1
|
Csizmadia T, Dósa A, Farkas E, Csikos BV, Kriska EA, Juhász G, Lőw P. Developmental program-independent secretory granule degradation in larval salivary gland cells of Drosophila. Traffic 2022; 23:568-586. [PMID: 36353974 PMCID: PMC10099382 DOI: 10.1111/tra.12871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Both constitutive and regulated secretion require cell organelles that are able to store and release the secretory cargo. During development, the larval salivary gland of Drosophila initially produces high amount of glue-containing small immature secretory granules, which then fuse with each other and reach their normal 3-3.5 μm in size. Following the burst of secretion, obsolete glue granules directly fuse with late endosomes or lysosomes by a process called crinophagy, which leads to fast degradation and recycling of the secretory cargo. However, hindering of endosome-to-TGN retrograde transport in these cells causes abnormally small glue granules which are not able to fuse with each other. Here, we show that loss of function of the SNARE genes Syntaxin 16 (Syx16) and Synaptobrevin (Syb), the small GTPase Rab6 and the GARP tethering complex members Vps53 and Scattered (Vps54) all involved in retrograde transport cause intense early degradation of immature glue granules via crinophagy independently of the developmental program. Moreover, silencing of these genes also provokes secretory failure and accelerated crinophagy during larval development. Our results provide a better understanding of the relations among secretion, secretory granule maturation and degradation and paves the way for further investigation of these connections in other metazoans.
Collapse
Affiliation(s)
- Tamás Csizmadia
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Anna Dósa
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Erika Farkas
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Belián Valentin Csikos
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Eszter Adél Kriska
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary.,Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Péter Lőw
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Ng BG, Eklund EA, Shiryaev SA, Dong YY, Abbott MA, Asteggiano C, Bamshad MJ, Barr E, Bernstein JA, Chelakkadan S, Christodoulou J, Chung WK, Ciliberto MA, Cousin J, Gardiner F, Ghosh S, Graf WD, Grunewald S, Hammond K, Hauser NS, Hoganson GE, Houck KM, Kohler JN, Morava E, Larson AA, Liu P, Madathil S, McCormack C, Meeks NJ, Miller R, Monaghan KG, Nickerson DA, Palculict TB, Papazoglu GM, Pletcher BA, Scheffer IE, Schenone AB, Schnur RE, Si Y, Rowe LJ, Serrano Russi AH, Russo RS, Thabet F, Tuite A, Mercedes Villanueva M, Wang RY, Webster RI, Wilson D, Zalan A, Wolfe LA, Rosenfeld JA, Rhodes L, Freeze HH. Predominant and novel de novo variants in 29 individuals with ALG13 deficiency: Clinical description, biomarker status, biochemical analysis, and treatment suggestions. J Inherit Metab Dis 2020; 43:1333-1348. [PMID: 32681751 PMCID: PMC7722193 DOI: 10.1002/jimd.12290] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Asparagine-linked glycosylation 13 homolog (ALG13) encodes a nonredundant, highly conserved, X-linked uridine diphosphate (UDP)-N-acetylglucosaminyltransferase required for the synthesis of lipid linked oligosaccharide precursor and proper N-linked glycosylation. De novo variants in ALG13 underlie a form of early infantile epileptic encephalopathy known as EIEE36, but given its essential role in glycosylation, it is also considered a congenital disorder of glycosylation (CDG), ALG13-CDG. Twenty-four previously reported ALG13-CDG cases had de novo variants, but surprisingly, unlike most forms of CDG, ALG13-CDG did not show the anticipated glycosylation defects, typically detected by altered transferrin glycosylation. Structural homology modeling of two recurrent de novo variants, p.A81T and p.N107S, suggests both are likely to impact the function of ALG13. Using a corresponding ALG13-deficient yeast strain, we show that expressing yeast ALG13 with either of the highly conserved hotspot variants rescues the observed growth defect, but not its glycosylation abnormality. We present molecular and clinical data on 29 previously unreported individuals with de novo variants in ALG13. This more than doubles the number of known cases. A key finding is that a vast majority of the individuals presents with West syndrome, a feature shared with other CDG types. Among these, the initial epileptic spasms best responded to adrenocorticotropic hormone or prednisolone, while clobazam and felbamate showed promise for continued epilepsy treatment. A ketogenic diet seems to play an important role in the treatment of these individuals.
Collapse
Affiliation(s)
- Bobby G. Ng
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Erik A. Eklund
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, Lund, Sweden
| | - Sergey A. Shiryaev
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yin Y. Dong
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mary-Alice Abbott
- Department of Pediatrics, Baystate Children’s Hospital, University of Massachusetts Medical School - Baystate, Springfield, Massachusetts
| | - Carla Asteggiano
- CEMECO—CONICET, Children Hospital, School of Medicine, National University of Cordoba, Cordoba, Argentina
- Chair of Pharmacology, Catholic University of Cordoba, Cordoba, Argentina
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Eileen Barr
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Jonathan A. Bernstein
- Stanford University School of Medicine, Stanford, California
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | | | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, New York
- Department of Medicine, Columbia University, New York, New York
| | - Michael A. Ciliberto
- Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Janice Cousin
- Section of Human Biochemical Genetics, National Human Genome Research Institute, Bethesda, Maryland
| | - Fiona Gardiner
- University of Melbourne, Austin Health, Melbourne, Australia
| | - Suman Ghosh
- Department of Pediatrics Division of Pediatric Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - William D. Graf
- Division of Pediatric Neurology, Department of Pediatrics, Connecticut Children’s; University of Connecticut, Farmington, Connecticut
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital, Institute of Child Health University College London, NIHR Biomedical Research Center, London, UK
| | - Katherine Hammond
- Division of Pediatric Neurology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Natalie S. Hauser
- Inova Translational Medicine Institute Division of Medical Genomics Inova Fairfax Hospital Falls Church, Virginia
| | - George E. Hoganson
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Kimberly M. Houck
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Jennefer N. Kohler
- Stanford University School of Medicine, Stanford, California
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Austin A. Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | - Sujana Madathil
- Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Colleen McCormack
- Stanford University School of Medicine, Stanford, California
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Naomi J.L. Meeks
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Rebecca Miller
- Inova Translational Medicine Institute Division of Medical Genomics Inova Fairfax Hospital Falls Church, Virginia
| | | | | | | | - Gabriela Magali Papazoglu
- CEMECO—CONICET, Children Hospital, School of Medicine, National University of Cordoba, Cordoba, Argentina
| | - Beth A. Pletcher
- Department of Pediatrics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Ingrid E. Scheffer
- University of Melbourne, Austin Health, Melbourne, Australia
- University of Melbourne, Royal Children’s Hospital, Florey and Murdoch Institutes, Melbourne, Australia
