1
|
Rivera MJ, Contreras A, Nguyen LT, Eldon ED, Klig LS. Regulated inositol synthesis is critical for balanced metabolism and development in Drosophila melanogaster. Biol Open 2021; 10:272639. [PMID: 34710213 PMCID: PMC8565467 DOI: 10.1242/bio.058833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 01/23/2023] Open
Abstract
Myo-inositol is a precursor of the membrane phospholipid, phosphatidylinositol (PI). It is involved in many essential cellular processes including signal transduction, energy metabolism, endoplasmic reticulum stress, and osmoregulation. Inositol is synthesized from glucose-6-phosphate by myo-inositol-3-phosphate synthase (MIPSp). The Drosophila melanogaster Inos gene encodes MIPSp. Abnormalities in myo-inositol metabolism have been implicated in type 2 diabetes, cancer, and neurodegenerative disorders. Obesity and high blood (hemolymph) glucose are two hallmarks of diabetes, which can be induced in Drosophila melanogaster third-instar larvae by high-sucrose diets. This study shows that dietary inositol reduces the obese-like and high-hemolymph glucose phenotypes of third-instar larvae fed high-sucrose diets. Furthermore, this study demonstrates Inos mRNA regulation by dietary inositol; when more inositol is provided there is less Inos mRNA. Third-instar larvae with dysregulated high levels of Inos mRNA and MIPSp show dramatic reductions of the obese-like and high-hemolymph glucose phenotypes. These strains, however, also display developmental defects and pupal lethality. The few individuals that eclose die within two days with striking defects: structural alterations of the wings and legs, and heads lacking proboscises. This study is an exciting extension of the use of Drosophila melanogaster as a model organism for exploring the junction of development and metabolism. Summary: Inositol reduces obesity and high blood (hemolymph) glucose, but can cause dramatic developmental defects. This study uses the model organism Drosophila melanogaster to explore the junction of development and metabolism.
Collapse
Affiliation(s)
- Maria J Rivera
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Altagracia Contreras
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - LongThy T Nguyen
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Elizabeth D Eldon
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Lisa S Klig
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
2
|
Sinha M, Jagadeesan R, Kumar N, Saha S, Kothandan G, Kumar D. In-silico studies on Myo inositol-1-phosphate synthase of Leishmania donovani in search of anti-leishmaniasis. J Biomol Struct Dyn 2020; 40:3371-3384. [PMID: 33200690 DOI: 10.1080/07391102.2020.1847194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myo-inositol is one of the vital nutritional requirements for the Leishmania parasites' survival and virulence in the mammalian host. . Myo-inositol-1-phosphate synthase (MIPS) is responsible for the synthesis of myo-inositol in Leishmania, which plays a vital role in Leishmania's virulence to mammalian hosts. Earlier studies suggest MIP synthase as a potential drug target against which valproate was used as a drug. So, MIP synthase can be used as a target for anti-leishmanial drugs, and its inhibition may help in preventing leishmaniasis. The present study aims to identify valproate's potent analogs as drugs against MIP synthase of L. donovani (Ld-MIPS) with minimum side effects and toxicity to host.In this study, the three-dimensional structure of Ld-MIPS was built, followed by active site prediction. Ligand-based virtual screening was done using hybrid similarity recognition methods. The best 123 valproate analogs were filtered based on their quantitative structure activity relationship (QSAR) properties and were docked against Ld-MIPS using FlexX, PyRx and iGEMDOCK software. The topmost five ligands were selected for molecular dynamics simulation and pharmacokinetic analysis based on the docking score. Simulation studies up to 30 ns revealed that all five lead molecules bound with Ld-MIPS throughout MD simulation and there was no variation in their backbone. All the chosen inhibitors exhibited good pharmacokinetics/ADMET predictions with an excellent absorption profile, metabolism, oral bioavailability, solubility, excretion, and minimal toxicity, suggesting that these inhibitors may further be developed as anti-leishmaniasis drugs to prevent the spread of leishmaniasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mousumi Sinha
