1
|
Delir Kheyrollahi Nezhad P, Bekheet MF, Bonmassar N, Gili A, Kamutzki F, Gurlo A, Doran A, Schwarz S, Bernardi J, Praetz S, Niaei A, Farzi A, Penner S. Elucidating the role of earth alkaline doping in perovskite-based methane dry reforming catalysts. Catal Sci Technol 2022; 12:1229-1244. [PMID: 35310768 PMCID: PMC8859525 DOI: 10.1039/d1cy02044g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022]
Abstract
To elucidate the role of earth alkaline doping in perovskite-based dry reforming of methane (DRM) catalysts, we embarked on a comparative and exemplary study of a Ni-based Sm perovskite with and without Sr doping. While the Sr-doped material appears as a structure-pure Sm1.5Sr0.5NiO4 Ruddlesden Popper structure, the undoped material is a NiO/monoclinic Sm2O3 composite. Hydrogen pre-reduction or direct activation in the DRM mixture in all cases yields either active Ni/Sm2O3 or Ni/Sm2O3/SrCO3 materials, with albeit different short-term stability and deactivation behavior. The much smaller Ni particle size after hydrogen reduction of Sm1.5Sr0.5NiO4, and of generally all undoped materials stabilizes the short and long-term DRM activity. Carbon dioxide reactivity manifests itself in the direct formation of SrCO3 in the case of Sm1.5Sr0.5NiO4, which is dominant at high temperatures. For Sm1.5Sr0.5NiO4, the CO : H2 ratio exceeds 1 at these temperatures, which is attributed to faster direct carbon dioxide conversion to SrCO3 without catalytic DRM reactivity. As no Sm2O2CO3 surface or bulk phase as a result of carbon dioxide activation was observed for any material – in contrast to La2O2CO3 – we suggest that oxy-carbonate formation plays only a minor role for DRM reactivity. Rather, we identify surface graphitic carbon as the potentially reactive intermediate. Graphitic carbon has already been shown as a crucial reaction intermediate in metal-oxide DRM catalysts and appears both for Sm1.5Sr0.5NiO4 and NiO/monoclinic Sm2O3 after reaction as crystalline structure. It is significantly more pronounced for the latter due to the higher amount of oxygen-deficient monoclinic Sm2O3 facilitating carbon dioxide activation. Despite the often reported beneficial role of earth alkaline dopants in DRM catalysis, we show that the situation is more complex. In our studies, the detrimental role of earth alkaline doping manifests itself in the exclusive formation of the sole stable carbonated species and a general destabilization of the Ni/monoclinic Sm2O3 interface by favoring Ni particle sintering. To elucidate the role of earth alkaline doping in perovskite-based dry reforming of methane (DRM) catalysts, we embarked on a comparative and exemplary study of a Ni-based Sm perovskite with and without Sr doping.![]()
Collapse
Affiliation(s)
- Parastoo Delir Kheyrollahi Nezhad
- Reactor & Catalyst Research Lab, Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Maged F. Bekheet
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Nicolas Bonmassar
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Albert Gili
- Institut für Chemie, Technische Universität Berlin, Sekretariat TC 8, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Franz Kamutzki
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Aleksander Gurlo
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Andrew Doran
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley, California 94720, USA
| | - Sabine Schwarz
- University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Johannes Bernardi
- University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Sebastian Praetz
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Aligholi Niaei
- Reactor & Catalyst Research Lab, Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Ali Farzi
- Reactor & Catalyst Research Lab, Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Simon Penner
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
da Silva BC, Bastos PHC, Junior RB, Checca N, Costa DS, Fréty R, Brandão ST. Oxy-CO2 reforming of CH4 on Ni-based catalysts: Evaluation of cerium and aluminum addition on the structure and properties of the reduced materials. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Abstract
Perovskite oxides are versatile materials due to their wide variety of compositions offering promising catalytic properties, especially in oxidation reactions. In the presented study, LaFe1−xCoxO3 perovskites were synthesized by hydroxycarbonate precursor co-precipitation and thermal decomposition thereof. Precursor and calcined materials were studied by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TG), and X-ray powder diffraction (XRD). The calcined catalysts were in addition studied by transmission electron microscopy (TEM) and N2 physisorption. The obtained perovskites were applied as catalysts in transient CO oxidation, and in operando studies of CO oxidation in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). A pronounced increase in activity was already observed by incorporating 5% cobalt into the structure, which continued, though not linearly, at higher loadings. This could be most likely due to the enhanced redox properties as inferred by H2-temperature programmed reduction (H2-TPR). Catalysts with higher Co contents showing higher activities suffered less from surface deactivation related to carbonate poisoning. Despite the similarity in the crystalline structures upon Co incorporation, we observed a different promotion or suppression of various carbonate-related bands, which could indicate different surface properties of the catalysts, subsequently resulting in the observed non-linear CO oxidation activity trend at higher Co contents.