| | | | | | - Yue Si
- GeneDx, Inc. Laboratory, Gaithersburg, Maryland
| | - Leah J. Rowe
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Alvaro H. Serrano Russi
- Division of Medical Genetics Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | - Allysa Tuite
- Department of Pediatrics, Rutgers New Jersey Medical School, Newark, New Jersey
| | | | - Raymond Y. Wang
- Division of Metabolic Disorders, Children’s Hospital of Orange County, Orange, California
- Department of Pediatrics, University of California-Irvine, Orange, California
| | - Richard I. Webster
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital, Westmead, Australia
- Kids Neuroscience Centre, The Children’s Hospital, Westmead, Australia
| | - Dorcas Wilson
- Netcare Sunninghill Hospital, Sandton, South Africa
- Nelson Mandela Children’s Hospital, Johannesburg, South Africa
| | - Alice Zalan
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | | | - Lynne A. Wolfe
- Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, Maryland
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | | | - Hudson H. Freeze
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
3
|
Okai H, Ikema R, Nakamura H, Kato M, Araki M, Mizuno A, Ikeda A, Renbaum P, Segel R, Funato K. Cold‐sensitive phenotypes of a yeast null mutant of ARV1 support its role as a GPI flippase. FEBS Lett 2020; 594:2431-2439. [DOI: 10.1002/1873-3468.13843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Haruka Okai
- School of Applied Biological Science Hiroshima University Higashi‐Hiroshima Japan
| | - Ryoko Ikema
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Hiroki Nakamura
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - Mei Kato
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Misako Araki
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Ayumi Mizuno
- School of Applied Biological Science Hiroshima University Higashi‐Hiroshima Japan
| | - Atsuko Ikeda
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - Paul Renbaum
- Medical Genetics Institute Shaare Zedek Medical Center Jerusalem Israel
| | - Reeval Segel
- Medical Genetics Institute Shaare Zedek Medical Center Jerusalem Israel
| | - Kouichi Funato
- School of Applied Biological Science Hiroshima University Higashi‐Hiroshima Japan
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| |
Collapse
|
4
|
Zhao SB, Suda Y, Nakanishi H, Wang N, Yoko-O T, Gao XD, Fujita M. Yeast Dop1 is required for glycosyltransferase retrieval from the trans-Golgi network. Biochim Biophys Acta Gen Subj 2019; 1863:1147-1157. [PMID: 30981741 DOI: 10.1016/j.bbagen.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glycosyltransferases are type II membrane proteins that are responsible for glycan modification of proteins and lipids, and localize to distinct cisternae in the Golgi apparatus. During cisternal maturation, retrograde trafficking helps maintain the steady-state localization of these enzymes in the sub-compartments of the Golgi. METHODS To understand how glycosyltransferases are recycled in the late Golgi complex, we searched for genes that are essential for budding yeast cell growth and that encode proteins localized in endosomes and in the Golgi. We specifically analyzed the roles of Dop1 and its binding partner Neo1 in retaining Golgi-resident glycosyltransferases, in the late Golgi complex. RESULTS Dop1 primarily localized to younger compartments of the trans-Golgi network (TGN) and seemed to cycle within the TGN. In contrast, Neo1, a P4-ATPase that interacts with Dop1, localized to the TGN. Abolition of DOP1 expression led to defects in the FM4-64 endocytic pathway. Dop1 and Neo1 were required for correct glycosylation of invertase, a secretory protein, at the Golgi. In DOP1-shutdown cells, Och1, a mannosyltransferase that is typically located in the cis-Golgi, mislocalized to the TGN. In addition, the function of multiple glycosyltransferases required for N- and O-glycosylation were impaired in DOP1-shutdown cells. CONCLUSIONS Our results indicate that Dop1 is involved in vesicular transport at the TGN, and is critical for retrieving glycosyltransferases from the TGN to the Golgi in yeast. GENERAL SIGNIFICANCE Golgi-resident glycosyltransferases recycling from the TGN to the Golgi is dependent on Dop1 and the P4-ATPase Neo1.
Collapse
Affiliation(s)
- Shen-Bao Zhao
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan; Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Takehiko Yoko-O
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Chen SH, Shah AH, Segev N. Ypt31/32 GTPases and their F-Box effector Rcy1 regulate ubiquitination of recycling proteins. CELLULAR LOGISTICS 2014; 1:21-31. [PMID: 21686101 DOI: 10.4161/cl.1.1.14695] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 11/19/2022]
Abstract
Ypt/Rab GTPases are conserved molecular switches that regulate the different steps of intracellular trafficking pathways. In yeast, the Ypt31/32 GTPases are required for exit from the trans-Golgi and for recycling from the plasma membrane (PM), through early endosomes, to the Golgi. We have previously shown that the recycling function of Ypt31/32 is mediated by an effector called Rcy1. Specifically, both Ypt31/32 and Rcy1 are required for recycling the vSNARE Snc1. Rcy1 contains an F-box domain shared by proteins that act in substrate recognition of ubiquitin ligases. Here, we show that both Ypt31/32 and Rcy1 are important for Snc1 ubiquitination and that such ubiquitination plays a role in Snc1 recycling. Direct interaction between Rcy1 and Snc1 was demonstrated using two independent approaches. In vitro interaction was observed using co-precipitation of recombinant proteins, whereas interaction in yeast cells was observed using bimolecular fluorescence complementation. Ubiquitination of Snc1 in vivo at the K63 position was previously shown in a proteomic study. We show that the Snc1-K63R mutant protein is less ubquitinated than wild-type Snc1 and is defective in endosome-to-Golgi transport. Additionally, wild-type Snc1 is ubiquitinated to a lesser extent in ypt31/32ts and rcy1Δ mutant cells and Snc1 recycling is also blocked in endosomes in these mutants. Therefore, ubiquitination plays a role in the recycling of Snc1 from the PM to the Golgi, and Ypt31/32 and Rcy1 regulate this ubiquitination. Together, these results suggest a new role for ubiquitination in cargo recycling. Moreover, we propose that Ypt/Rabs integrate intra-cellular trafficking with ubiquitination.
Collapse
Affiliation(s)
- Shu H Chen
- Department of Biological Sciences; Laboratory for Molecular Biology; University of Illinois at Chicago; Chicago, IL USA
| | | | | |
Collapse
|
6
|
Mammalian Mon2/Ysl2 regulates endosome-to-Golgi trafficking but possesses no guanine nucleotide exchange activity toward Arl1 GTPase. Sci Rep 2013; 3:3362. [PMID: 24285343 PMCID: PMC3842536 DOI: 10.1038/srep03362] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/08/2022] Open
Abstract
Arl1 is a member of Arf family small GTPases that is essential for the organization and function of Golgi complex. Mon2/Ysl2, which shares significant homology with Sec7 family Arf guanine nucleotide exchange factors, was poorly characterized in mammalian cells. Here, we report the first in depth characterization of mammalian Mon2. We found that Mon2 localized to trans-Golgi network which was dependent on both its N and C termini. The depletion of Mon2 did not affect the Golgi localized or cellular active form of Arl1. Furthermore, our in vitro assay demonstrated that recombinant Mon2 did not promote guanine nucleotide exchange of Arl1. Therefore, our results suggest that Mon2 could be neither necessary nor sufficient for the guanine nucleotide exchange of Arl1. We demonstrated that Mon2 was involved in endosome-to-Golgi trafficking as its depletion accelerated the delivery of furin and CI-M6PR to Golgi after endocytosis.