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Rahul Jagadeesan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, Tamil Nadu, India
| | - Neeraj Kumar
- Functional Genomics & Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Satabdi Saha
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Gugan Kothandan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, Tamil Nadu, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, India
| |
Collapse
|
3
|
Munusamy K, Loke MF, Vadivelu J, Tay ST. LC-MS analysis reveals biological and metabolic processes essential for Candida albicans biofilm growth. Microb Pathog 2020; 152:104614. [PMID: 33202254 DOI: 10.1016/j.micpath.2020.104614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
Candidiasis is the most common fungal infection associated with high morbidity and mortality among immunocompromised patients. The ability to form biofilm is essential for Candida albicans pathogenesis and drug resistance. In this study, the planktonic cell and biofilm proteomes of C. albicans SC5314 strain analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) were compared. In total, 280 and 449 proteins are annotated from the planktonic cell and biofilm proteomes, respectively. The biofilm proteome demonstrated significantly higher proportion of proteins associated with the endomembrane system, mitochondrion and cytoplasm than planktonic proteome. Among proteins detected, 143 and 207 biological processes are annotated, of which, 38 and 102 are specific to the planktonic cell and biofilm proteomes, respectively, while 105 are common biological processes. The specific biological processes of C. albicans planktonic cell proteome are associated with cell polarity, energy metabolism and nucleotide (purine) metabolism, oxido-reduction coenzyme metabolic process, monosaccharide and amino acid (methionine) biosynthesis, regulation of anatomical structure morphogenesis and cell cycling, and single organism reproduction. Meanwhile, regulation of cellular macromolecule biosynthesis and metabolism, transcription and gene expression are major biological processes specifically associated with C. albicans biofilm proteome. Biosynthesis of leucine, isoleucine, and thiocysteine are highlighted as planktonic-related pathways, whereas folate metabolism, fatty acid metabolism and biosynthesis of amino acids (lysine, serine and glycine) are highlighted as biofilm-related pathways. In summary, LC-MS-based proteomic analysis reveals different adaptative strategies of C. albicans via specific biological and metabolic processes for planktonic cell and biofilm lifestyles. The mass spectrometry data are available via ProteomeXchange with identifiers PXD007830 (for biofilm proteome) and PXD007831 (for planktonic cell proteome).
Collapse
Affiliation(s)
- Komathy Munusamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
e Silva KSF, da S Neto BR, Zambuzzi-Carvalho PF, de Oliveira CMA, Pires LB, Kato L, Bailão AM, Parente-Rocha JA, Hernández O, Ochoa JGM, de A Soares CM, Pereira M. Response of Paracoccidioides lutzii to the antifungal camphene thiosemicarbazide determined by proteomic analysis. Future Microbiol 2018; 13:1473-1496. [DOI: 10.2217/fmb-2018-0176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: To perform the proteomic profile of Paracoccidioides lutzii after treatment with the compound camphene thiosemicarbazide (TSC-C) in order to study its mode of action. Methods: Proteomic analysis was carried out after cells were incubated with TSC-C in a subinhibitory concentration. Validation of the proteomic results comprised the azocasein assay, western blot and determination of the susceptibility of a mutant to the compound. Results: Proteins related to metabolism, energy and protein fate were regulated after treatment. In addition, TSC-C reduces the proteolytic activity of the protein extract similarly to different types of protease inhibitors. Conclusion: TSC-C showed encouraging antifungal activity, working as a protease inhibitor and downregulating important pathways impairing the ability of the fungi cells to produce important precursors.
