1
|
Aw R, De Wachter C, Laukens B, De Rycke R, De Bruyne M, Bell D, Callewaert N, Polizzi KM. Knockout of RSN1, TVP18 or CSC1-2 causes perturbation of Golgi cisternae in Pichia pastoris. Traffic 2020; 22:48-63. [PMID: 33263222 DOI: 10.1111/tra.12773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022]
Abstract
The structural organization of the Golgi stacks in mammalian cells is intrinsically linked to function, including glycosylation, but the role of morphology is less clear in lower eukaryotes. Here we investigated the link between the structural organization of the Golgi and secretory pathway function using Pichia pastoris as a model system. To unstack the Golgi cisternae, we disrupted 18 genes encoding proteins in the secretory pathway without loss of viability. Using biosensors, confocal microscopy and transmission electron microscopy we identified three strains with irreversible perturbations in the stacking of the Golgi cisternae, all of which had disruption in genes that encode proteins with annotated function as or homology to calcium/calcium permeable ion channels. Despite this, no variation in the secretory pathway for ER size, whole cell glycomics or recombinant protein glycans was observed. Our investigations showed the robust nature of the secretory pathway in P. pastoris and suggest that Ca2+ concentration, homeostasis or signalling may play a significant role for Golgi stacking in this organism and should be investigated in other organisms.
Collapse
Affiliation(s)
- Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Charlot De Wachter
- VIB-UGent, Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bram Laukens
- VIB-UGent, Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research and BioImaging Core, Ghent, Belgium
| | - Michiel De Bruyne
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research and BioImaging Core, Ghent, Belgium
| | - David Bell
- Section for Structural Biology, Department of Medicine, Imperial College London, London, United Kingdom.,London Biofoundry, Imperial College London, London, United Kingdom
| | - Nico Callewaert
- VIB-UGent, Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Roy Chowdhury S, Bhattacharjee C, Casler JC, Jain BK, Glick BS, Bhattacharyya D. ER arrival sites associate with ER exit sites to create bidirectional transport portals. J Cell Biol 2020; 219:e201902114. [PMID: 32328626 PMCID: PMC7147096 DOI: 10.1083/jcb.201902114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/11/2019] [Accepted: 01/17/2020] [Indexed: 01/30/2023] Open
Abstract
COPI vesicles mediate Golgi-to-ER recycling, but COPI vesicle arrival sites at the ER have been poorly defined. We explored this issue using the yeast Pichia pastoris. ER arrival sites (ERAS) can be visualized by labeling COPI vesicle tethers such as Tip20. Our results place ERAS at the periphery of COPII-labeled ER export sites (ERES). The dynamics of ERES and ERAS are indistinguishable, indicating that these structures are tightly coupled. Displacement or degradation of Tip20 does not alter ERES organization, whereas displacement or degradation of either COPII or COPI components disrupts ERAS organization. We infer that Golgi compartments form at ERES and then produce COPI vesicles to generate ERAS. As a result, ERES and ERAS are functionally linked to create bidirectional transport portals at the ER-Golgi interface. COPI vesicles likely become tethered while they bud, thereby promoting efficient retrograde transport. In mammalian cells, the Tip20 homologue RINT1 associates with ERES, indicating possible conservation of the link between ERES and ERAS.
Collapse
Affiliation(s)
- Sudeshna Roy Chowdhury
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Chumki Bhattacharjee
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Jason C. Casler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Bhawik Kumar Jain
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Benjamin S. Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Dibyendu Bhattacharyya
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
3
|
Jain BK, Dahara R, Bhattacharyya D. The golgin PpImh1 mediates reversible cisternal stacking in the Golgi of the budding yeast Pichia pastoris. J Cell Sci 2019; 132:jcs.230672. [PMID: 31391238 DOI: 10.1242/jcs.230672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/22/2019] [Indexed: 11/20/2022] Open
Abstract
The adhesive force for cisternal stacking of Golgi needs to be reversible - to be initiated and undone in a continuous cycle to keep up with the cisternal maturation. Microscopic evidence in support of such a reversible nature of stacking, in the form of 'TGN peeling,' has been reported in various species, suggesting a potential evolutionarily conserved mechanism. However, knowledge of such mechanism has remained sketchy. Here, we have explored this issue in the budding yeast Pichia pastoris which harbors stacked Golgi. We observed that deletion of GRIP domain golgin P. pastoris (Pp)IMH1 increases the peeling of late cisterna, causing unstacking of the Golgi stack. Our results suggest that the PpImh1 dimer mediates reversible stacking through a continuous association-dissociation cycle of its GRIP domain to the middle and late Golgi cisterna under the GTP hydrolysis-based regulation of Arl3-Arl1 GTPase cascade switch. The reversible cisternal stacking function of PpImh1 is independent of its vesicle-capturing function. Since GRIP domain proteins are conserved in plants, animals and fungi, it is plausible that this reversible mechanism of Golgi stacking is evolutionarily conserved.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bhawik Kumar Jain
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210 MH, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH 400085, India
| | - Roma Dahara
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210 MH, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH 400085, India
| | - Dibyendu Bhattacharyya
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210 MH, India .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH 400085, India
| |
Collapse
|