Collapse
|
7
|
Shcherbik N. Golgi-mediated glycosylation determines residency of the T2 RNase Rny1p in Saccharomyces cerevisiae. Traffic 2013; 14:1209-27. [PMID: 24102742 DOI: 10.1111/tra.12122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 12/20/2022]
Abstract
The role of glycosylation in the function of the T2 family of RNases is not well understood. In this work, we examined how glycosylation affects the progression of the T2 RNase Rny1p through the secretory pathway in Saccharomyces cerevisiae. We found that Rny1p requires entering into the ER first to become active and uses the adaptor protein Erv29p for packaging into COPII vesicles and transport to the Golgi apparatus. While inside the ER, Rny1p undergoes initial N-linked core glycosylation at four sites, N37, N70, N103 and N123. Rny1p transport to the Golgi results in the further attachment of high-glycans. Whereas modifications with glycans are dispensable for the nucleolytic activity of Rny1p, Golgi-mediated modifications are critical for its extracellular secretion. Failure of Golgi-specific glycosylation appears to direct Rny1p to the vacuole as an alternative destination and/or site of terminal degradation. These data reveal a previously unknown function of Golgi glycosylation in a T2 RNase as a sorting and secretion signal.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA.
| |
Collapse
|
8
|
Yeast as a model system for studying lipid homeostasis and function. FEBS Lett 2012; 586:2858-67. [DOI: 10.1016/j.febslet.2012.07.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/11/2012] [Indexed: 12/14/2022]
|
9
|
Cohen MM, Amiott EA, Day AR, Leboucher GP, Pryce EN, Glickman MH, McCaffery JM, Shaw JM, Weissman AM. Sequential requirements for the GTPase domain of the mitofusin Fzo1 and the ubiquitin ligase SCFMdm30 in mitochondrial outer membrane fusion. J Cell Sci 2011; 124:1403-10. [PMID: 21502136 DOI: 10.1242/jcs.079293] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of cells to respire requires that mitochondria undergo fusion and fission of their outer and inner membranes. The means by which levels of fusion 'machinery' components are regulated and the molecular details of how fusion occurs are largely unknown. In Saccharomyces cerevisiae, a central component of the mitochondrial outer membrane (MOM) fusion machinery is the mitofusin Fzo1, a dynamin-like GTPase. We demonstrate that an early step in fusion, mitochondrial tethering, is dependent on the Fzo1 GTPase domain. Furthermore, the ubiquitin ligase SCF(Mdm30) (a SKP1-cullin-1-F-box complex that contains Mdm30 as the F-box protein), which targets Fzo1 for ubiquitylation and proteasomal degradation, is recruited to Fzo1 as a consequence of a GTPase-domain-dependent alteration in the mitofusin. Moreover, evidence is provided that neither Mdm30 nor proteasome activity are necessary for tethering of mitochondria. However, both Mdm30 and proteasomes are critical for MOM fusion. To better understand the requirement for the ubiquitin-proteasome system in mitochondrial fusion, we used the N-end rule system of degrons and determined that ongoing degradation of Fzo1 is important for mitochondrial morphology and respiration. These findings suggest a sequence of events in early mitochondrial fusion where Fzo1 GTPase-domain-dependent tethering leads to recruitment of SCF(Mdm30) and ubiquitin-mediated degradation of Fzo1, which facilitates mitochondrial fusion.
Collapse
|
10
|
Liu Y, Nakatsukasa K, Kotera M, Kanada A, Nishimura T, Kishi T, Mimura S, Kamura T. Non-SCF-type F-box protein Roy1/Ymr258c interacts with a Rab5-like GTPase Ypt52 and inhibits Ypt52 function. Mol Biol Cell 2011; 22:1575-84. [PMID: 21389113 PMCID: PMC3084679 DOI: 10.1091/mbc.e10-08-0716] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Skp1/Cul1/F-box (SCF)-type F-box proteins are a component of the Cullin-RING SCF ubiquitin E3 ligase, which is involved in numerous cellular processes. However, the function of non-SCF-type F-box proteins remains largely unknown. The Rab5-like small guanosine 5'-triphosphatase Vps21/Ypt51 is a key regulator of intracellular transportation; however, deletion of its isoforms, Ypt52 and Ypt53, results in only a modest inhibition of intracellular trafficking. The function of these proteins therefore remains largely elusive. Here we analyze the role of a previously uncharacterized non-SCF-type F-box protein, Roy1/Ymr258c, in cell growth and intracellular transport in Saccharomyces cerevisiae. Roy1 binds to Ypt52 under physiological conditions, and Skp1 is indispensable for the association of Roy1 with Ypt52. The vps21Δ yeast cells exhibit severe deficiencies in cell growth and intracellular trafficking, whereas simultaneous deletion of roy1 alleviates the defects caused by deletion of vps21. However, additional disruption of ypt52 in roy1Δvps21Δ cells largely suppresses the cell growth and trafficking observed in roy1Δvps21Δ cells. We demonstrate that Roy1 interacts with guanosine 5'-diphosphate-bound and nucleotide-free Ypt52 and thereby inhibits the formation of guanosine 5'-triphosphate-bound, active Ypt52. These results thus indicate that Roy1 negatively modulates cell viability and intracellular transport by suppressing Ypt52.
Collapse
Affiliation(s)
- Yuan Liu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Couthouis J, Marchal C, D'Angelo F, Berthelot K, Cullin C. The toxicity of an "artificial" amyloid is related to how it interacts with membranes. Prion 2010; 4:283-91. [PMID: 21057225 DOI: 10.4161/pri.4.4.13126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite intensive research into how amyloid structures can impair cellular viability, the molecular nature of these toxic species and the cellular mechanisms involved are not clearly defined and may differ from one disease to another. We systematically analyzed, in Saccharomyces cerevisiae, genes that increase the toxicity of an amyloid (M8), previously selected in yeast on the sole basis of its cellular toxicity (and consequently qualified as "artificial"). This genomic screening identified the Vps-C HOPS (homotypic vacuole fusion and protein sorting) complex as a key-player in amyloid toxicity. This finding led us to analyze further the phenotype induced by M8 expression. M8-expressing cells displayed an identical phenotype to vps mutants in terms of endocytosis, vacuolar morphology and salt sensitivity. The direct and specific interaction between M8 and lipids reinforces the role of membrane formation in toxicity due to M8. Together these findings suggest a model in which amyloid toxicity results from membrane fission.