Collapse
Affiliation(s)
- Kleber SF e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Benedito R da S Neto
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Patrícia F Zambuzzi-Carvalho
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Cecília MA de Oliveira
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ludmila B Pires
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lucilia Kato
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Juliana A Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Orville Hernández
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB) & Escuela de Microbiología Universidad de Antioquia, Medellín, Colombia
| | - Juan GM Ochoa
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB) & Facultad de Medicina Universidad de Antioquia, Medellín, Colombia
| | - Célia M de A Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
5
|
Disruption of INOS, a Gene Encoding myo-Inositol Phosphate Synthase, Causes Male Sterility in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:2913-2922. [PMID: 29991509 PMCID: PMC6118315 DOI: 10.1534/g3.118.200403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Inositol is a precursor for the phospholipid membrane component phosphatidylinositol (PI), involved in signal transduction pathways, endoplasmic reticulum stress, and osmoregulation. Alterations of inositol metabolism have been implicated in human reproductive issues, the therapeutic effects of drugs used to treat epilepsy and bipolar disorder, spinal cord defects, and diseases including diabetes and Alzheimer’s. The sole known inositol synthetic enzyme is myo-inositol synthase (MIPS), and the homolog in Drosophilia melanogaster is encoded by the Inos gene. Three identical deletion strains (inosΔDF/CyO) were constructed, confirmed by PCR and sequencing, and homozygotes (inosΔDF/inosΔDF) were shown to lack the transcript encoding the MIPS enzyme. Without inositol, homozygous inosΔDF deletion fertilized eggs develop only to the first-instar larval stage. When transferred as pupae to food without inositol, however, inosΔDF homozygotes die significantly sooner than wild-type flies. Even with dietary inositol the homozygous inosΔDF males are sterile. An inos allele, with a P-element inserted into the first intron, fails to complement this male sterile phenotype. An additional copy of the Inos gene inserted into another chromosome rescues all the phenotypes. These genetic and phenotypic analyses establish D. melanogaster as an excellent model organism in which to examine the role of inositol synthesis in development and reproduction.
Collapse
|
6
|
Dwivedi UN, Tiwari S, Prasanna P, Awasthi M, Singh S, Pandey VP. Citrus Functional Genomics and Molecular Modeling in Relation to Citrus sinensis (Sweet Orange) Infection with Xylella fastidiosa (Citrus Variegated Chlorosis). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:485-90. [DOI: 10.1089/omi.2016.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Upendra N. Dwivedi
- Bioinformatics Infrastructure Facility, Centre of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Sameeksha Tiwari
- Bioinformatics Infrastructure Facility, Centre of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Pragya Prasanna
- Bioinformatics Infrastructure Facility, Centre of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Manika Awasthi
- Bioinformatics Infrastructure Facility, Centre of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Swati Singh
- Bioinformatics Infrastructure Facility, Centre of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Veda P. Pandey
- Bioinformatics Infrastructure Facility, Centre of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
7
|
Candida albicans uses multiple mechanisms to acquire the essential metabolite inositol during infection. Infect Immun 2008; 76:2793-801. [PMID: 18268031 DOI: 10.1128/iai.01514-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is an important cause of life-threatening systemic bloodstream infections in immunocompromised patients. In order to cause infections, C. albicans must be able to synthesize the essential metabolite inositol or acquire it from the host. Based on the similarity of C. albicans to Saccharomyces cerevisiae, it was predicted that C. albicans may generate inositol de novo, import it from the environment, or both. The C. albicans inositol synthesis gene INO1 (orf19.7585) and inositol transporter gene ITR1 (orf19.3526) were each disrupted. The ino1Delta/ino1Delta mutant was an inositol auxotroph, and the itr1Delta/itr1Delta mutant was unable to import inositol from the medium. Each of these mutants was fully virulent in a mouse model of systemic infection. It was not possible to generate an ino1Delta/ino1Delta itr1Delta/itr1Delta double mutant, suggesting that in the absence of these two genes, C. albicans could not acquire inositol and was nonviable. A conditional double mutant was created by replacing the remaining wild-type allele of ITR1 in an ino1Delta/ino1Delta itr1Delta/ITR1 strain with a conditionally expressed allele of ITR1 driven by the repressible MET3 promoter. The resulting ino1Delta/ino1Delta itr1Delta/P(MET3)::ITR1 strain was found to be nonviable in medium containing methionine and cysteine (which represses the P(MET3) promoter), and it was avirulent in the mouse model of systemic candidiasis. These results suggest a model in which C. albicans has two equally effective mechanisms for obtaining inositol while in the host. It can either generate inositol de novo through Ino1p, or it can import it from the host through Itr1p.
