1
|
Wang X, Xu R, Wang Y, Liu Z, Lou R, Sugiyama T. Yesprit and Yeaseq: Applications for designing primers and browsing sequences for research using the four Schizosaccharomyces species. Yeast 2021; 38:583-591. [PMID: 34251689 DOI: 10.1002/yea.3660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 11/05/2022] Open
Abstract
The polymerase chain reaction (PCR)-based gene targeting method, which can delete a specific gene or introduce tags, has been widely utilized to study gene function in fission yeast. One of the critical steps in this method is to design primers for amplifying DNA fragments of deletion or tagging modules and for checking the integration of those DNA fragments at designated loci. Although the primer design tool Pombe PCR Primer Program (PPPP) is available for Schizosaccharomyces pombe, there is no such publicly available application for the other three fission yeast species, S. cryophilus, S. japonicus, and S. octosporus. Likewise, no application enabling DNA/protein sequence retrieval for these three fission yeast species is available either. Therefore, access to such functionality would substantially assist in retrieval of gene sequences of interest and primer design in these fission yeast species. In this report, we describe two applications for fission yeast study: Yesprit and Yeaseq. Yesprit is a primer design tool for strain construction using the PCR-based method, and Yeaseq is a sequence viewer that can acquire the DNA/protein sequences of specific genes. Both tools can be run on the Windows, macOS, and Linux platforms. We believe that the Yesprit and Yeaseq will facilitate research using the four fission yeast species.
Collapse
Affiliation(s)
- Xindi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ruoming Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yichen Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ziyue Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ronghui Lou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Tomoyasu Sugiyama
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
2
|
Pieper GH, Sprenger S, Teis D, Oliferenko S. ESCRT-III/Vps4 Controls Heterochromatin-Nuclear Envelope Attachments. Dev Cell 2020; 53:27-41.e6. [PMID: 32109380 PMCID: PMC7139201 DOI: 10.1016/j.devcel.2020.01.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/05/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
Eukaryotic genomes are organized within the nucleus through interactions with inner nuclear membrane (INM) proteins. How chromatin tethering to the INM is controlled in interphase and how this process contributes to subsequent mitotic nuclear envelope (NE) remodeling remains unclear. We have probed these fundamental questions using the fission yeast Schizosaccharomyces japonicus, which breaks and reforms the NE during mitosis. We show that attachments between heterochromatin and the transmembrane Lem2-Nur1 complex at the INM are remodeled in interphase by the ESCRT-III/Vps4 machinery. Failure of ESCRT-III/Vps4 to release Lem2-Nur1 from heterochromatin leads to persistent association of chromosomes with the INM throughout mitosis. At mitotic exit, such trapping of Lem2-Nur1 on heterochromatin prevents it from re-establishing nucleocytoplasmic compartmentalization. Our work identifies the Lem2-Nur1 complex as a substrate for the nuclear ESCRT machinery and explains how the dynamic tethering of chromosomes to the INM is linked to the establishment of nuclear compartmentalization.
Collapse
Affiliation(s)
- Gerard H Pieper
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Simon Sprenger
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - David Teis
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK.
| |
Collapse
|
3
|
Sasaki T, Tsutsumi M, Otomo K, Murata T, Yagi N, Nakamura M, Nemoto T, Hasebe M, Oda Y. A Novel Katanin-Tethering Machinery Accelerates Cytokinesis. Curr Biol 2019; 29:4060-4070.e3. [PMID: 31735673 DOI: 10.1016/j.cub.2019.09.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/15/2019] [Accepted: 09/19/2019] [Indexed: 12/26/2022]
Abstract
Cytokinesis is fundamental for cell proliferation [1, 2]. In plants, a bipolar short-microtubule array forms the phragmoplast, which mediates vesicle transport to the midzone and guides the formation of cell walls that separate the mother cell into two daughter cells [2]. The phragmoplast centrifugally expands toward the cell cortex to guide cell-plate formation at the cortical division site [3, 4]. Several proteins in the phragmoplast midzone facilitate the anti-parallel bundling of microtubules and vesicle accumulation [5]. However, the mechanisms by which short microtubules are maintained during phragmoplast development, in particular, the behavior of microtubules at the distal zone of phragmoplasts, are poorly understood. Here, we show that a plant-specific protein, CORTICAL MICROTUBULE DISORDERING 4 (CORD4), tethers the conserved microtubule-severing protein katanin to facilitate formation of the short-microtubule array in phragmoplasts. CORD4 was specifically expressed during mitosis and localized to preprophase bands and phragmoplast microtubules. Custom-made two-photon spinning disk confocal microscopy revealed that CORD4 rapidly localized to microtubules in the distal phragmoplast zone during phragmoplast assembly at late anaphase and persisted throughout phragmoplast expansion. Loss of CORD4 caused abnormally long and oblique phragmoplast microtubules and slow expansion of phragmoplasts. The p60 katanin subunit, KTN1, localized to the distal phragmoplast zone in a CORD4-dependent manner. These results suggest that CORD4 tethers KTN1 at phragmoplasts to modulate microtubule length, thereby accelerating phragmoplast growth. This reveals the presence of a distinct machinery to accelerate cytokinesis by regulating the action of katanin.