Collapse
Affiliation(s)
- Julien Couthouis
- IBGC, UMR 5095, CNRS, Université Bordeaux 2 Victor Segalen, Bordeaux, France
| | | | | | | | | |
Collapse
|
12
|
Amiott EA, Cohen MM, Saint-Georges Y, Weissman AM, Shaw JM. A mutation associated with CMT2A neuropathy causes defects in Fzo1 GTP hydrolysis, ubiquitylation, and protein turnover. Mol Biol Cell 2009; 20:5026-35. [PMID: 19812251 DOI: 10.1091/mbc.e09-07-0622] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Charcot-Marie-Tooth disease type 2A (CMT2A) is caused by mutations in the gene MFN2 and is one of the most common inherited peripheral neuropathies. Mfn2 is one of two mammalian mitofusin GTPases that promote mitochondrial fusion and maintain organelle integrity. It is not known how mitofusin mutations cause axonal degeneration and CMT2A disease. We used the conserved yeast mitofusin FZO1 to study the molecular consequences of CMT2A mutations on Fzo1 function in vivo and in vitro. One mutation (analogous to the CMT2A I213T substitution in the GTPase domain of Mfn2) not only abolishes GTP hydrolysis and mitochondrial membrane fusion but also reduces Mdm30-mediated ubiquitylation and degradation of the mutant protein. Importantly, complexes of wild type and the mutant Fzo1 protein are GTPase active and restore ubiquitylation and degradation of the latter. These studies identify diverse and unexpected effects of CMT2A mutations, including a possible role for mitofusin ubiquitylation and degradation in CMT2A pathogenesis, and provide evidence for a novel link between Fzo1 GTP hydrolysis, ubiquitylation, and mitochondrial fusion.
Collapse
Affiliation(s)
- Elizabeth A Amiott
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
13
|
Liu Y, Mimura S, Kishi T, Kamura T. A longevity protein, Lag2, interacts with SCF complex and regulates SCF function. EMBO J 2009; 28:3366-77. [PMID: 19763088 DOI: 10.1038/emboj.2009.268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 08/13/2009] [Indexed: 11/09/2022] Open
Abstract
SCF-type E3-ubiquitin ligases control numerous cellular processes through the ubiquitin-proteasome pathway. However, the regulation of SCF function remains largely uncharacterized. Here, we report a novel SCF complex-interacting protein, Lag2, in Saccharomyces cerevisiae. Lag2 interacts with the SCF complex under physiological conditions. Lag2 negatively controls the ubiquitylation activities of SCF E3 ligase by interrupting the association of Cdc34 to SCF complex. Overexpression of Lag2 increases unrubylated Cdc53, whereas deletion of lag2, together with the deletions of dcn1 and jab1, results in the accumulation of Rub1-modified Cdc53. In vitro rubylation assays show that Lag2 inhibits the conjugation of Rub1 to Cdc53 in competition with Dcn1, which suggest that Lag2 down-regulates the rubylation of Cdc53 rather than promoting derubylation. Furthermore, Dcn1 hinders the association of Lag2 to Cdc53 in vivo. Finally, the deletion of lag2 combined with the deletion of either dcn1 or rub1 suppresses the growth of yeast cells. These observations thus indicate that Lag2 has a significant function in regulating the SCF complex by controlling its ubiquitin ligase activities and its rubylation cycle.
Collapse
Affiliation(s)
- Yuan Liu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Aichi, Japan
| | | | | | | |
Collapse
|
14
|
Anand VC, Daboussi L, Lorenz TC, Payne GS. Genome-wide analysis of AP-3-dependent protein transport in yeast. Mol Biol Cell 2008; 20:1592-604. [PMID: 19116312 DOI: 10.1091/mbc.e08-08-0819] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The evolutionarily conserved adaptor protein-3 (AP-3) complex mediates cargo-selective transport to lysosomes and lysosome-related organelles. To identify proteins that function in AP-3-mediated transport, we performed a genome-wide screen in Saccharomyces cerevisiae for defects in the vacuolar maturation of alkaline phosphatase (ALP), a cargo of the AP-3 pathway. Forty-nine gene deletion strains were identified that accumulated precursor ALP, many with established defects in vacuolar protein transport. Maturation of a vacuolar membrane protein delivered via a separate, clathrin-dependent pathway, was affected in all strains except those with deletions of YCK3, encoding a vacuolar type I casein kinase; SVP26, encoding an endoplasmic reticulum (ER) export receptor for ALP; and AP-3 subunit genes. Subcellular fractionation and fluorescence microscopy revealed ALP transport defects in yck3Delta cells. Characterization of svp26Delta cells revealed a role for Svp26p in ER export of only a subset of type II membrane proteins. Finally, ALP maturation kinetics in vac8Delta and vac17Delta cells suggests that vacuole inheritance is important for rapid generation of proteolytically active vacuolar compartments in daughter cells. We propose that the cargo-selective nature of the AP-3 pathway in yeast is achieved by AP-3 and Yck3p functioning in concert with machinery shared by other vacuolar transport pathways.
Collapse
Affiliation(s)
- Vikram C Anand
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
15
|
Erpapazoglou Z, Froissard M, Nondier I, Lesuisse E, Haguenauer-Tsapis R, Belgareh-Touzé N. Substrate- and ubiquitin-dependent trafficking of the yeast siderophore transporter Sit1. Traffic 2008; 9:1372-91. [PMID: 18489705 DOI: 10.1111/j.1600-0854.2008.00766.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eukaryotic plasma membrane transporters are subjected to a tightly regulated intracellular trafficking. The yeast siderophore iron transporter1 (Sit1) displays substrate-regulated trafficking. It is targeted to the plasma membrane or to a vacuolar degradative pathway when synthesized in the presence or absence of external substrate, respectively. Sorting of Sit1 to the vacuolar pathway is dependent on the clathrin adaptor Gga2, and more specifically on its C-GAT subdomain. Plasma membrane undergoes substrate-induced ubiquitylation dependent on the Rsp5 ubiquitin protein ligase. Sit1 is also ubiquitylated in an Rsp5-dependent manner in internal compartments when expressed in the absence of substrate. In several rsp5 mutants including cells deleted for RSP5, Sit1 expressed in the absence of substrate is correctly targeted to the endosomal pathway but its sorting to multivesicular bodies (MVBs) is impaired. Consequently, it displays endosome to plasma membrane targeting, with kinetics similar to those observed in vps mutants defective for MVB sorting. Plasma membrane Sit1 is modified by Lys63-linked ubiquitin chains. We also show for the first time in yeast that modification by this latter type of ubiquitin chains is required directly or indirectly for efficient MVB sorting, as it is for efficient internalization at the plasma membrane.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Département de Biologie Cellulaire, Laboratoire Trafic Intracellulaire des Protéines dans la Levure, Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 6 et 7, 75251 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
16
|
Cohen MMJ, Leboucher GP, Livnat-Levanon N, Glickman MH, Weissman AM. Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion. Mol Biol Cell 2008; 19:2457-64. [PMID: 18353967 DOI: 10.1091/mbc.e08-02-0227] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mitochondrion is a dynamic membranous network whose morphology is conditioned by the equilibrium between ongoing fusion and fission of mitochondrial membranes. In the budding yeast, Saccharomyces cerevisiae, the transmembrane GTPase Fzo1p controls fusion of mitochondrial outer membranes. Deletion or overexpression of Fzo1p have both been shown to alter the mitochondrial fusion process indicating that maintenance of steady-state levels of Fzo1p are required for efficient mitochondrial fusion. Cellular levels of Fzo1p are regulated through degradation of Fzo1p by the F-box protein Mdm30p. How Mdm30p promotes degradation of Fzo1p is currently unknown. We have now determined that during vegetative growth Mdm30p mediates ubiquitylation of Fzo1p and that degradation of Fzo1p is an ubiquitin-proteasome-dependent process. In vivo, Mdm30p associates through its F-box motif with other core components of Skp1-Cullin-F-box (SCF) ubiquitin ligases. We show that the resulting SCF(Mdm30p) ligase promotes ubiquitylation of Fzo1p at mitochondria and its subsequent degradation by the 26S proteasome. These results provide the first demonstration that a cytosolic ubiquitin ligase targets a critical regulatory molecule at the mitochondrial outer membrane. This study provides a framework for developing an understanding of the function of Mdm30p-mediated Fzo1p degradation in the multistep process of mitochondrial fusion.
