Glutamine Enhances the Quality of Huangjiu by Modifying the Assembly and Metabolic Activities of Microorganisms during the Fermentation Process. Foods 2024; 13:2833. [PMID: 39272598 PMCID: PMC11395270 DOI: 10.3390/foods13172833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, the effects of adding glutamate (Glu), glutamine (Gln), aspartate (Asp), and asparagine (Asn) on the flavor formation of Huangjiu were investigated, and the effect of Gln concentration on the quality, microbial community structure, and flavor development of Huangjiu was further explored. Varied Gln concentrations influenced yeast growth, sugar utilization, microbial communities, and quality attributes. Additional Gln promoted yeast cell counts and sugar depletion. It increased the complexity of bacterial co-occurrence networks and reduced the impact of stochastic processes on assembly. Correlation analysis linked microorganisms to flavor compounds. Isolation experiments verified the role of Saccharomyces cerevisiae, Aspergillus chevalieri, Bacillus altitudinis, and Lactobacillus coryniformis in flavor production under Gln conditions. This research elucidated the microbiological mechanisms by which amino acid supplementation, especially Gln, enhances Huangjiu quality by modulating microbial metabolic functions and community dynamics during fermentation. This research is significant for guiding the production of Huangjiu and enhancing its quality.
Collapse
Affiliation(s)
- Jiajia Jiang
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Guanyu Fang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Changling Wu
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Peng Wang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Yongzhu Zhang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Cheng Zhang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Fenghua Wu
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Zhichu Shan
- Zhejiang Pagoda Brand Shaoxing Rice Wine Co., Ltd., Shaoxing 312000, China
| | - Qingru Liu
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Xingquan Liu
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| |
Collapse
|
2
|
Pereira ED, Moreira TR, Cruz-Leite VRM, Tomazett MV, Souza Silva LO, Graziani D, Martins JA, Amaral AC, Weber SS, Parente-Rocha JA, Soares CMDA, Borges CL. Paracoccidioides lutzii Infects Galleria mellonella Employing Formamidase as a Virulence Factor. PLoS Negl Trop Dis 2024; 18:e0012452. [PMID: 39226308 PMCID: PMC11398694 DOI: 10.1371/journal.pntd.0012452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
The formamidase (FMD) enzyme plays an important role in fungal thriving by releasing a secondary nitrogen source as a product of its activity. In Paracoccidioides species, previous studies have demonstrated the upregulation of this enzyme in a wide range of starvation and infective-like conditions. However, Paracoccidioides lutzii formamidase has not yet been defined as a virulence factor. Here, by employing in vivo infections using an fmd-silenced strain in Galleria mellonella larvae model, we demonstrate the influence of formamidase in P. lutzii's immune stimulation and pathogenicity. The formamidase silencing resulted in improper arrangement of the nodules, poor melanogenesis and decreased fungal burden. Thus, we suggest that formamidase may be a piece composing the process of molecular recognition by Galleria immune cells. Furthermore, formamidase silencing doubled the observed survival rate of the larvae, demonstrating its importance in fungal virulence in vivo. Therefore, our findings indicate that formamidase contributes to Galleria's immune incitement and establishes the role of this enzyme as a P. lutzii virulence factor.
Collapse
Affiliation(s)
- Elisa Dias Pereira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Thalison Rodrigues Moreira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | | | - Mariana Vieira Tomazett
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Lana O'Hara Souza Silva
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Daniel Graziani
- Multiuser Laboratory for the Evaluation of Molecules, Cells and Tissues, Federal University of Goiás, Goiânia, Brazil
| | - Juliana Assis Martins
- Laboratory of Nano&Biotechnology, Department of Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - André Corrêa Amaral
- Laboratory of Nano&Biotechnology, Department of Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Simone Schneider Weber
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Juliana Alves Parente-Rocha
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Célia Maria de Almeida Soares
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Clayton Luiz Borges
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
3
|
Yuan H, Wu Z, Liu H, He X, Liao Z, Luo W, Li L, Yin L, Wu F, Zhang L, Shen C, Wang S, Li J, Li T, Lou K. Screening, identification, and characterization of molds for brewing rice wine: Scale-up production in a bioreactor. PLoS One 2024; 19:e0300213. [PMID: 38954729 PMCID: PMC11218956 DOI: 10.1371/journal.pone.0300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/23/2024] [Indexed: 07/04/2024] Open
Abstract
Rice wine, well known for its unique flavor, rich nutritional value, and health benefits, has potential for extensive market development. Rhizopus and Aspergillus are among several microorganisms used in rice wine brewing and are crucial for determining rice wine quality. The strains were isolated via Rose Bengal and starch as a combined separation medium, followed by oenological property and sensory evaluation screening. The strain exhibiting the best performance can be screened using the traditional rice wine Qu. The strains YM-8, YM-10, and YM-16, which exhibited strong saccharification and fermentation performance along with good flavor and taste, were obtained from traditional rice wine Qu. Based on ITS genetic sequence analysis, the YM-8, YM-10, and YM-16 strains were identified as Rhizopus microsporus, Rhizopus arrhizus, and Aspergillus oryzae. The optimum growth temperature of each of the three strains was 30°C, 32°C, and 30°C, and the optimum initial pH was 6.0, 6.5, and 6.5, respectively. The activities of α-amylase, glucoamylase, and protease of YM-16 were highest at 220.23±1.88, 1,269.04±30.32, and 175.16±1.81 U/g, respectively. The amino acid content of rice wine fermented in a 20-L bioreactor with the three mold strains was higher than that of the control group, except for arginine, which was significantly lower than that of the control group. The total amino acid content and the total content of each type of amino acid were ranked as YM-16 > YM-8 > YM-10 > control group, and the amino acid content varied greatly among the strains. The control group had a higher content, whereas YM-8 and YM-16 had lower contents of volatile aroma components than the control group and had the basic flavor substances needed for rice wine, which is conducive to the formation of rice wine aroma. This selected strain, YM-16, has strong saccharification and fermentation ability, is a rich enzyme system, and improves the flavor of rice wine, thereby demonstrating its suitability as a production strain for brewing.