Collapse
Affiliation(s)
- Takema Sasaki
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Motosuke Tsutsumi
- Nikon Imaging Center, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Kohei Otomo
- Nikon Imaging Center, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan
| | - Takashi Murata
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Noriyoshi Yagi
- Institute of transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masayoshi Nakamura
- Institute of transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Tomomi Nemoto
- Nikon Imaging Center, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Yoshihisa Oda
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
4
|
Salas-Pino S, Daga RR. Spatiotemporal control of spindle disassembly in fission yeast. Cell Mol Life Sci 2019; 76:3543-3551. [PMID: 31129857 PMCID: PMC11105212 DOI: 10.1007/s00018-019-03139-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Maintenance of genomic stability during cell division is one of the most important cellular tasks, and it critically depends on the faithful replication of the genetic material and its equal partitioning into daughter cells, gametes, or spores in the case of yeasts. Defective mitotic spindle assembly and disassembly both result in changes in cellular ploidy that ultimately impinge proliferation fitness and might increase tumor malignancy. Although a great progress has been made in understanding how spindles are assembled to orchestrate chromosome segregation, much less is known about how they are disassembled once completed their function. Here, we review two recently uncovered mechanisms of spindle disassembly that operate at different stages of the fission yeast life cycle.
Collapse
Affiliation(s)
- Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucia, Carretera de Utrera, km1, 41013, Seville, Spain.
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucia, Carretera de Utrera, km1, 41013, Seville, Spain.
| |
Collapse
|
5
|
Niki H. Schizosaccharomyces japonicus
: the fission yeast is a fusion of yeast and hyphae. Yeast 2014; 31:83-90. [DOI: 10.1002/yea.2996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hironori Niki
- Microbial Genetics Laboratory, Genetic Strains Research Centre National Institute of Genetics 1111 Yata Mishima Shizuoka 411‐8540 Japan
- Department of Genetics Graduate University for Advanced Studies Sokendai, 1111 Yata Mishima Shizuoka 411‐8540 Japan
| |
Collapse
|
6
|
Abstract
The aim of mitosis is to produce two daughter nuclei, each containing a chromosome complement identical to that of the mother nucleus. This can be accomplished through a variety of strategies, with "open" and "closed" modes of mitosis positioned at the opposite ends of the spectrum and a range of intermediate patterns in between. In the "closed" mitosis, the nuclear envelope remains intact throughout the nuclear division. In the "open" division type, the envelope of the original nucleus breaks down early in mitosis and reassembles around the segregated daughter genomes. In any case, the nuclear membrane has to remodel to accommodate the mitotic spindle assembly, chromosome segregation and formation of the daughter nuclei. We have recently shown that within the fission yeast clade, the mitotic control of the nuclear surface area may determine the choice between the nuclear envelope breakdown and a fully "closed" division. Here we discuss our data and argue that comparative cell biology studies using two fission yeast species, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, could provide unprecedented insights into physiology and evolution of mitosis.
Collapse
Affiliation(s)
- Ying Gu
- Temasek Life Sciences Laboratory, Singapore
| | | | | |
Collapse
|
7
|
Furuya K, Niki H. Isolation of heterothallic haploid and auxotrophic mutants ofSchizosaccharomyces japonicus. Yeast 2009; 26:221-33. [DOI: 10.1002/yea.1662] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
8
|
Tannenbaum E, Sherley JL, Shakhnovich EI. Semiconservative quasispecies equations for polysomic genomes: the haploid case. J Theor Biol 2006; 241:791-805. [PMID: 16527313 DOI: 10.1016/j.jtbi.2006.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 12/12/2005] [Accepted: 01/13/2006] [Indexed: 11/23/2022]
Abstract
This paper develops the semiconservative quasispecies equations for genomes consisting of an arbitrary number of chromosomes. We assume that the chromosomes are distinguishable, so that we are effectively considering haploid genomes. We derive the quasispecies equations under the assumption of arbitrary lesion repair efficiency, and consider the cases of both random and immortal strand chromosome segregation. We solve the model in the limit of infinite sequence length for the case of the static single fitness peak landscape, where the master genome has a first-order growth rate constant of k>1, and all other genomes have a first-order growth rate constant of 1. If we assume that each chromosome can tolerate an arbitrary number of lesions, so that only one master copy of the strands is necessary for a functional chromosome, then for random chromosome segregation we obtain an equilibrium mean fitness of [equation in text] below the error catastrophe, while for immortal strand co-segregation we obtain kappa (t=infinity)=k[e(-mu(1-lambda/2))+e(-mulambda/2)-1] (N denotes the number of chromosomes, lambda denotes the lesion repair efficiency, and mu is identical with epsilonL, where epsilon is the per base-pair mismatch probability, and L is the total genome length). It follows that immortal strand co-segregation leads to significantly better preservation of the master genome than random segregation when lesion repair is imperfect. Based on this result, we conjecture that certain classes of tumor cells exhibit immortal strand co-segregation.
