1
|
Kokkosi A, Garofallidou E, Zacharopoulos N, Tsoureas N, Diamanti K, Thomaidis NS, Cheilari A, Machalia C, Emmanouilidou E, Philippopoulos AI. Ruthenium p-Cymene Complexes Incorporating Substituted Pyridine-Quinoline-Based Ligands: Synthesis, Characterization, and Cytotoxic Properties. Molecules 2024; 29:3215. [PMID: 38999167 PMCID: PMC11243419 DOI: 10.3390/molecules29133215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Organometallic complexes of the formula [Ru(N^N)(p-cymene)Cl][X] (N^N = bidentate polypyridyl ligands, p-cymene = 1-methyl-4-(1-methylethyl)-benzene, X = counter anion), are currently studied as possible candidates for the potential treatment of cancer. Searching for new organometallic compounds with good to moderate cytotoxic activities, a series of mononuclear water-soluble ruthenium(II)-arene complexes incorporating substituted pyridine-quinoline ligands, with pending -CH2OH, -CO2H and -CO2Me groups in the 4-position of quinoline ring, were synthesized, for the first time, to study their possible effect to modulate the activity of the ruthenium p-cymene complexes. These include the [Ru(η6-p-cymene)(pqhyme)Cl][X] (X = Cl- (1-Cl), PF6- (1-PF6), pqhyme = 4-hydroxymethyl-2-(pyridin-2-yl)quinoline), [Ru(η6-p-cymene)(pqca)Cl][Cl] ((2-Cl), pqca = 4-carboxy-2-(pyridin-2-yl)quinoline), and [Ru(η6-p-cymene)(pqcame)Cl][X] (X = Cl- (3-Cl), PF6- (3-PF6), pqcame = 4-carboxymethyl-2-(pyridin-2-yl)quinoline) complexes, respectively. Identification of the complexes was based on multinuclear NMR and ATR-IR spectroscopic methods, elemental analysis, conductivity measurements, UV-Vis spectroscopic, and ESI-HRMS techniques. The solid-state structures of 1-PF6 and 3-PF6 have been elucidated by single-crystal X-ray diffraction revealing a three-legged piano stool geometry. This is the first time that the in vitro cytotoxic activities of these complexes are studied. These were conducted in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) via the MTT assay. The results show poor in vitro anticancer activities for the HeLa cancer cell lines and 3-Cl proved to be the most potent (IC50 > 80 μΜ). In both cell lines, the cytotoxicity of the ligand precursor pqhyme is significantly higher than that of cisplatin.
Collapse
Affiliation(s)
- Afroditi Kokkosi
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Elpida Garofallidou
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos Zacharopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos Tsoureas
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Konstantina Diamanti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Antigoni Cheilari
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Christina Machalia
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Athanassios I Philippopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
2
|
Dhariyal K, Parveen S, Kumar S, Banerjee M, Sharma P, Kumar Singh S, Singh AK. Half-Sandwich Ruthenium–Arene Thiosemicarbazones Complexes: Synthesis, Characterization, Biological Evaluation and DFT Calculations. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Balakrishnan N, Haribabu J, Dharmasivam M, Jayadharini JP, Anandakrishnan D, Swaminathan S, Bhuvanesh N, Echeverria C, Karvembu R. Influence of Indole- N Substitution of Thiosemicarbazones in Cationic Ru(II)(η 6-Benzene) Complexes on Their Anticancer Activity. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nithya Balakrishnan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli 620015, Tamil Nadu, India
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli 620015, Tamil Nadu, India
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Mahendiran Dharmasivam
- Department of Chemistry, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | | | - Dhanabalan Anandakrishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli 620015, Tamil Nadu, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli 620015, Tamil Nadu, India
| |
Collapse
|
4
|