Collapse
Affiliation(s)
- HuaWei Yuan
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - Zhongyu Wu
- School of Radiology, Shandong First Medical University, Jinan, Shandong, China
| | - HaoYu Liu
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - Xue He
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - ZhengWei Liao
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - WenJie Luo
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - Li Li
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - LiGuo Yin
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - Fang Wu
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - LiQiang Zhang
- Luzhou Laojiao Co., Ltd./Luzhou Pinchuang Technology Co., Ltd./National Engineering Technology Research Center of Solid-state Brewing, Luzhou, Sichuan, China
| | - CaiHong Shen
- Luzhou Laojiao Co., Ltd./Luzhou Pinchuang Technology Co., Ltd./National Engineering Technology Research Center of Solid-state Brewing, Luzhou, Sichuan, China
| | - SongTao Wang
- Luzhou Laojiao Co., Ltd./Luzhou Pinchuang Technology Co., Ltd./National Engineering Technology Research Center of Solid-state Brewing, Luzhou, Sichuan, China
| | - JianLong Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Tan Li
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - Kai Lou
- Faculty of Quality Management and Inspection & Quarantine/Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
4
|
Deng H, Ji L, Han X, Wu T, Han B, Li C, Zhan J, Huang W, You Y. Research progress on the application of different controlling strategies to minimizing ethyl carbamate in grape wine. Compr Rev Food Sci Food Saf 2023; 22:1495-1516. [PMID: 36856535 DOI: 10.1111/1541-4337.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 03/02/2023]
Abstract
Ethyl carbamate (EC) is a probable carcinogenic compound commonly found in fermented foods and alcoholic beverages and has been classified as a category 2A carcinogen by the International Agency for Research on Cancer (IARC). Alcoholic beverages are one of the main sources of EC intake by humans. Therefore, many countries have introduced a standard EC limit in alcoholic beverages. Wine is the second largest alcoholic beverage in the world after beer and is loved by consumers for its rich taste. However, different survey results showed that the detection rate of EC in wine was almost 100%, while the maximum content was as high as 100 μg/L, necessitating EC content regulation in wine. The existing methods for controlling the EC level in wine mainly include optimizing raw fermentation materials and processes, using genetically engineered strains, and enzymatic methods (urease or urethanase). This review focused on introducing and comparing the advantages, disadvantages, and applicability of methods for controlling EC, and proposes two possible new techniques, that is, changing the fermentation strain and exogenously adding phenolic compounds. In the future, it is hoped that the feasibility of this prospect will be verified by pilot-scale or large-scale application to provide new insight into the regulation of EC during wine production. The formation mechanism and influencing factors of EC in wine were also introduced and the analytical methods of EC were summarized.
Collapse
Affiliation(s)
- Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xiaoyu Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Tianyang Wu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Bing Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Chenyu Li
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China.,School of Advanced Agricultural Sciences, Peking University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Xu X, Li T, Ji Y, Jiang X, Shi X, Wang B. Origin, Succession, and Control of Biotoxin in Wine. Front Microbiol 2021; 12:703391. [PMID: 34367103 PMCID: PMC8339702 DOI: 10.3389/fmicb.2021.703391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Wine is a worldwide alcoholic beverage with antioxidant active substances and complex flavors. Moderate drinking of wine has been proven to be beneficial to health. However, wine has some negative components, such as residual pesticides, heavy metals, and biotoxins. Of these, biotoxins from microorganisms were characterized as the most important toxins in wine. Wine fermentation mainly involves alcoholic fermentation, malolactic fermentation, and aging, which endue wine with complex flavors and even produce some undesirable metabolites. These metabolites cause potential safety risks that are not thoroughly understood. This review aimed to investigate the origin, evolution, and control technology of undesirable metabolites (e.g., ochratoxin A, ethyl carbamate, and biogenic amines) in wine. It also highlighted current wine industry practices of minimizing the number of biotoxins in wine.
Collapse
Affiliation(s)
| | | | | | | | - Xuewei Shi
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Bin Wang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
6
|
Yang X, Yang Y, Huang J, Man D, Guo M. Comparisons of urea or ammonium on growth and fermentative metabolism of Saccharomyces cerevisiae in ethanol fermentation. World J Microbiol Biotechnol 2021; 37:98. [PMID: 33969436 DOI: 10.1007/s11274-021-03056-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
This work was mainly about the understanding of how urea and ammonium affect growth, glucose consumption and ethanol production of S. cerevisiae, in particular regarding the basic physiology of cell. The basic physiology of cell included intracellular pH, ATP, NADH and enzyme activity. Results showed that fermentation time was reduced by 19% when using urea compared with ammonium. The maximal ethanol production rate using urea was 1.14 g/L/h, increasing 30% comparing with the medium prepared with ammonium. Moreover, urea could decrease the synthesis of glycerol from glucose by 26% comparing with ammonium. The by-product of acetic acid yields decreased from 40 mmol/mol of glucose (with urea) to 24 mmol/mol of glucose (with ammonium). At the end of ethanol fermentation, cell number and pH were greater with urea than ammonium. Comparing with urea, ammonium decreased the intracellular pH by 14% (from 7.1 to 6.1). Urease converting urea into ammonia resulted in a more than 50% lower of ATP when comparing with ammonium. The values of NADH/DCW were 0.21 mg/g and 0.14 mg/g respectively with urea and ammonium, suggesting a 33% lower NADH. The enzyme activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was 0.0225 and 0.0275 U/mg protein respectively with urea and ammonium, which was consistent with the yields of glycerol.