Collapse
Affiliation(s)
- Mickael M J Cohen
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
17
|
Bugnicourt A, Mari M, Reggiori F, Haguenauer-Tsapis R, Galan JM. Irs4p and Tax4p: two redundant EH domain proteins involved in autophagy. Traffic 2008; 9:755-69. [PMID: 18298591 DOI: 10.1111/j.1600-0854.2008.00715.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins carrying EPS15 homology (EH) domains are present from yeast to mammals. The characterized members of this protein family are all involved in intracellular trafficking, typically endocytosis and endocytic recycling. We focused on two members of this family in Saccharomyces cerevisiae Irs4p and Tax4p, whose functions are less well characterized. We show that the deletion of IRS4 altered the function of a neighboring gene, VPS51, involved in endocytic recycling. The irs4Deltatax4Delta cells complemented for the loss of Vps51p (irs4Deltatax4Delta*) display no defects in endocytosis and endosomal recycling, clearly differentiating these two EH proteins from the other protein family members. Because Irs4p is phosphorylated when autophagy is induced, we studied the potential role of these two proteins in this latter process. We observed a loss of viability upon starvation in irs4Deltatax4Delta* cells because of a delay in bulk autophagy. Irs4p and Tax4p are also required for pexophagy but not for the cytoplasm-to-vacuole pathway. In growing cells, Irs4p and Tax4p colocalized to few cytoplasmic puncta distinct from endosomes and Golgi compartments. In conditions inducing autophagy, Irs4p and Tax4p partially localized to the pre-autophagosomal structure (PAS) and are required to efficiently recruit to the PAS Atg17p, a factor modulating the autophagic response. We propose that Irs4p and Tax4p are two redundant modulators of the autophagic processes acting upstream from Atg17p, possibly in the signaling events leading to the activation of the autophagic machinery in response to starvation.
Collapse
Affiliation(s)
- Amandine Bugnicourt
- Institut Jacques Monod-CNRS, Universités Paris 6 and 7, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
18
|
Huang J, Reggiori F, Klionsky DJ. The transmembrane domain of acid trehalase mediates ubiquitin-independent multivesicular body pathway sorting. Mol Biol Cell 2007; 18:2511-24. [PMID: 17475771 PMCID: PMC1924822 DOI: 10.1091/mbc.e06-11-0995] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Trehalose serves as a storage source of carbon and plays important roles under various stress conditions. For example, in many organisms trehalose has a critical function in preserving membrane structure and fluidity during dehydration/rehydration. In the yeast Saccharomyces cerevisiae, trehalose accumulates in the cell when the nutrient supply is limited but is rapidly degraded when the supply of nutrients is renewed. Hydrolysis of trehalose in yeast depends on neutral trehalase and acid trehalase (Ath1). Ath1 resides and functions in the vacuole; however, it appears to catalyze the hydrolysis of extracellular trehalose. Little is known about the transport route of Ath1 to the vacuole or how it encounters its substrate. Here, through the use of various trafficking mutants we showed that this hydrolase reaches its final destination through the multivesicular body (MVB) pathway. In contrast to the vast majority of proteins sorted into this pathway, Ath1 does not require ubiquitination for proper localization. Mutagenesis analyses aimed at identifying the unknown targeting signal revealed that the transmembrane domain of Ath1 contains the information sufficient for its selective sequestration into MVB internal vesicles.
Collapse
Affiliation(s)
- Ju Huang
- Life Sciences Institute and Departments of Molecular, Cellular, and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Fulvio Reggiori
- Life Sciences Institute and Departments of Molecular, Cellular, and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Daniel J. Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular, and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
19
|
Kanjou N, Nagao A, Ohmiya Y, Ohgiya S. Yeast mutant with efficient secretion identified by a novel secretory reporter, Cluc. Biochem Biophys Res Commun 2007; 358:429-34. [PMID: 17490612 DOI: 10.1016/j.bbrc.2007.04.140] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 04/18/2007] [Indexed: 11/29/2022]
Abstract
Yeast is an important host for the production of pharmaceutical or industrial proteins by virtue of its genetic information and easy handling. A number of heterologous proteins have been produced and purified from yeast cell cultures as secreted forms. Here, we describe a novel screening system of Saccharomyces cerevisiae and its application to improve the secretion efficiency of yeast. In our system, a natural secretory luciferase from Cypridina noctiluca is used as a reporter enzyme. The accumulation of enzymatically active luciferase in culture medium makes it possible to screen many samples simultaneously in a simple and sensitive assay. Using this system, we have discovered that the deletion mutant of MON2, which encoded a scaffold protein for vesicle formation located at the late Golgi, secreted luciferase highly efficiently to the extracellular space. Thus, we conclude that this new reporter assay is useful for the improvement and screening of yeast secretory strains.