Zain Aldin M, Zaragoza G, Deschamps W, Tomani JCD, Souopgui J, Delaude L. Synthesis, Characterization, and Biological Activity of Water-Soluble, Dual Anionic and Cationic Ruthenium-Arene Complexes Bearing Imidazol(in)ium-2-dithiocarboxylate Ligands. Inorg Chem 2021; 60:16769-16781. [PMID: 34669374 DOI: 10.1021/acs.inorgchem.1c02648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient synthetic protocol was devised for the preparation of five cationic ruthenium-arene complexes bearing imidazol(in)ium-2-dithiocarboxylate ligands from the [RuCl2(p-cymene)]2 dimer and 2 equiv of an NHC·CS2 zwitterion. The reactions proceeded cleanly and swiftly in dichloromethane at room temperature to afford the expected [RuCl(p-cymene)(S2C·NHC)]Cl products in quantitative yields. When the [RuCl2(p-cymene)]2 dimer was reacted with only 1 equiv of a dithiolate betaine under the same experimental conditions, a set of five bimetallic compounds with the generic formula [RuCl(p-cymene)(S2C·NHC)][RuCl3(p-cymene)] was obtained in quantitative yields. These novel, dual anionic and cationic ruthenium-arene complexes were fully characterized by various analytical techniques. NMR titrations showed that the chelation of the dithiocarboxylate ligands to afford [RuCl(p-cymene)(S2C·NHC)]+ cations was quantitative and irreversible. Conversely, the formation of the [RuCl3(p-cymene)]- anion was limited by an equilibrium, and this species readily dissociated into Cl- anions and the [RuCl2(p-cymene)]2 dimer. The position of the equilibrium was strongly influenced by the nature of the solvent and was rather insensitive to the temperature. Two monometallic and two bimetallic complexes cocrystallized with water, and their molecular structures were solved by X-ray diffraction analysis. Crystallography revealed the existence of strong interactions between the azolium ring protons of the cationic complexes and neighboring donor groups from the anions or the solvent. The various compounds under investigation were highly soluble in water. They were all strongly cytotoxic against K562 cancer cells. Furthermore, with a selectivity index of 32.1, the [RuCl(p-cymene)(S2C·SIDip)]Cl complex remarkably targeted the erythroleukemic cells vs mouse splenocytes.
Collapse
Affiliation(s)
- Mohammed Zain Aldin
- Laboratory of Catalysis, MolSys Research Unit, Institut de Chimie Organique (B6a), Université de Liège, Allée du six Août 13, 4000 Liège, Belgium
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, RIAIDT, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - William Deschamps
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Jean-Claude Didelot Tomani
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Jacob Souopgui
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Lionel Delaude
- Laboratory of Catalysis, MolSys Research Unit, Institut de Chimie Organique (B6a), Université de Liège, Allée du six Août 13, 4000 Liège, Belgium
| |
Collapse
|
5
|
Sindhu M, Kalaivani P, Prabhakaran R. Enhanced anticancer property of bio‐organometallic nano composites: Design, characterization, and biological evaluation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mathiyazhagan Sindhu
- Department of Chemistry, Nirmala College for Women Bharathiar University Coimbatore India
| | - Palaniappan Kalaivani
- Department of Chemistry, Nirmala College for Women Bharathiar University Coimbatore India
| | | |
Collapse
|
6
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Balahbib A, El Omari N, Hachlafi NE, Lakhdar F, El Menyiy N, Salhi N, Mrabti HN, Bakrim S, Zengin G, Bouyahya A. Health beneficial and pharmacological properties of p-cymene. Food Chem Toxicol 2021; 153:112259. [PMID: 33984423 DOI: 10.1016/j.fct.2021.112259] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
p-cymene also known as p-cymol or p-isopropyltoluene is an alkyl-substituted aromatic compound naturally occurring in essential oils (EOs) of various aromatic plants, including the genus of Artemisia, Protium, Origanum, and Thymus. It is related to the family of terpenes, especially monocyclic monoterpenes. p-cymene is also present in several food-based plants such as carrots, orange juice, grapefruit, tangerine, raspberries and several spices. Numerous studies have demonstrated the pharmacological properties of the monoterpenes p-cymene, including antioxidant, anti-inflammatory, antiparasitic, antidiabetic, antiviral, antitumor, antibacterial, and antifungal activities. The p-cymene has also been reported to act as an analgesic, antinociceptive, immunomodulatory, vasorelaxant and neuroprotective agent. Its anticancer effects are related to some mechanisms such as the inhibition of apoptosis and cell cycle arrest. In this review, we critically highlighted the in vitro and in vivo pharmacological properties of the p-cymene molecule, providing insight into its mechanisms of action and potential applications in drug discovery. In light of this finding, in-depth in vivo studies are strongly required to validate the safety and beneficial effects of the p-cymene molecule in human healthcare and industrial applications as a potential source of drug discovery.