Collapse
Affiliation(s)
- Xinchao Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Yuling Yang
- Linghua Group Limited, Jining, 272073, China
| | - Jiadong Huang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Deen Man
- Linghua Group Limited, Jining, 272073, China
| | - Maihai Guo
- Linghua Group Limited, Jining, 272073, China
| |
Collapse
|
7
|
Zhou W, Shu Q, Zhang X, Chen Q. Application of mixed-culture with Lactobacillus brevis and Saccharomyces cerevisiae to Chinese yellow rice wine brewing for ethyl carbamate regulation. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Effect of overexpression of SNF1 on the transcriptional and metabolic landscape of baker's yeast under freezing stress. Microb Cell Fact 2021; 20:10. [PMID: 33413411 PMCID: PMC7792352 DOI: 10.1186/s12934-020-01503-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background Freezing stress is the key factor that affecting the cell activity and fermentation performance of baker’s yeast in frozen dough production. Generally, cells protect themselves from injury and maintain metabolism by regulating gene expression and modulating metabolic patterns in stresses. The Snf1 protein kinase is an important regulator of yeast in response to stresses. In this study, we aim to study the role of the catalytic subunit of Snf1 protein kinase in the cell tolerance and dough leavening ability of baker’s yeast during freezing. Furthermore, the effects of SNF1 overexpression on the global gene expression and metabolite profile of baker’s yeast before and after freezing were analysed using RNA-sequencing and untargeted UPLC − QTOF-MS/MS, respectively. Results The results suggest that overexpression of SNF1 was effective in enhancing the cell tolerance and fermentation capacity of baker’s yeast in freezing, which may be related to the upregulated proteasome, altered metabolism of carbon sources and protectant molecules, and changed cell membrane components. SNF1 overexpression altered the level of leucin, proline, serine, isoleucine, arginine, homocitrulline, glycerol, palmitic acid, lysophosphatidylcholine (LysoPC), and lysophosphatidylethanolamine (LysoPE) before freezing, conferring cells resistance in freezing. After freezing, relative high level of proline, lysine, and glycerol maintained by SNF1 overexpression with increased content of LysoPC and LysoPE. Conclusions This study will increase the knowledge of the cellular response of baker’s yeast cells to freezing and provide new opportunities for the breeding of low-temperature resistant strains.
Collapse
|
9
|
Application of bamboo leaves extract to Chinese yellow rice wine brewing for ethyl carbamate regulation and its mitigation mechanism. Food Chem 2020; 319:126554. [PMID: 32169766 DOI: 10.1016/j.foodchem.2020.126554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 11/20/2022]
Abstract
Bamboo leaves extract (BLE) contains various effective ingredients, including phenolic compounds. In this study, the effect of BLE on ethyl carbamate (EC) formation was investigated in Chinese yellow rice wine brewing with three different fermentation starters (Saccharomyces cerevisiae, Saccharomyces cerevisiae and Lactobacillus brevis, and Chinese yeast). As a result, BLE showed significant inhibition effect on EC in multi-microbial fermented rice wine, by preventing the reactions between urea/citrulline and ethanol. We found that BLE had influence on arginine transport (GAP1, CAN1, ALP1, and VBA2 gene) in Saccharomyces cerevisiae (S. cerevisiae), which significantly up-regulated arginine uptake gene expression in vacuole (VBA2 gene) so that inhibited arginine metabolism. Besides, the presence of BLE could improve the overall quality of Chinese yellow rice wine. Consequently, it was worthwhile applying BLE to Chinese rice wine fermentation, especially the wine brewing with S. cerevisiae and Lactobacillus brevis starter.
Collapse
|
10
|
Kessi-Pérez EI, Ponce B, Li J, Molinet J, Baeza C, Figueroa D, Bastías C, Gaete M, Liti G, Díaz-Barrera A, Salinas F, Martínez C. Differential Gene Expression and Allele Frequency Changes Favour Adaptation of a Heterogeneous Yeast Population to Nitrogen-Limited Fermentations. Front Microbiol 2020; 11:1204. [PMID: 32612585 PMCID: PMC7307137 DOI: 10.3389/fmicb.2020.01204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Alcoholic fermentation is fundamentally an adaptation process, in which the yeast Saccharomyces cerevisiae outperforms its competitors and takes over the fermentation process itself. Although wine yeast strains appear to be adapted to the stressful conditions of alcoholic fermentation, nitrogen limitations in grape must cause stuck or slow fermentations, generating significant economic losses for the wine industry. One way to discover the genetic bases that promote yeast adaptation to nitrogen-deficient environments are selection experiments, where a yeast population undergoes selection under conditions of nitrogen restriction for a number of generations, to then identify by sequencing the molecular characteristics that promote this adaptation. In this work, we carried out selection experiments in bioreactors imitating wine fermentation under nitrogen-limited fermentation conditions (SM60), using the heterogeneous SGRP-4X yeast population, to then sequence the transcriptome and the genome of the population at different time points of the selection process. The transcriptomic results showed an overexpression of genes from the NA strain (North American/YPS128), a wild, non-domesticated isolate. In addition, genome sequencing and allele frequency results allowed several QTLs to be mapped for adaptation to nitrogen-limited fermentation. Finally, we validated the ECM38 allele of NA strain as responsible for higher growth efficiency under nitrogen-limited conditions. Taken together, our results revealed a complex pattern of molecular signatures favouring adaptation of the yeast population to nitrogen-limited fermentations, including differential gene expression, allele frequency changes and loss of the mitochondrial genome. Finally, the results suggest that wild alleles from a non-domesticated isolate (NA) may have a relevant role in the adaptation to the assayed fermentation conditions, with the consequent potential of these alleles for the genetic improvement of wine yeast strains.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Belén Ponce
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jing Li
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Camila Baeza
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | - David Figueroa
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | - Camila Bastías
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Marco Gaete