Collapse
|
8
|
Ju S, Shaltiel G, Shamir A, Agam G, Greenberg ML. Human 1-D-myo-Inositol-3-phosphate Synthase Is Functional in Yeast. J Biol Chem 2004; 279:21759-65. [PMID: 15024000 DOI: 10.1074/jbc.m312078200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned, sequenced, and expressed a human cDNA encoding 1-d-myo-inositol-3-phosphate (MIP) synthase (hINO1). The encoded 62-kDa human enzyme converted d-glucose 6-phosphate to 1-d-myo-inositol 3-phosphate, the rate-limiting step for de novo inositol biosynthesis. Activity of the recombinant human MIP synthase purified from Escherichia coli was optimal at pH 8.0 at 37 degrees C and exhibited K(m) values of 0.57 mm and 8 microm for glucose 6-phosphate and NAD(+), respectively. NH(4)(+) and K(+) were better activators than other cations tested (Na(+), Li(+), Mg(2+), Mn(2+)), and Zn(2+) strongly inhibited activity. Expression of the protein in the yeast ino1Delta mutant lacking MIP synthase (ino1Delta/hINO1) complemented the inositol auxotrophy of the mutant and led to inositol excretion. MIP synthase activity and intracellular inositol were decreased about 35 and 25%, respectively, when ino1Delta/hINO1 was grown in the presence of a therapeutically relevant concentration of the anti-bipolar drug valproate (0.6 mm). However, in vitro activity of purified MIP synthase was not inhibited by valproate at this concentration, suggesting that inhibition by the drug is indirect. Because inositol metabolism may play a key role in the etiology and treatment of bipolar illness, functional conservation of the key enzyme in inositol biosynthesis underscores the power of the yeast model in studies of this disorder.
Collapse
Affiliation(s)
- Shulin Ju
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
9
|
Heyken WT, Wagner C, Wittmann J, Albrecht A, Schüller HJ. Negative regulation of phospholipid biosynthesis inSaccharomyces cerevisiaeby aCandida albicansorthologue ofOPI1. Yeast 2003; 20:1177-88. [PMID: 14587102 DOI: 10.1002/yea.1031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Structural genes of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae are coordinately regulated by a UAS element, designated ICRE (inositol/choline-responsive element). Opi1 is a negative regulator responsible for repression of ICRE-dependent genes in the presence of an excess of inositol and choline. Gene regulation by phospholipid precursors has been also reported for the pathogenic yeast Candida albicans. Screening of a data base containing raw sequences of the C. albicans genome project allowed us to identify an open reading frame exhibiting weak similarity to Opi1. Expression of the putative CaOPI1 in an opi1 mutant of S. cerevisiae could restore repression of an ICRE-dependent reporter gene. Similar to OPI1, overexpression of CaOPI1 strongly inhibited derepression of ICRE-driven genes leading to inositol-requiring transformants. Previous work has shown that Opi1 mediates gene repression by interaction with the pleiotropic repressor Sin3. The genome of C. albicans also encodes a protein similar to Sin3 (CaSin3). By two-hybrid analyses and in vitro studies for protein-protein interaction we were able to show that CaOpi1 binds to ScSin3. ScOpi1 could also interact with CaSin3, while CaOpi1 failed to bind to CaSin3. Despite of some conservation of regulatory mechanisms between both yeasts, these results suggest that repression of phospholipid biosynthetic genes in C. albicans is mediated by a mechanism which does not involve recruitment of CaSin3 by CaOpi1.