Collapse
Affiliation(s)
- Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, And Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, P.O.Box-2002, Imouzzer Road Fez, Morocco
| | - Fatima Lakhdar
- Department of Biology, Laboratory of Marine Biotechnology and Environment, Faculty of Sciences, ChouaibDoukkali University, BP 20, El Jadida, 24000, Morocco
| | - Naoual El Menyiy
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and of Life (SNAMOPEQ). Faculty of Sciences Dhar El Mahraz. University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Najoua Salhi
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat, Morocco
| | - Saad Bakrim
- Laboratory of Molecular Engineering, Valorization and Environment, Department of Sciences and Techniques, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Taroudant, Morocco
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, And Genomic Center of Human Pathologies, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
8
|
Huang S, Liang Y, Huang C, Su W, Lei X, Liu Y, Xiao Q. Systematical investigation of binding interaction between novel ruthenium(II) arene complex with curcumin analogs and ctDNA. LUMINESCENCE 2016; 31:1384-1394. [DOI: 10.1002/bio.3119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/17/2016] [Accepted: 01/24/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Shan Huang
- College of Chemistry and Material Science; Guangxi Teachers Education University; Nanning 530001 People's Republic of China
- Collaborative Innovation Center of Southwest Ethnic Medicine; Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Yu Liang
- College of Chemistry and Material Science; Guangxi Teachers Education University; Nanning 530001 People's Republic of China
| | - Chusheng Huang
- College of Chemistry and Material Science; Guangxi Teachers Education University; Nanning 530001 People's Republic of China
- Collaborative Innovation Center of Southwest Ethnic Medicine; Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Wei Su
- College of Chemistry and Material Science; Guangxi Teachers Education University; Nanning 530001 People's Republic of China
- Collaborative Innovation Center of Southwest Ethnic Medicine; Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Xiaolin Lei
- College of Chemistry and Material Science; Guangxi Teachers Education University; Nanning 530001 People's Republic of China
| | - Yi Liu
- State Key Laboratory of Virology; Wuhan University; Wuhan 430072 People's Republic of China
| | - Qi Xiao
- College of Chemistry and Material Science; Guangxi Teachers Education University; Nanning 530001 People's Republic of China
- Collaborative Innovation Center of Southwest Ethnic Medicine; Guangxi Normal University; Guilin 541004 People's Republic of China
- State Key Laboratory of Virology; Wuhan University; Wuhan 430072 People's Republic of China
| |
Collapse
|
9
|
Yuan X, Jia C, Ma Y, Yang D, Rui C, Qin Z. Synthesis, insecticidal and fungicidal activities of methyl 2-(methoxyimino)-2-(2-((1-(N′-nitrocarbamimidoyl)-2-hydrocarbylidenehydrazinyl)methyl)phenyl)acetates. RSC Adv 2016. [DOI: 10.1039/c5ra27359e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By combining the sub-structures of strobilurin and guadipyr analogues in one molecule, a series of compounds was designed and synthesized. Some compounds showed excellent insecticidal activity or fungicidal activity.