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Alvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
11
|
Chen T, Wu F, Guo J, Ye M, Hu H, Guo J, Liu X. Effects of glutinous rice protein components on the volatile substances and sensory properties of Chinese rice wine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3297-3307. [PMID: 32086813 DOI: 10.1002/jsfa.10343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/15/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
The content of protein components of glutinous rice significantly affects the quality of Chinese rice wine. Therefore, the effects of protein components on the quality of Chinese rice wine were investigated by adding the exogenous proteins glutelin and albumin individually or in combination RESULTS: Compared with the control, the samples with increased glutelin components exhibited improved formation of numerous alcohol esters with alcoholic and fruity representatives. The promotion rates of glutelin to total alcohols and total esters were 18% and 99%, respectively. The amount of 4-vinylguaiacol characterized by a spicy, smoky odor was reduced to 40%. Correlation analysis between chemical composition and sensory characteristics showed a significant positive correlation between umami and amino nitrogen (r = 0.935) and total amino acid content (r = 0.729). The bitterness of Chinese rice wine was related to the change of alcohol content (r = 0.689) and total soluble solid (r = 0.904). Sensory analysis revealed that the increase of the glutelin component of Chinese rice wine increased its alcoholic, fruity, and honey-like features, as well as its umami, acidity and bitterness. The increase also reduced the caramel-like, herb-like, and smoky sensory characteristics of Chinese rice wine and its Qu aroma and sweetness CONCLUSION: The protein content of glutinous rice significantly affects the quality of rice wine. The Glutelin has a significant relationship with fruity, honey, and umami flavors; the albumin has a significant relationship with medicinal, bitter, and astringent flavors. Therefore, reasonable adjustment of the glutelin content of glutinous rice can effectively improve the sensory quality of rice wine. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tong Chen
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| | - Fenghua Wu
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| | - Jingjing Guo
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| | - Minqian Ye
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| | - Hao Hu
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| | - Jian Guo
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| | - Xingquan Liu
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| |
Collapse
|
12
|
Abstract
A relevant trend in winemaking is to reduce the use of chemical compounds in both the vineyard and winery. In organic productions, synthetic chemical fertilizers, pesticides, and genetically modified organisms must be avoided, aiming to achieve the production of a “safer wine”. Safety represents a big threat all over the world, being one of the most important goals to be achieved in both Western society and developing countries. An occurrence in wine safety results in the recovery of a broad variety of harmful compounds for human health such as amines, carbamate, and mycotoxins. The perceived increase in sensory complexity and superiority of successful uninoculated wine fermentations, as well as a thrust from consumers looking for a more “natural” or “organic” wine, produced with fewer additives, and perceived health attributes has led to more investigations into the use of non-Saccharomyces yeasts in winemaking, namely in organic wines. However, the use of copper and sulfur-based molecules as an alternative to chemical pesticides, in organic vineyards, seems to affect the composition of grape microbiota; high copper residues can be present in grape must and wine. This review aims to provide an overview of organic wine safety, when using indigenous and/or non-Saccharomyces yeasts to perform fermentation, with a special focus on some metabolites of microbial origin, namely, ochratoxin A (OTA) and other mycotoxins, biogenic amines (BAs), and ethyl carbamate (EC). These health hazards present an increased awareness of the effects on health and well-being by wine consumers, who also enjoy wines where terroir is perceived and is a characteristic of a given geographical area. In this regard, vineyard yeast biota, namely non-Saccharomyces wine-yeasts, can strongly contribute to the uniqueness of the wines derived from each specific region.
Collapse
|
13
|
Fang R, Zhou W, Chen Q. Ethyl carbamate regulation and genomic expression of Saccharomyces cerevisiae during mixed-culture yellow rice wine fermentation with Lactobacillus sp. Food Chem 2019; 292:90-97. [DOI: 10.1016/j.foodchem.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/17/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
|
14
|
Yang H, Sun J, Tian T, Gu H, Li X, Cai G, Lu J. Physicochemical characterization and quality of Dangshan pear wines fermented with different Saccharomyces cerevisiae. J Food Biochem 2019; 43:e12891. [PMID: 31368556 DOI: 10.1111/jfbc.12891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/01/2019] [Accepted: 04/22/2019] [Indexed: 12/01/2022]
Abstract
Three commercial yeasts strains, namely, Saccharomyces cerevisiae SY, DV10, and Drop Acid Yeast, were used for Dangshan pear wine fermentation. Monitoring main physical and chemical indexes and scoring comprehensive sensory characteristics to find a suitable yeast to produce Dangshan pear wine. The fermentation cycle of SY was short (15 days), and the SY-fermented wine had a suitable sugar-acid ratio, with a residual sugar content of 3.13 ± 0.05 g/L, total acid content of 3.40 ± 0.11 g/L, and ethanol content of 14.1 ± 0.27% (v/v). Additionally, 42 flavor compounds were detected in fermented Dangshan pear wine, and the total amount of flavor compounds was highest in the SY wine (2,584.72 μg/L). Combined with the comprehensive sensory evaluation scores, these results suggest that Saccharomyces cerevisiae SY was the most suitable strain to produce Dangshan pear wine. PRACTICAL APPLICATIONS: In this study, we compared the physical and chemical indicators of pear wine brewed by different Saccharomyces cerevisiae in the process of fermentation and the final quality of pear wine products. It was concluded that the pear wine produced by Saccharomyces cerevisiae SY had good quality. The study found a strain suitable for the fermentation of pear wine and provided a theoretical basis for the industrial production of pear wine. Next, we can try to use Saccharomyces cerevisiae SY for large-scale production of pear wine and try to sell it on the market.