Collapse
Affiliation(s)
- Willm-Thomas Heyken
- Institut für Mikrobiologie, Abt. Genetik und Biochemie, Jahnstrasse 15a, D-17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
10
|
Lohia A, Hait NC, Majumder AL. L-myo-Inositol 1-phosphate synthase from Entamoeba histolytica. Mol Biochem Parasitol 1999; 98:67-79. [PMID: 10029310 DOI: 10.1016/s0166-6851(98)00147-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L-myo-Inositol 1-phosphate synthase (I-1-P synthase) catalyses the primary reaction for the synthesis of inositol in a variety of prokaryotes, eukaryotes and in the chloroplasts of algae and higher plants. Inositol is a precursor of essential macromolecules like membrane phospholipids, GPI anchor proteins and lipophosphoglycans, which play a determinant role in the pathogenesis of protozoan parasites such as Leishmania and Entamoeba. However, there is no report of I-1-P synthase or its gene from these organisms. The gene INO1 coding for this enzyme was first cloned from Saccharomyces cerevisiae and subsequently from several plants. Using molecular cloning techniques we have isolated and characterised the INO1 gene coding for the enzyme I-1-P synthase from Entamoeba histolytica. Simultaneously, we have purified and characterised the native enzyme from E. histolytica trophozoites and the cloned gene product from Escherichia coli. The gene product and the purified enzyme were both shown to be recognised by a heterologous anti-I-1-P synthase antibody from the phytoflagellate Euglena gracilis. Phylogenetic analysis of I-1-P synthase sequences from different eukaryotes suggest that it is highly conserved across species and the origin of this enzyme precedes the evolutionary divergence of modern eukaryotes.
Collapse
Affiliation(s)
- A Lohia
- Department of Biochemistry, Bose Institute Calcutta, India
| | | | | |
Collapse
|
11
|
Rivera-Gonzalez R, Petersen DN, Tkalcevic G, Thompson DD, Brown TA. Estrogen-induced genes in the uterus of ovariectomized rats and their regulation by droloxifene and tamoxifen. J Steroid Biochem Mol Biol 1998; 64:13-24. [PMID: 9569006 DOI: 10.1016/s0960-0760(97)00142-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification and characterization of estrogen regulated genes in reproductive tissues is an important step in understanding estrogen's mechanism of action in sexual development and neoplasia. It is also important, given the clinical interest, to evaluate the molecular effects of estrogen agonists/antagonists such as tamoxifen and droloxifene in reproductive tissues. In this report, our goal was to identify estrogen regulated genes in the uterus and to compare the regulation by estrogen and tamoxifen with that of droloxifene. A subtractive cDNA library strategy was developed to identify estrogen-regulated genes in the uteri of ovariectomized rats 4 h after treatment with 17-alpha-ethynyl estradiol (30 microg/kg). The mRNAs encoding 8 genes were confirmed by Northern blot analysis to be induced at early times following estrogen administration. Calcium binding protein 9 kDa and complement protein 3 are well characterized estrogen regulated genes that were identified in the library and served as markers for estrogen action. In addition, mRNAs encoding the interleukin 4 receptor, heat-shock protein 70 kDa, metallothionein, tumor necrosis factor regulated gene 6, inositol-1-monophosphate synthase, and cyr-61 were induced in the uterus by estrogen. The identified mRNAs were then examined for regulation by droloxifene (1 and 10 mg/kg, p.o.) and tamoxifen (10 mg/kg, p.o.). Both droloxifene and tamoxifen induced mRNA levels for all of these genes. However, clear quantitative and temporal differences were observed when comparing estrogen versus droloxifene versus tamoxifen. For example, estrogen induced IL4 receptor mRNA to a greater degree than did tamoxifen or droloxifene. Conversely, tamoxifen resulted in a much greater induction of cyr61 than did either estrogen or droloxifene. Droloxifene at 1 mg/kg, an efficacious dose for prevention of bone loss in this model, did not or only slightly induced the mRNA for all of the genes examined with the exception of cyr61. In conclusion, the modified subtractive library method used in this study proved to be efficient in the identification of estrogen-regulated genes in the uterus. The identities of the regulated genes were consistent with the concept that estrogen functions to prime uterine tissue for increased responsivity to extracellular signals such as growth factors and cytokines. Elucidating the physiological role of these newly identified estrogen responsive genes and the mechanisms responsible for the different responses to droloxifene versus estrogen and tamoxifen may be important in enhancing our understanding of tissue selective estrogen agonists/antagonists.