Collapse
Affiliation(s)
- Emmanuel Tannenbaum
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel.
| | | | | |
Collapse
|
9
|
Tannenbaum E, Sherley JL, Shakhnovich EI. Evolutionary dynamics of adult stem cells: comparison of random and immortal-strand segregation mechanisms. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:041914. [PMID: 15903708 DOI: 10.1103/physreve.71.041914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Indexed: 05/02/2023]
Abstract
This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) "immortal DNA strand" co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.
Collapse
Affiliation(s)
- Emmanuel Tannenbaum
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
10
|
Horio T, Oakley BR. Expression of Arabidopsis gamma-tubulin in fission yeast reveals conserved and novel functions of gamma-tubulin. PLANT PHYSIOLOGY 2003; 133:1926-34. [PMID: 14605233 PMCID: PMC300744 DOI: 10.1104/pp.103.027367] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Revised: 06/15/2003] [Accepted: 08/21/2003] [Indexed: 05/22/2023]
Abstract
gamma-Tubulin localizes to microtubule-organizing centers in animal and fungal cells where it is important for microtubule nucleation. Plant cells do not have morphologically defined microtubule organizing centers, however, and gamma-tubulin is distributed in small, discrete structures along microtubules. The great difference in distribution has prompted speculation that plant gamma-tubulins function differently from animal and fungal gamma-tubulins. We tested this possibility by expressing Arabidopsis gamma-tubulin in the fission yeast Schizosaccharomyces pombe. At high temperatures, the plant gamma-tubulin was able to bind to microtubule-organizing centers, nucleate microtubule assembly, and support the growth and replication of S. pombe cells lacking endogenous gamma-tubulin. However, the distribution of microtubules was abnormal as was cell morphology, and at low temperatures, cells were arrested in mitosis. These results reveal that Arabidopsis gamma-tubulin can carry out essential functions in S. pombe and is, thus, functionally conserved. The morphological abnormalities reveal that it cannot carry out some nonessential functions, however, and they underscore the importance of gamma-tubulin in morphogenesis of fission yeast cells and in maintaining normal interphase microtubule arrays.
Collapse
Affiliation(s)
- Tetsuya Horio
- Department of Nutrition, The University of Tokushima School of Medicine, Kuramoto, Tokushima, 770-8503, Japan.
| | | |
Collapse
|
11
|
Yamaguchi M, Kuwabara Y, Shimizu M, Furukawa H, Nishioka H, Takeo K. The spindle pole body of the pathogenic yeast Exophiala dermatitidis: variation in morphology and positional relationship to the nucleolus and the bud in interphase cells. Eur J Cell Biol 2003; 82:531-8. [PMID: 14629121 DOI: 10.1078/0171-9335-00339] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spindle pole body (SPB) in the interphase cell of the pathogenic yeast Exophiala dermatitidis was studied in detail. The SPB was located on the outer nuclear envelope and was 342 +/- 86 nm long in a haploid strain. It consisted of two disk elements that measured 151 +/- 43 nm in diameter and 103 +/- 17 nm in thickness, connected by a rod-shaped midpiece that measured 56 +/- 20 nm in length and 37 +/- 9 nm in diameter. There were considerable variations in size and morphology of interphase SPB. Some disk elements appeared spherical but others were more flattened, and there was variation in electron density. A few SPBs did not have the midpiece. The SPB of a diploid strain was 486 +/- 118 nm long, thus significantly bigger than that of the haploid strain. The SPB tended to be localized away from the nucleolus (110 +/- 48 degrees), but close to the bud (78 +/- 45 degrees). The present study highlights the necessity of observing a large number of micrographs in three-dimensions to describe accurately the ultrastructure of the SPB in yeast.
Collapse
Affiliation(s)
- Masashi Yamaguchi
- Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Current awareness on yeast. Yeast 2003; 20:273-80. [PMID: 12622058 DOI: 10.1002/yea.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|