Collapse
Affiliation(s)
- Hua Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Junyong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Tiantian Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Hong Gu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xiaomin Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Guolin Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, P. R. China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Wuxi, P. R. China.,School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
15
|
Yang H, Wu D, Guo D, Lu J. The aromatic volatile composition of Lonicera edulis
wines produced with three different strains of Saccharomyces cerevisiae. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hua Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Dejun Guo
- School of Food Engineering; Qinzhou University; 12 Binhai Road Qinzhou 535000 China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| |
Collapse
|
16
|
Zhang P, Li B, Wen P, Wang P, Yang Y, Chen Q, Chang Y, Hu X. Metabolic Engineering of Four GATA Factors to Reduce Urea and Ethyl Carbamate Formation in a Model Rice Wine System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10881-10889. [PMID: 30246534 DOI: 10.1021/acs.jafc.8b04370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Urea is the most important precursor of ethyl carbamate (EC), a harmful carcinogenic product, in fermented wines. In this study, the effects of four GATA transcriptional factors (Gln3p, Gat1p, Dal80p ,and Gzf3p) on extracellular urea and EC formation and transcriptional changes in urea degradation related genes ( DUR1,2 and DUR3) were examined. Compared to the WT strain, the Δ gzf3 mutant showed 18.7% urea reduction and exhibited synergistic effects with overexpressed Gln3p1-653 and Gat1p1-375 on extracellular urea reduction. Moreover, Δ gzf3+Gln3p1-653 and Δ gzf3+Gat1p1-375 showed significant 38.7% and 43.7% decreases in urea concentration and 41.7% and 48.5% decreases in EC concentration, respectively, in a model rice wine system. These results provide a promising way to reduce urea and EC formation during wine fermentation and raise some cues for the regulations of the four GATA transcriptional factors on the expression of individual nitrogen catabolite repression sensitive genes and their related metabolism pathway.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Bang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Peng Wen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Peilin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Yu Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Qian Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Yuxin Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| |
Collapse
|
17
|
Zhang P, Hu X. Metabolic engineering of arginine permeases to reduce the formation of urea in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2018. [DOI: 10.1007/s11274-018-2430-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Fang F, Zhang J, Zhou J, Zhou Z, Li T, Lu L, Zeng W, Du G, Chen J. Accumulation of Citrulline by Microbial Arginine Metabolism during Alcoholic Fermentation of Soy Sauce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2108-2113. [PMID: 29457725 DOI: 10.1021/acs.jafc.7b06053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Citrulline, the major precursor of ethyl carbamate in soy sauce, is an intermediate catabolite of arginine produced by bacteria present in soy sauce moromi mash. Pediococcus acidilactici is responsible for the formation of citrulline during the lactic acid fermentation process of soy sauce. However, citrulline accumulation during the alcoholic fermentation process and the corresponding bacteria involved have not been identified. Salt-tolerant, arginine-utilizing bacteria were isolated from moromi mash during the alcoholic fermentation process. Under normal cultivation conditions, arginine utilization by these strains did not contribute to citrulline accumulation. However, the conversion of arginine to citrulline by these bacteria increased when cultivated during the alcoholic fermentation process. Additionally, the ethanol-enhanced solubility of free fatty acids in moromi mash stimulated the accumulation of citrulline. Staphylococcus exhibited the highest capability in the conversion of arginine to citrulline.
Collapse
Affiliation(s)
| | | | | | - Zhaohui Zhou
- Guangdong Pearl River Bridge Biotechnology Co. Ltd., Zhongshan 528415 , China
| | - Tieqiao Li
- Guangdong Pearl River Bridge Biotechnology Co. Ltd., Zhongshan 528415 , China
| | - Liling Lu
- Guangdong Pearl River Bridge Biotechnology Co. Ltd., Zhongshan 528415 , China
| | | | | | | |
Collapse
|
19
|
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2018; 82:82/1/e00040-17. [PMID: 29436478 DOI: 10.1128/mmbr.00040-17] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitrogen is one of the most important essential nutrient sources for biogenic activities. Regulation of nitrogen metabolism in microorganisms is complicated and elaborate. For this review, the yeast Saccharomyces cerevisiae was chosen to demonstrate the regulatory mechanism of nitrogen metabolism because of its relative clear genetic background. Current opinions on the regulation processes of nitrogen metabolism in S. cerevisiae, including nitrogen sensing, transport, and catabolism, are systematically reviewed. Two major upstream signaling pathways, the Ssy1-Ptr3-Ssy5 sensor system and the target of rapamycin pathway, which are responsible for sensing extracellular and intracellular nitrogen, respectively, are discussed. The ubiquitination of nitrogen transporters, which is the most general and efficient means for controlling nitrogen transport, is also summarized. The following metabolic step, nitrogen catabolism, is demonstrated at two levels: the transcriptional regulation process related to GATA transcriptional factors and the translational regulation process related to the general amino acid control pathway. The interplay between nitrogen regulation and carbon regulation is also discussed. As a model system, understanding the meticulous process by which nitrogen metabolism is regulated in S. cerevisiae not only could facilitate research on global regulation mechanisms and yeast metabolic engineering but also could provide important insights and inspiration for future studies of other common microorganisms and higher eukaryotic cells.
Collapse
|
20
|
Zhang W, Li Y, Chen Y, Xu S, Du G, Shi H, Zhou J, Chen J. Complete genome sequence and analysis of the industrial Saccharomyces cerevisiae strain N85 used in Chinese rice wine production. DNA Res 2018; 25:4838783. [PMID: 29415277 PMCID: PMC6014378 DOI: 10.1093/dnares/dsy002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022] Open
Abstract
Chinese rice wine is a popular traditional alcoholic beverage in China, while its brewing processes have rarely been explored. We herein report the first gapless, near-finished genome sequence of the yeast strain Saccharomyces cerevisiae N85 for Chinese rice wine production. Several assembly methods were used to integrate Pacific Bioscience (PacBio) and Illumina sequencing data to achieve high-quality genome sequencing of the strain. The genome encodes more than 6,000 predicted proteins, and 238 long non-coding RNAs, which are validated by RNA-sequencing data. Moreover, our annotation predicts 171 novel genes that are not present in the reference S288c genome. We also identified 65,902 single nucleotide polymorphisms and small indels, many of which are located within genic regions. Dozens of larger copy-number variations and translocations were detected, mainly enriched in the subtelomeres, suggesting these regions may be related to genomic evolution. This study will serve as a milestone in studying of Chinese rice wine and related beverages in China and in other countries. It will help to develop more scientific and modern fermentation processes of Chinese rice wine, and explore metabolism pathways of desired and harmful components in Chinese rice wine to improve its taste and nutritional value.