Collapse
Affiliation(s)
- Naoko Kanjou
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-Higashi, Sapporo, Japan.
| | | | | | | |
Collapse
|
20
|
Maier P, Rathfelder N, Finkbeiner MG, Taxis C, Mazza M, Panse SL, Haguenauer-Tsapis R, Knop M. Cytokinesis in yeast meiosis depends on the regulated removal of Ssp1p from the prospore membrane. EMBO J 2007; 26:1843-52. [PMID: 17347652 PMCID: PMC1847655 DOI: 10.1038/sj.emboj.7601621] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 01/26/2007] [Indexed: 01/21/2023] Open
Abstract
Intracellular budding is a developmentally regulated type of cell division common to many fungi and protists. In Saccaromyces cerevisiae, intracellular budding requires the de novo assembly of membranes, the prospore membranes (PSMs) and occurs during spore formation in meiosis. Ssp1p is a sporulation-specific protein that has previously been shown to localize to secretory vesicles and to recruit the leading edge protein coat (LEP coat) proteins to the opening of the PSM. Here, we show that Ssp1p is a multidomain protein with distinct domains important for PI(4,5)P(2) binding, binding to secretory vesicles and inhibition of vesicle fusion, interaction with LEP coat components and that it is subject to sumoylation and degradation. We found non-essential roles for Ssp1p on the level of vesicle transport and an essential function of Ssp1p to regulate the opening of the PSM. Together, our results indicate that Ssp1p has a domain architecture that resembles to some extent the septin class of proteins, and that the regulated removal of Ssp1p from the PSM is the major step underlying cytokinesis in yeast sporulation.
Collapse
Affiliation(s)
- Peter Maier
- EMBL, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | | | | | - Christof Taxis
- EMBL, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | | | | | | | - Michael Knop
- EMBL, Cell Biology and Biophysics Unit, Heidelberg, Germany
- EMBL, Cell Biology and Biophysics Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany. Tel.: +49 6221 387631; Fax: +49 6221 387512; E-mail:
| |
Collapse
|
21
|
Iwaki T, Morita T, Tanaka N, Giga-Hama Y, Takegawa K. Loss of a GPI-anchored membrane protein Aah3p causes a defect in vacuolar protein sorting in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2007; 71:623-6. [PMID: 17284820 DOI: 10.1271/bbb.60609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Schizosaccharomyces pombe has four alpha-amylase homologs (Aah1p-Aah4p) with a glycosylphosphatidylinositol (GPI) modification site at the C-terminal end. Disruption mutants of aah genes were tested for mislocalization of vacuolar carboxypeptidase Y (CPY), and aah3Delta was found to secrete CPY. The conversion rate from pro- to mature CPY was greatly impaired in aah3Delta, and fluorescence microscopy inidicated that a sorting receptor for CPY, Vps10p, mislocalized to the vacuolar membrane. These results indicate that aah3Delta had a defect in the retrograde transport of Vps10p, and that Aah3p is the first S. pombe specific protein required for vacuolar protein sorting.
Collapse
Affiliation(s)
- Tomoko Iwaki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan
| | | | | | | | | |
Collapse
|
22
|
Nakamura T, Ando A, Takagi H, Shima J. EOS1, whose deletion confers sensitivity to oxidative stress, is involved in N-glycosylation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2006; 353:293-8. [PMID: 17187761 DOI: 10.1016/j.bbrc.2006.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 12/04/2006] [Indexed: 11/29/2022]
Abstract
The deletion strain of Saccharomyces cerevisiae YNL080c (designed as EOS1) was identified as a strain sensitive to high-sucrose stress in our previous report [A. Ando, F. Tanaka, Y. Murata, H. Takagi, J. Shima, Identification and classification of genes required for tolerance to high sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae, FEMS Yeast Res. 6 (2006) 249-267]. Delta eos1 showed higher sensitivity to oxidative stress than to high-sucrose stress. Immunofluorescence microscopic and cellular fractionation analyses suggested that Eos1 localizes in the endoplasmic reticulum membrane. We found that the deletion of EOS1 enhances tunicamycin tolerance and that in Delta eos1 the transcription level of KAR2, which is the ER stress-inducible gene, was much lower than that in the wild-type strain (BY4741) when exposed to tunicamycin. The inhibition of the N-glycosylation of carboxypeptidase Y and invertase activity caused by the addition of tunicamycin was depressed in Delta eos1, suggesting that EOS1 may be involved in N-glycosylation of the cellular proteins.
Collapse
Affiliation(s)
- Toshihide Nakamura
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | |
Collapse
|
23
|
Bonander N, Hedfalk K, Larsson C, Mostad P, Chang C, Gustafsson L, Bill RM. Design of improved membrane protein production experiments in yeast: quantitation of the host response. Microb Cell Fact 2006. [DOI: 10.1186/1475-2859-5-s1-s43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
24
|
Xiao A, Zhou X, Zhou L, Zhang Y. Improvement of cell viability and hirudin production by ascorbic acid in Pichia pastoris fermentation. Appl Microbiol Biotechnol 2006; 72:837-44. [PMID: 16525778 DOI: 10.1007/s00253-006-0338-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 01/09/2006] [Accepted: 01/13/2006] [Indexed: 01/29/2023]
Abstract
In recombinant Pichia pastoris fermentation for hirudin production, copious cells were not viable and most of the secreted hirudin molecules were C-terminally truncated at the end of fermentation. In this work, the influences of reactive oxygen species (ROS) on cell viability and hirudin production were subsequently studied. In contrast to the untreated control condition, the addition of ascorbic acid at the methanol fed-batch phase could obviously relieve the damage of intracellular ROS to cell membranes. As a result, the cell viability could be increased to 91% from 74% in control at the end of fermentation and the extracellular proteolysis of hirudin reduced. Intact and total hirudin production, by supplying ascorbic acid, could reach 2.90 and 5.03 g/l, respectively, in contrast to 1.75 and 4.70 g/l at the control condition. Ascorbic acid, 4 mmol/l or more, in the fermentation broth increased markedly the production of the intact hirudin, despite a little effect on total hirudin production.
Collapse
Affiliation(s)
- Anfeng Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | |
Collapse
|
25
|
Efe JA, Plattner F, Hulo N, Kressler D, Emr SD, Deloche O. Yeast Mon2p is a highly conserved protein that functions in the cytoplasm-to-vacuole transport pathway and is required for Golgi homeostasis. J Cell Sci 2006; 118:4751-64. [PMID: 16219684 DOI: 10.1242/jcs.02599] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the small Arf-like GTPases Arl1-3 are highly conserved eukaryotic proteins, they remain relatively poorly characterized. The yeast and mammalian Arl1 proteins bind to the Golgi complex, where they recruit specific structural proteins such as Golgins. Yeast Arl1p directly interacts with Mon2p/Ysl2p, a protein that displays some sequence homology to the large Sec7 guanine exchange factors (GEFs) of Arf1. Mon2p also binds the putative aminophospholipid translocase (APT) Neo1p, which performs essential function(s) in membrane trafficking. Our detailed analysis reveals that Mon2p contains six distinct amino acid regions (A to F) that are conserved in several other uncharacterized homologs in higher eukaryotes. As the conserved A, E and F domains are unique to these homologues, they represent the signature of a new protein family. To investigate the role of these domains, we made a series of N- and C-terminal deletions of Mon2p. Although fluorescence and biochemical studies showed that the B and C domains (also present in the large Sec7 GEFs) predominantly mediate interaction with Golgi/endosomal membranes, growth complementation studies revealed that the C-terminal F domain is essential for the activity of Mon2p, indicating that Mon2p might also function independently of Arl1p. We provide evidence that Mon2p is required for efficient recycling from endosomes to the late Golgi. Intriguingly, although transport of CPY to the vacuole was nearly normal in the Deltamon2 strain, we found the constitutive delivery of Aminopeptidase 1 from the cytosol to the vacuole to be almost completely blocked. Finally, we show that Mon2p exhibits genetic and physical interactions with Dop1p, a protein with a putative function in cell polarity. We propose that Mon2p is a scaffold protein with novel conserved domains, and is involved in multiple aspects of endomembrane trafficking.