Collapse
Affiliation(s)
- Xiaoyong Yuan
- College of Science
- China Agricultural University
- Beijing 100193
- China
- National Navel Orange Engineering Research Center
| | - Changqing Jia
- College of Science
- China Agricultural University
- Beijing 100193
- China
| | - Yongqiang Ma
- College of Science
- China Agricultural University
- Beijing 100193
- China
| | - Dongyan Yang
- College of Science
- China Agricultural University
- Beijing 100193
- China
| | - Changhui Rui
- Institute of Plant Protection
- Chinese Academy of Agricultural Sciences
- Beijing 100193
- China
| | - Zhaohai Qin
- College of Science
- China Agricultural University
- Beijing 100193
- China
| |
Collapse
|
10
|
Huang S, Zhu F, Qian Q, Xiao Q, Su W. Thermodynamic investigation of interaction between [(η6-p-cymene) RuII(acetone-N4-phenylthiosemicarbazone)Cl]Cl anticancer drug and human serum albumin: spectroscopic and electrochemical studies. Biol Trace Elem Res 2015; 164:150-61. [PMID: 25475999 DOI: 10.1007/s12011-014-0184-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 12/16/2022]
Abstract
In this contribution, the interaction between [(η (6)-p-cymene)Ru(II)(acetone-N (4)-phenylthiosemicarbazone)Cl]Cl (Ru-TSC) anticancer drug and human serum albumin (HSA) was investigated by spectroscopic and electrochemical techniques. The fluorescence spectra results indicated that Ru-TSC anticancer drug could quench the intrinsic fluorescence of HSA through dynamic quenching mode. The calculated corresponding activation energy of the interaction between Ru-TSC anticancer drug and HSA was 35.62 kJ mol(-1). The distance between HSA and Ru-TSC anticancer drug was obtained according to fluorescence resonance energy transfer. The results of synchronous fluorescence spectra, three-dimensional fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra, and circular dichroism (CD) spectra indicated that the microenvironment and the conformation of HSA were all changed in the presence of Ru-TSC anticancer drug. The results of cyclic voltammetry further validated the interaction between Ru-TSC and HSA. These results indicated that the biological activity of HSA was affected by Ru-TSC anticancer drug dramatically.
Collapse
Affiliation(s)
- Shan Huang
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning, 530001, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Huang S, Zhu F, Xiao Q, Liang Y, Zhou Q, Su W. Thermodynamic investigation of the interaction between the [(η6-p-cymene)Ru(benzaldehyde-N4-phenylthiosemicarbazone)Cl]Cl anticancer drug and ctDNA: multispectroscopic and electrochemical studies. RSC Adv 2015. [DOI: 10.1039/c5ra03979g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interaction between the [(η6-p-cymene)Ru(benzaldehyde-N4-phenylthiosemicarbazone)Cl]Cl anticancer drug and ctDNA was systematically investigated by multispectroscopic and electrochemical studies.
Collapse
Affiliation(s)
- Shan Huang
- College of Chemistry and Material Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| | - Fawei Zhu
- College of Chemistry and Material Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| | - Qi Xiao
- College of Chemistry and Material Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| | - Yu Liang
- College of Chemistry and Material Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| | - Quan Zhou
- College of Chemistry and Material Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| | - Wei Su
- College of Chemistry and Material Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| |
Collapse
|
12
|
Volbeda J, Jones PG, Tamm M. Preparation of chiral imidazolin-2-imine ligands and their application in ruthenium-catalyzed transfer hydrogenation. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.06.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Huang S, Zhu F, Xiao Q, Zhou Q, Su W, Qiu H, Hu B, Sheng J, Huang C. Combined spectroscopy and cyclic voltammetry investigates the interaction between [(η6-p-cymene)Ru(benzaldehyde-N(4)-phenylthiosemicarbazone)Cl]Cl anticancer drug and human serum albumin. RSC Adv 2014. [DOI: 10.1039/c4ra06083k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The interaction between Ru anticancer drug and HSA was investigated systematically under physiological conditions.
Collapse
Affiliation(s)
- Shan Huang
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization (Guangxi Teachers Education University)
- Ministry of Education
| | - Fawei Zhu
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
| | - Qi Xiao
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization (Guangxi Teachers Education University)
- Ministry of Education
| | - Quan Zhou
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
| | - Wei Su
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
| | - Hangna Qiu
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
| | - Baoqing Hu
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization (Guangxi Teachers Education University)
- Ministry of Education
- China
| | - Jiarong Sheng
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
| | - Chusheng Huang
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
| |
Collapse
|