Collapse
Affiliation(s)
- Weiping Zhang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214443, China
| | - Yudong Li
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214443, China
- Department of Bioengineering, School of Food Sciences and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yiwang Chen
- Department of Bioengineering, School of Food Sciences and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Sha Xu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214443, China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214443, China
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Jingwen Zhou
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214443, China
| | - Jian Chen
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214443, China
| |
Collapse
|
21
|
Quantitative strategies for detecting different levels of ethyl carbamate (EC) in various fermented food matrices: An overview. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Du H, Song Z, Xu Y. Ethyl Carbamate Formation Regulated by Lactic Acid Bacteria and Nonconventional Yeasts in Solid-State Fermentation of Chinese Moutai-Flavor Liquor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:387-392. [PMID: 29232952 DOI: 10.1021/acs.jafc.7b05034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study aimed to identify specific microorganisms related to the formation of precursors of EC (ethyl carbamate) in the solid-state fermentation of Chinese Moutai-flavor liquor. The EC content was significantly correlated with the urea content during the fermentation process (R2 = 0.772, P < 0.01). Differences in urea production and degradation were found at both species and functional gene levels by metatranscriptomic sequencing and culture-dependent analysis. Lactobacillus spp. could competitively degrade arginine through the arginine deiminase pathway with yeasts, and most Lactobacillus species were capable of degrading urea. Some dominant nonconventional yeasts, such as Pichia, Schizosaccharomyces, and Zygosaccharomyces species, were shown to produce low amounts of urea relative to Saccharomyces cerevisiae. Moreover, unusual urea degradation pathways (urea carboxylase, allophanate hydrolase, and ATP-independent urease) were identified. Our results indicate that EC precursor levels in the solid-state fermentation can be controlled using lactic acid bacteria and nonconventional yeasts.
Collapse
Affiliation(s)
- Hai Du
- The Key Laboratory of Industrial Biotechnology of the Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Zhewei Song
- The Key Laboratory of Industrial Biotechnology of the Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology of the Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
23
|
Ethyl carbamate: An emerging food and environmental toxicant. Food Chem 2017; 248:312-321. [PMID: 29329860 DOI: 10.1016/j.foodchem.2017.12.072] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022]
Abstract
Ethyl carbamate (EC), a chemical substance widely present in fermented food products and alcoholic beverages, has been classified as a Group 2A carcinogen by the International Agency for Research on Cancer (IARC). New evidence indicates that long-term exposure to EC may cause neurological disorders. Formation of EC in food and its metabolism have therefore been studied extensively and analytical methods for EC in various food matrices have been established. Due to the potential threat of EC to human health, mitigation strategies for EC in food products by physical, chemical, enzymatic, and genetic engineering methods have been developed. Natural products are suggested to provide protection against EC-induced toxicity through the modulation of oxidative stress. This review summarizes knowledge on the formation and metabolism of EC, detection of EC in food products, toxic effects of EC on various organs, and mitigation strategies including prevention of EC-induced tumorigenesis and genotoxicity by natural products.
Collapse
|
24
|
Zhou W, Fang R, Chen Q. Effect of gallic and protocatechuic acids on the metabolism of ethyl carbamate in Chinese yellow rice wine brewing. Food Chem 2017; 233:174-181. [PMID: 28530563 DOI: 10.1016/j.foodchem.2017.04.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
Abstract
It was studied that gallic and protocatechuic acids played important roles in ethyl carbamate (EC) forming. Gallic and protocatechuic acids can reduce the arginine consumption through inhibiting the arginine deiminase enzyme. Therefore, they are generally added to regulate EC catabolism in the course of yellow rice wine leavening at the third day. In this work, gallic and protocatechuic acids made little influence on the growth of Saccharomyces cerevisiae. Besides, the addition of 200mg/L gallic or protocatechuic acid could prevent the transformation from urea/citrulline to EC. Gallic acid showed better inhibiting effect that the content of EC could be reduced by 91.9% at most. Furthermore, the production of amino acids and volatile flavor compounds are not markedly affected by phenolic compounds. The discoveries reveal that EC can be reduced by supplying gallic acid or protocatechuic acid while yellow rice wine leavening.
Collapse
Affiliation(s)
- Wanyi Zhou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Ruosi Fang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Zhang P, Du G, Zou H, Xie G, Chen J, Shi Z, Zhou J. Mutant Potential Ubiquitination Sites in Dur3p Enhance the Urea and Ethyl Carbamate Reduction in a Model Rice Wine System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1641-1648. [PMID: 28185458 DOI: 10.1021/acs.jafc.6b05348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ubiquitination can significantly affect the endocytosis and degradation of plasma membrane proteins. Here, the ubiquitination of a Saccharomyces cerevisiae urea plasma membrane transporter (Dur3p) was altered. Two potential ubiquitination sites, lysine residues K556 and K571, of Dur3p were predicted and replaced by arginine, and the effects of these mutations on urea utilization and formation under different nitrogen conditions were investigated. Compared with Dur3p, the Dur3pK556R mutant showed a 20.1% decrease in ubiquitination level in yeast nitrogen base medium containing urea and glutamine. It also exhibited a >75.8% decrease in urea formation in yeast extract-peptone-dextrose medium and 41.3 and 55.4% decreases in urea and ethyl carbamate formation (a known carcinogen), respectively, in a model rice wine system. The results presented here show that the mutation of Dur3p ubiquitination sites could significantly affect urea utilization and formation. Modifying the ubiquitination of specific transporters might have promising applications in rationally engineering S. cerevisiae strains to efficiently use specific nitrogen sources.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company , 13 Yangjiang Road, Shaoxing, Zhejiang 312099, China
| | - Guangfa Xie
- Zhejiang Guyuelongshan Shaoxing Wine Company , 13 Yangjiang Road, Shaoxing, Zhejiang 312099, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhongping Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
26
|
Wu D, Li X, Lu J, Chen J, Xie G, Zhang L. The overexpression ofDUR1,2and deletion ofCAR1in an industrialSaccharomyces cerevisiaestrain and effects on nitrogen catabolite repression in Chinese rice wine production. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi People's Republic of China
- School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| | - Xiaomin Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi People's Republic of China
- School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi People's Republic of China
- School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
- Industrial Technology Research Institute of Jiangnan University in Suqian; Suqian China
| | - Jian Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi People's Republic of China
- School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| | - Guangfa Xie
- School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
- Industrial Technology Research Institute of Jiangnan University in Suqian; Suqian China
- National Engineering Research Centre for Chinese Rice Wine; China Shaoxing Rice Wine Group Co. Ltd; Shaoxing People's Republic of China
| | - Liang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi People's Republic of China
- School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| |
Collapse
|
27
|
Formation of ethyl carbamate in Goji wines: Effect of Goji fruit composition. Food Sci Biotechnol 2016; 25:921-927. [PMID: 30263355 DOI: 10.1007/s10068-016-0151-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/17/2016] [Accepted: 03/20/2016] [Indexed: 10/21/2022] Open
Abstract
Ethyl carbamate (EC) is a multisite carcinogen widely occurring in alcoholic beverages. In this investigation, solid-phase extraction combined with gas chromatography mass spectrometry was employed to determine EC contents during the fermentation and storage processes, and the effects of Goji varieties on its formation were also examined. The results indicated that natural and potential EC contents were significantly affected by the varied composition of Goji fruits. The analysis of chemical properties showed differences in hundred-grain weight, water contents, amino acids, and nitrogen-to-carbon ratio for Goji berries. Citrulline was completely degraded although it is routinely considered as a non-preferred nitrogen for yeasts. Due to compositional differences, Goji wines accumulated distinct urea levels that positively correlated with the potential EC contents. Furthermore, the temperature in both the production processes highly influenced EC formation. These results contribute to a more comprehensive understanding of EC formation, and in turn, controlling EC in the Goji wine matrix.