Collapse
Affiliation(s)
- Jem A Efe
- Division of Biology, Department of Cellular and Molecular Medicine, and the Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0668, USA
| | | | | | | | | | | |
Collapse
|
26
|
Bonander N, Hedfalk K, Larsson C, Mostad P, Chang C, Gustafsson L, Bill RM. Design of improved membrane protein production experiments: quantitation of the host response. Protein Sci 2005; 14:1729-40. [PMID: 15987902 PMCID: PMC2253360 DOI: 10.1110/ps.051435705] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic membrane proteins cannot be produced in a reliable manner for structural analysis. Consequently, researchers still rely on trial-and-error approaches, which most often yield insufficient amounts. This means that membrane protein production is recognized by biologists as the primary bottleneck in contemporary structural genomics programs. Here, we describe a study to examine the reasons for successes and failures in recombinant membrane protein production in yeast, at the level of the host cell, by systematically quantifying cultures in high-performance bioreactors under tightly-defined growth regimes. Our data show that the most rapid growth conditions of those chosen are not the optimal production conditions. Furthermore, the growth phase at which the cells are harvested is critical: We show that it is crucial to grow cells under tightly-controlled conditions and to harvest them prior to glucose exhaustion, just before the diauxic shift. The differences in membrane protein yields that we observe under different culture conditions are not reflected in corresponding changes in mRNA levels of FPS1, but rather can be related to the differential expression of genes involved in membrane protein secretion and yeast cellular physiology.
Collapse
Affiliation(s)
- Nicklas Bonander
- Department of Cell and Molecular Biology/Microbiology, Göteborg University, Sweden
| | | | | | | | | | | | | |
Collapse
|
27
|
Davierwala AP, Haynes J, Li Z, Brost RL, Robinson MD, Yu L, Mnaimneh S, Ding H, Zhu H, Chen Y, Cheng X, Brown GW, Boone C, Andrews BJ, Hughes TR. The synthetic genetic interaction spectrum of essential genes. Nat Genet 2005; 37:1147-52. [PMID: 16155567 DOI: 10.1038/ng1640] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 07/27/2005] [Indexed: 11/08/2022]
Abstract
The nature of synthetic genetic interactions involving essential genes (those required for viability) has not been previously examined in a broad and unbiased manner. We crossed yeast strains carrying promoter-replacement alleles for more than half of all essential yeast genes to a panel of 30 different mutants with defects in diverse cellular processes. The resulting genetic network is biased toward interactions between functionally related genes, enabling identification of a previously uncharacterized essential gene (PGA1) required for specific functions of the endoplasmic reticulum. But there are also many interactions between genes with dissimilar functions, suggesting that individual essential genes are required for buffering many cellular processes. The most notable feature of the essential synthetic genetic network is that it has an interaction density five times that of nonessential synthetic genetic networks, indicating that most yeast genetic interactions involve at least one essential gene.
Collapse
Affiliation(s)
- Armaity P Davierwala
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, Ontario, M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fujita Y, Giga-Hama Y, Takegawa K. Development of a genetic transformation system using new selectable markers for fission yeast Schizosaccharomyces pombe. Yeast 2005; 22:193-202. [PMID: 15704224 DOI: 10.1002/yea.1201] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We describe the development of a new transformation system, using multiple auxotrophic marker genes, for the fission yeast Schizosaccharomyces pombe. We developed three new auxotrophic marker genes (arg12(+), tyr1(+) and ade7(+)) and generated a new host strain, YF043, by Cre-loxP-mediated gene disruption. YF043 possessed six mutated biosynthetic genes (leu1-32, ura4-M190T, arg12::loxP, tyr1::loxP, ade7::loxP and his2::loxP). The combination of this host strain and the new selectable markers can be used for gene disruption using the same preexisting transformation systems. In addition, Sz. pombe vectors were constructed, containing selectable marker genes that complement the auxotrophies of YF043. These new vectors are available for gene disruption and heterologous protein expression in strain YF043. The new Sz. pombe host strain will be a useful tool for molecular genetic studies of Sz. pombe where multiple recombinant modifications or multiple mutations are needed.
Collapse
Affiliation(s)
- Yasuko Fujita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | | | | |
Collapse
|
29
|
Cohen M, Stutz F, Dargemont C. Deubiquitination, a new player in Golgi to endoplasmic reticulum retrograde transport. J Biol Chem 2003; 278:51989-92. [PMID: 14593109 DOI: 10.1074/jbc.c300451200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modification by ubiquitin plays a major role in a broad array of cellular functions. Although reversal of this process, deubiquitination, likely represents an important regulatory step contributing to cellular homeostasis, functions of deubiquitination enzymes still remain poorly characterized. We have previously shown that the ubiquitin protease Ubp3p requires a co-factor, Bre5p, to specifically deubiquitinate the coat protein complex II (COPII) subunit Sec23p, which is involved in anterograde transport between endoplasmic reticulum and Golgi compartments. In the present report, we show that disruption of BRE5 gene also led to a defect in the retrograde transport from the Golgi to the endoplasmic reticulum. Further analysis indicate that the COPI subunit beta'-COP represents another substrate of the Ubp3p.Bre5p complex. All together, our results indicate that the Ubp3p.Bre5p deubiquitination complex co-regulates anterograde and retrograde transports between endoplasmic reticulum and Golgi compartments.
Collapse
Affiliation(s)
- Mickaël Cohen
- Nucleocytoplasmic transport group, Institut Jacques Monod, Unité Mixte de Recherche 7592, CNRS, Universités Paris VI and VII, 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
30
|
Belgareh-Touzé N, Corral-Debrinski M, Launhardt H, Galan JM, Munder T, Le Panse S, Haguenauer-Tsapis R. Yeast functional analysis: identification of two essential genes involved in ER to Golgi trafficking. Traffic 2003; 4:607-17. [PMID: 12911815 DOI: 10.1034/j.1600-0854.2003.00116.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We screened for genes potentially involved in the secretory and vacuolar pathways a collection of 61 yeast strains, each bearing an essential orphan gene regulated by the tetO7-CYC1 promoter that can be down-regulated by doxycycline. After down-regulating the expression of these genes, we performed systematic Western blot analysis for markers of the secretory and vacuolar pathways that undergo post-translational modifications in their intracellular trafficking. Accumulation of protein precursors, revealed by Western immunoblot analysis, indicates defects in the secretory pathway or in associated biochemical modifications. After screening the whole collection, we identified two genes involved in ER to Golgi trafficking: RER2, a cis-prenyl transferase, and USE1, the function of which was unknown. We demonstrated that repression of USE1 also leads to BiP secretion, and therefore likely affects retrograde, in addition to anterograde, ER to Golgi trafficking. The collection also includes two essential genes involved in intracellular trafficking that were conveniently repressed without resulting growth or trafficking defects.