Collapse
Affiliation(s)
- R Rivera-Gonzalez
- Department of Molecular Sciences, Pfizer Central Research, Groton, CT 06340, USA
| | | | | | | | | |
Collapse
|
12
|
Majumder AL, Johnson MD, Henry SA. 1L-myo-inositol-1-phosphate synthase. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1348:245-56. [PMID: 9370339 DOI: 10.1016/s0005-2760(97)00122-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1L-myo-Inositol-1-phosphate synthase catalyzes the conversion of D-glucose 6-phosphate to 1L-myo-inositol-1-phosphate, the first committed step in the production of all inositol-containing compounds, including phospholipids, either directly or by salvage. The enzyme exists in a cytoplasmic form in a wide range of plants, animals, and fungi. It has also been detected in several bacteria and a chloroplast form is observed in alga and higher plants. The enzyme has been purified from a wide range of organisms and its active form is a multimer of identical subunits ranging in molecular weight from 58,000 to 67,000. The activity of the synthase is stimulated by NH4Cl and inhibited by glucitol 6-phosphate and 2-deoxyglucose 6-phosphate. Structural genes (INO1) encoding the 1L-myo-inositol-1-phosphate synthase subunit have been isolated from several eukaryotic microorganisms and higher plants. In baker's yeast, Saccharomyces cerevisiae, the transcriptional regulation of the INO1 gene has been studied in detail and its expression is sensitive to the availability of phospholipid precursors as well as growth phase. The regulation of the structural gene encoding 1L-myo-inositol-1-phosphate synthase has also been analyzed at the transcriptional level in the aquatic angiosperm, Spirodela polyrrhiza and the halophyte, Mesembryanthemum crystallinum.
Collapse
Affiliation(s)
- A L Majumder
- Department of Botany, Bose Institute, Calcutta, India
| | | | | |
Collapse
|
13
|
Katsoulou C, Tzermia M, Tavernarakis N, Alexandraki D. Sequence analysis of a 40·7 kb segment from the left arm of yeast chromosome X reveals 14 known genes and 13 new open reading frames including homologues of genes clustered on the right arm of chromosome XI. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(19960630)12:8<787::aid-yea954>3.0.co;2-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
14
|
Katsoulou C, Tzermia M, Tavernarakis N, Alexandraki D. Sequence analysis of a 40.7 kb segment from the left arm of yeast chromosome X reveals 14 known genes and 13 new open reading frames including homologues of genes clustered on the right arm of chromosome XI. Yeast 1996; 12:787-97. [PMID: 8813765 DOI: 10.1002/(sici)1097-0061(19960630)12:8%3c787::aid-yea954%3e3.0.co;2-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The complete nucleotide sequence of a 40.7 kb segment about 130 kb from the left end of chromosome X of Saccharomyces cerevisiae was determined from two overlapping cosmids. Computer analysis of that sequence revealed the presence of the previously known genes VPS35, INO1, SnR128, SnR190, MP12, YAK1, RPB4, YUR1, TIF2, MRS3 and URA2, three previously sequenced open reading frames (ORFs) of unknown function 5' of the INO1, 5' of the MP12 and 3' of the URA2 genes and 13 newly identified ORFs. One of the new ORFs is homologous to mammalian glycogenin glycosyltransferases and another has similarities to the human phospholipase D. Some others contain potential transmembrane regions or leucine zipper motifs. The existence of yeast expressed sequence tags for some of the newly identified ORFs indicates that they are transcribed. A cluster of six genes within 10 kb (YUR1, TIF2, two new ORFs, an RSP25 homologue and MRS3) have homologues arranged similarly within 28.5 kb on the right arm of chromosome XI.
Collapse
Affiliation(s)
- C Katsoulou
- Foundation for Research and Technology-HELLAS, Institute of Molecular Biology and Biotechnology, Crete, Greece
| | | | | | | |
Collapse
|
15
|
Greenberg ML, Lopes JM. Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 1996; 60:1-20. [PMID: 8852893 PMCID: PMC239415 DOI: 10.1128/mr.60.1.1-20.1996] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M L Greenberg
- Department of Molecular and Cellular Biochemistry and Program in Molecular Biology, Loyola University of Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|