Collapse
|
28
|
The modification of Gat1p in nitrogen catabolite repression to enhance non-preferred nitrogen utilization in Saccharomyces cerevisiae. Sci Rep 2016; 6:21603. [PMID: 26899143 PMCID: PMC4761935 DOI: 10.1038/srep21603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/27/2016] [Indexed: 11/08/2022] Open
Abstract
In Saccharomyces cerevisiae, when preferred nitrogen sources are present, the metabolism of non-preferred nitrogen is repressed. Previous work showed that this metabolic regulation is primarily controlled by nitrogen catabolite repression (NCR) related regulators. Among these regulators, two positive regulators (Gln3p and Gat1p) could be phosphorylated and sequestered in the cytoplasm leading to the transcription of non-preferred nitrogen metabolic genes being repressed. The nuclear localization signals (NLSs) and nuclear localization regulatory signals (NLRSs) in Gln3p and Gat1p play essential roles in the regulation of their localization in cells. However, compared with Gln3p, the information of NLS and NLRS for Gat1p remains unknown. In this study, residues 348-375 and 366-510 were identified as the NLS and NLRS of Gat1p firstly. In addition, the modifications of Gat1p (mutations on the NLS and truncation on the NLRS) were attempted to enhance the transcription of non-preferred nitrogen metabolic genes. Quantitative real-time PCR showed that the transcriptional levels of 15 non-preferred nitrogen metabolic genes increased. Furthermore, during the shaking-flask culture tests, the utilization of urea, proline and allantoine was significantly increased. Based on these results, the genetic engineering on Gat1p has a great potential in enhancing non-preferred nitrogen metabolism in S. cerevisiae.
Collapse
|
29
|
Zhang P, Du G, Zou H, Chen J, Xie G, Shi Z, Zhou J. Effects of three permeases on arginine utilization in Saccharomyces cerevisiae. Sci Rep 2016; 6:20910. [PMID: 26865023 PMCID: PMC4750040 DOI: 10.1038/srep20910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/13/2016] [Indexed: 11/09/2022] Open
Abstract
Arginine plays an important role in cellular function and metabolism. Arginine uptake mainly occurs through three amino acid permeases, Alp1p, Gap1p and Can1p, which act as both transporters and receptors for amino acid utilization. In this study, seven mutants were constructed with different combinations of permease deficiencies that inhibit arginine utilization. Their effects on arginine metabolism were measured. The three amino acid permeases were also individually overexpressed in wild-type (WT), Δalp1Δgap1Δcan1 and Δnpr1 strains. The growth and arginine utilization of Δcan1, Δgap1Δcan1 and Δalp1Δgap1Δcan1 mutants were suppressed in YNB medium when arginine was the sole nitrogen source. Meanwhile, overexpression of Alp1p and Can1p enhanced growth and arginine utilization in WT, Δalp1Δgap1Δcan1 and Δnpr1. Besides, overexpression of Can1p caused a 26.7% increase in OD600 and 29.3% increase in arginine utilization compared to that of Alp1p in Δalp1Δgap1Δcan1. Transcription analysis showed that the effects of three amino acid permeases on the arginine utilization and the regulation of related genes, were tightly related to their individual characteristics. However, their overall effects were different for different combinations of mutants. The results presented here suggest some possible synergistic effects of different amino acid permeases on regulation of amino acid utilization and metabolism.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guangfa Xie
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang, China
| | - Zhongping Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
30
|
Wu D, Li X, Lu J, Chen J, Zhang L, Xie G. Constitutive expression of theDUR1,2gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation. FEMS Microbiol Lett 2015; 363:fnv214. [DOI: 10.1093/femsle/fnv214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 11/12/2022] Open
|
31
|
Fang RS, Dong YC, Chen F, Chen QH. Bacterial Diversity Analysis during the Fermentation Processing of Traditional Chinese Yellow Rice Wine Revealed by 16S rDNA 454 Pyrosequencing. J Food Sci 2015; 80:M2265-71. [PMID: 26409170 DOI: 10.1111/1750-3841.13018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/04/2015] [Indexed: 01/08/2023]
Abstract
Rice wine is a traditional Chinese fermented alcohol drink. Spontaneous fermentation with the use of the Chinese starter and wheat Qu lead to the growth of various microorganisms during the complete brewing process. It's of great importance to fully understand the composition of bacteria diversity in rice wine in order to improve the quality and solve safety problems. In this study, a more comprehensive bacterial description was shown with the use of bacteria diversity analysis, which enabled us to have a better understanding. Rarefaction, rank abundance, alpha Diversity, beta diversity and principal coordinates analysis simplified their complex bacteria components and provide us theoretical foundation for further investigation. It has been found bacteria diversity is more abundant at mid-term and later stage of brewing process. Bacteria community analysis reveals there is a potential safety hazard existing in the fermentation, since most of the sequence reads are assigned to Enterobacter (7900 at most) and Pantoea (7336 at most), followed by Staphylococcus (2796 at most) and Pseudomonas (1681 at most). Lactic acid bacteria are rare throughout the fermentation process which is not in accordance with other reports. This work may offer us an opportunity to investigate micro ecological fermentation system in food industry.