Collapse
Affiliation(s)
- Naïma Belgareh-Touzé
- Institut Jacques Monod, CNRS UMR7592, Universités Paris VI et VII, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Cohen M, Stutz F, Belgareh N, Haguenauer-Tsapis R, Dargemont C. Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23. Nat Cell Biol 2003; 5:661-7. [PMID: 12778054 DOI: 10.1038/ncb1003] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 05/15/2003] [Indexed: 11/08/2022]
Abstract
Ubiquitination is important for a broad array of cellular functions. Although reversal of this process, de-ubiquitination, most probably represents an important regulatory step contributing to cellular homeostasis, the specificity and properties of de-ubiquitination enzymes remain poorly understood. Here, we show that the Saccharomyces cerevisiae ubiquitin protease Ubp3 requires an additional protein, Bre5, to form an active de-ubiquitination complex that cleaves ubiquitin from specific substrates. In particular, this complex rescues Sec23p, a COPII subunit essential for the transport between the endoplasmic reticulum and the Golgi apparatus, from degradation by the proteasome. This probably contributes to maintaining and adapting a Sec23 expression level that is compatible with an efficient secretion pathway, and consequently with cell growth and viability.
Collapse
Affiliation(s)
- Mickaël Cohen
- Nucleocytoplasmic transport group, Institut Jacques Monod., Unité Mixte de Recherche 7592, CNRS, Universités Paris VI and VII, 2 Place Jussieu. Tour 43. 75251, Paris, Cedex 05, France
| | | | | | | | | |
Collapse
|
32
|
Conde R, Pablo G, Cueva R, Larriba G. Screening for new yeast mutants affected in mannosylphosphorylation of cell wall mannoproteins. Yeast 2003; 20:1189-211. [PMID: 14587103 DOI: 10.1002/yea.1032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have carried out a screen of 622 deletion strains generated during the EUROFAN B0 project to identify non-essential genes related to the mannosylphosphate content of the cell wall. By examining the affinity of the deletants for the cationic dye alcian blue and the ion exchanger QAE-Sephadex, we have selected 50 strains. On the basis on their reactivity (blue colour intensity) in the alcian blue assay, mutants with a lower phosphate content than wild-type cells were then arranged in groups defined by previously characterized mutants, as follows: group I (mnn6), group II (between mnn6 and mnn9) and group III (mnn9). Similarly, strains that behaved like mnn1 (i.e. a blue colour deeper than wild-type) were included in group VI. To confirm the association between the phenotype and a specific mutation, strains were complemented with clones or subjected to tetrad analysis. Selected strains were further tested for extracellular invertase and exoglucanase. Within groups I, II and III, we found some genes known to be involved in oligosaccharide biosynthesis (ALG9, ALG12, HOC1), secretion (BRE5, COD4/COG5, VPS53), transcription (YOL072w/THP1, ELP2, STB1, SNF11), cell polarity (SEP7, RDG1), mitochondrial function (YFH1), cell metabolism, as well as orphan genes. Within group VI, we found genes involved in environmentally regulated transduction pathways (PAL2 and RIM20) as well as others with miscellaneous or unknown functions. We conclude that mannosylphosphorylation is severely impaired in some deletants deficient in specific glycosylation/secretion processes, but many other different pathways may also modulate the amount of mannosylphosphate in the cell wall.
Collapse
Affiliation(s)
- Raúl Conde
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | | |
Collapse
|
33
|
Takegawa K, Iwaki T, Fujita Y, Morita T, Hosomi A, Tanaka N. Vesicle-mediated Protein Transport Pathways to the Vacuole in Schizosaccharomyces pombe. Cell Struct Funct 2003; 28:399-417. [PMID: 14745133 DOI: 10.1247/csf.28.399] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The vacuole of Saccharomyces cerevisiae plays essential roles not only for osmoregulation and ion homeostasis but also down-regulation (degradation) of cell surface proteins and protein and organellar turnover. Genetic selections and genome-wide screens in S. cerevisiae have resulted in the identification of a large number of genes required for delivery of proteins to the vacuole. Although the complete genome sequence of the fission yeast Schizosaccharomyces pombe has been reported, there have been few reports on the proteins required for vacuolar protein transport and vacuolar biogenesis in S. pombe. Recent progress in the S. pombe genome project of has revealed that most of the genes required for vacuolar biogenesis and protein transport are conserved between S. pombe and S. cerevisiae. This suggests that the basic machinery of vesicle-mediated protein delivery to the vacuole is conserved between the two yeasts. Identification and characterization of the fission yeast counterparts of the budding yeast Vps and Vps-related proteins have facilitated our understanding of protein transport pathways to the vacuole in S. pombe. This review focuses on the recent advances in vesicle-mediated protein transport to the vacuole in S. pombe.
Collapse
Affiliation(s)
- Kaoru Takegawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Belgareh-Touzé N, Avaro S, Rouillé Y, Hoflack B, Haguenauer-Tsapis R. Yeast Vps55p, a functional homolog of human obesity receptor gene-related protein, is involved in late endosome to vacuole trafficking. Mol Biol Cell 2002; 13:1694-708. [PMID: 12006663 PMCID: PMC111137 DOI: 10.1091/mbc.01-12-0597] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Saccharomyces cerevisiae VPS55 (YJR044c) gene encodes a small protein of 140 amino acids with four potential transmembrane domains. VPS55 belongs to a family of genes of unknown function, including the human gene encoding the obesity receptor gene-related protein (OB-RGRP). Yeast cells with a disrupted VPS55 present normal vacuolar morphology, but exhibit an abnormal secretion of the Golgi form of the soluble vacuolar carboxypeptidase Y. However, trafficking of the membrane-bound vacuolar alkaline phosphatase remains normal. The endocytosis of uracil permease, used as an endocytic marker, is normal in vps55Delta cells, but its degradation is delayed and this marker transiently accumulates in late endosomal compartments. We also found that Vps55p is mainly localized in the late endosomes. Collectively, these results indicate that Vps55p is involved in late endosome to vacuole trafficking. Finally, we show that human OB-RGRP displays the same distribution as Vps55p and corrects the phenotypic defects of the vps55Delta strain. Therefore, the function of Vps55p has been conserved throughout evolution. This study highlights the importance of the multispanning Vps55p and OB-RGRP in membrane trafficking to the vacuole/lysosome of eukaryotic cells.
Collapse
Affiliation(s)
- Naïma Belgareh-Touzé
- Jacques Monod Institute, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7592, Universities Paris VI and VII, Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
35
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2448432 DOI: 10.1002/cfg.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|