Collapse
Affiliation(s)
- Ruo-si Fang
- Dept. of Food Science and Nutrition, Zhejiang Univ, Hangzhou, 310058, China
| | - Ya-chen Dong
- Dept. of Food Science and Nutrition, Zhejiang Univ, Hangzhou, 310058, China
| | - Feng Chen
- Dept. of Food Science and Nutrition, Zhejiang Univ, Hangzhou, 310058, China
| | - Qi-he Chen
- Food Science and Human Nutrition, Clemson Univ, S.C, 29634, U.S.A
| |
Collapse
|
32
|
Zhao X, Zou H, Du G, Chen J, Zhou J. Effects of nitrogen catabolite repression-related amino acids on the flavour of rice wine. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu 214122 China
- Synergetic Innovation Centre of Food Safety and Nutrition; 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company; 13 Yangjiang Road Shaoxing Zhengjiang 312000 China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu 214122 China
- Synergetic Innovation Centre of Food Safety and Nutrition; 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu 214122 China
- Synergetic Innovation Centre of Food Safety and Nutrition; 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu 214122 China
- Synergetic Innovation Centre of Food Safety and Nutrition; 1800 Lihu Road Wuxi Jiangsu 214122 China
| |
Collapse
|
33
|
Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation. Appl Microbiol Biotechnol 2015. [DOI: 10.1007/s00253-015-6810-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Li X, Shen C, Wu D, Lu J, Chen J, Xie G. Enhancement of urea uptake in Chinese rice wine yeast strain N85 by the constitutive expression ofDUR3for ethyl carbamate elimination. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaomin Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Chao Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- Industrial Technology Research Institute of Jiangnan University in Suqian; 888 Renmin Road Suqian 223800 China
| | - Jian Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Guangfa Xie
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Research Centre for Chinese Rice Wine; China Shaoxing Rice Wine Group Co., Ltd; Shaoxing 312000 People's Republic of China
| |
Collapse
|
35
|
Fang RS, Dong YC, Li HJ, Chen QH. Ethyl carbamate formation regulated bySaccharomyces cerevisiaeZJU in the processing of Chinese yellow rice wine. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ruo-Si Fang
- Department of Food Science and Nutrition; Zhejiang University; Yuhangtang Rd.866 Hangzhou 310058 China
- Food Microbiology Research Key Laboratory of Zhejiang Province; Hangzhou 310058 China
| | - Ya-Chen Dong
- Department of Food Science and Nutrition; Zhejiang University; Yuhangtang Rd.866 Hangzhou 310058 China
- Food Microbiology Research Key Laboratory of Zhejiang Province; Hangzhou 310058 China
| | - Hong-Ji Li
- Department of Food Science and Nutrition; Zhejiang University; Yuhangtang Rd.866 Hangzhou 310058 China
- Food Microbiology Research Key Laboratory of Zhejiang Province; Hangzhou 310058 China
| | - Qi-He Chen
- Department of Food Science and Nutrition; Zhejiang University; Yuhangtang Rd.866 Hangzhou 310058 China
- Food Microbiology Research Key Laboratory of Zhejiang Province; Hangzhou 310058 China
| |
Collapse
|
36
|
Jiao Z, Dong Y, Chen Q. Ethyl Carbamate in Fermented Beverages: Presence, Analytical Chemistry, Formation Mechanism, and Mitigation Proposals. Compr Rev Food Sci Food Saf 2014; 13:611-626. [DOI: 10.1111/1541-4337.12084] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/26/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Zhihua Jiao
- Dept. of Food Science and Nutrition; Zhejiang Univ; Nr. 866, Yuhangtang Road Xihu District Hangzhou 310058 China
| | - Yachen Dong
- Dept. of Food Science and Nutrition; Zhejiang Univ; Nr. 866, Yuhangtang Road Xihu District Hangzhou 310058 China
| | - Qihe Chen
- Dept. of Food Science and Nutrition; Zhejiang Univ; Nr. 866, Yuhangtang Road Xihu District Hangzhou 310058 China
| |
Collapse
|
37
|
Zhao S, Zhao X, Zou H, Fu J, Du G, Zhou J, Chen J. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources. J Proteomics 2014; 101:102-12. [PMID: 24530623 DOI: 10.1016/j.jprot.2014.01.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/28/2013] [Accepted: 01/24/2014] [Indexed: 11/15/2022]
Abstract
In cultures containing multiple sources of nitrogen, Saccharomyces cerevisiae exhibits a sequential use of nitrogen sources through a mechanism known as nitrogen catabolite repression (NCR). To identify proteins differentially expressed due to NCR, proteomic analysis of S. cerevisiae S288C under different nitrogen source conditions was performed using two-dimensional gel electrophoresis (2-DE), revealing 169 candidate protein spots. Among these 169 protein spots, 121 were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins were closely associated with four main biological processes through Gene Ontology (GO) categorical analysis. The identification of the potential proteins and cellular processes related to NCR offer a global overview of changes elicited by different nitrogen sources, providing clues into how yeast adapt to different nutritional conditions. Moreover, by comparing our proteomic data with corresponding mRNA data, proteins regulated at the transcriptional and post-transcriptional level could be distinguished. Biological significance In S. cerevisiae, different nitrogen sources provide different growth characteristics and generate different metabolites. The nitrogen catabolite repression (NCR) process plays an important role for S. cerevisiae in the ordinal utilization of different nitrogen sources. NCR process can result in significant shift of global metabolic networks. Previous works on NCR primarily focused on transcriptomic level. The results obtained in this study provided a global atlas of the proteome changes triggered by different nitrogen sources and would facilitate the understanding of mechanisms for how yeast could adapt to different nutritional conditions.
Collapse
Affiliation(s)
- Shaohui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang 312000, China
| | - Jianwei Fu
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang 312000, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|