Collapse
|
4
|
Bekheet MF, Delir Kheyrollahi Nezhad P, Bonmassar N, Schlicker L, Gili A, Praetz S, Gurlo A, Doran A, Gao Y, Heggen M, Niaei A, Farzi A, Schwarz S, Bernardi J, Klötzer B, Penner S. Steering the Methane Dry Reforming Reactivity of Ni/La 2O 3 Catalysts by Controlled In Situ Decomposition of Doped La 2NiO 4 Precursor Structures. ACS Catal 2021; 11:43-59. [PMID: 33425477 PMCID: PMC7783868 DOI: 10.1021/acscatal.0c04290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 11/28/2022]
Abstract
The influence of A- and/or B-site doping of Ruddlesden-Popper perovskite materials on the crystal structure, stability, and dry reforming of methane (DRM) reactivity of specific A2BO4 phases (A = La, Ba; B = Cu, Ni) has been evaluated by a combination of catalytic experiments, in situ X-ray diffraction, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and aberration-corrected electron microscopy. At room temperature, B-site doping of La2NiO4 with Cu stabilizes the orthorhombic structure (Fmmm) of the perovskite, while A-site doping with Ba yields a tetragonal space group (I4/mmm). We observed the orthorhombic-to-tetragonal transformation above 170 °C for La2Ni0.9Cu0.1O4 and La2Ni0.8Cu0.2O4, slightly higher than for undoped La2NiO4. Loss of oxygen in interstitial sites of the tetragonal structure causes further structure transformations for all samples before decomposition in the temperature range of 400 °C-600 °C. Controlled in situ decomposition of the parent or A/B-site doped perovskite structures in a DRM mixture (CH4:CO2 = 1:1) in all cases yields an active phase consisting of exsolved nanocrystalline metallic Ni particles in contact with hexagonal La2O3 and a mixture of (oxy)carbonate phases (hexagonal and monoclinic La2O2CO3, BaCO3). Differences in the catalytic activity evolve because of (i) the in situ formation of Ni-Cu alloy phases (in a composition of >7:1 = Ni:Cu) for La2Ni0.9Cu0.1O4, La2Ni0.8Cu0.2O4, and La1.8Ba0.2Ni0.9Cu0.1O4, (ii) the resulting Ni particle size and amount of exsolved Ni, and (iii) the inherently different reactivity of the present (oxy)carbonate species. Based on the onset temperature of catalytic DRM activity, the latter decreases in the order of La2Ni0.9Cu0.1O4 ∼ La2Ni0.8Cu0.2O4 ≥ La1.8Ba0.2Ni0.9Cu0.1O4 > La2NiO4 > La1.8Ba0.2NiO4. Simple A-site doped La1.8Ba0.2NiO4 is essentially DRM inactive. The Ni particle size can be efficiently influenced by introducing Ba into the A site of the respective Ruddlesden-Popper structures, allowing us to control the Ni particle size between 10 nm and 30 nm both for simple B-site and A-site doped structures. Hence, it is possible to steer both the extent of the metal-oxide-(oxy)carbonate interface and its chemical composition and reactivity. Counteracting the limitation of the larger Ni particle size, the activity can, however, be improved by additional Cu-doping on the B-site, enhancing the carbon reactivity. Exemplified for the La2NiO4 based systems, we show how the delicate antagonistic balance of doping with Cu (rendering the La2NiO4 structure less stable and suppressing coking by efficiently removing surface carbon) and Ba (rendering the La2NiO4 structure more stable and forming unreactive surface or interfacial carbonates) can be used to tailor prospective DRM-active catalysts.
Collapse
Affiliation(s)
- Maged F. Bekheet
- Fachgebiet Keramische
Werkstoffe/Chair of Advanced Ceramic Materials, Institut für
Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Parastoo Delir Kheyrollahi Nezhad
- Reactor & Catalyst Research Lab, Department of Chemical Engineering, University of Tabriz, Tabriz 51386, Iran
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Nicolas Bonmassar
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Lukas Schlicker
- Fachgebiet Keramische
Werkstoffe/Chair of Advanced Ceramic Materials, Institut für
Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Albert Gili
- Fachgebiet Keramische
Werkstoffe/Chair of Advanced Ceramic Materials, Institut für
Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Sebastian Praetz
- Institute of Optics
and Atomic Physics, Technische Universität
Berlin, Hardenbergstraße
36, 10623 Berlin, Germany
| | - Aleksander Gurlo
- Fachgebiet Keramische
Werkstoffe/Chair of Advanced Ceramic Materials, Institut für
Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Andrew Doran
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley, California 94720, United States
| | - Yuanxu Gao
- Ernst Ruska-Centrum
für Mikroskopie und Spektroskopie mit Elektronen Forschungszentrum
Jülich GmbH 52425 Jülich, Germany
| | - Marc Heggen
- Ernst Ruska-Centrum
für Mikroskopie und Spektroskopie mit Elektronen Forschungszentrum
Jülich GmbH 52425 Jülich, Germany
| | - Aligholi Niaei
- Reactor & Catalyst Research Lab, Department of Chemical Engineering, University of Tabriz, Tabriz 51386, Iran
| | - Ali Farzi
- Reactor & Catalyst Research Lab, Department of Chemical Engineering, University of Tabriz, Tabriz 51386, Iran
| | - Sabine Schwarz
- University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Johannes Bernardi
- University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Bernhard Klötzer
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Simon Penner
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
Carbide-Modified Pd on ZrO2 as Active Phase for CO2-Reforming of Methane—A Model Phase Boundary Approach. Catalysts 2020. [DOI: 10.3390/catal10091000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Starting from subsurface Zr0-doped “inverse” Pd and bulk-intermetallic Pd0Zr0 model catalyst precursors, we investigated the dry reforming reaction of methane (DRM) using synchrotron-based near ambient pressure in-situ X-ray photoelectron spectroscopy (NAP-XPS), in-situ X-ray diffraction and catalytic testing in an ultrahigh-vacuum-compatible recirculating batch reactor cell. Both intermetallic precursors develop a Pd0–ZrO2 phase boundary under realistic DRM conditions, whereby the oxidative segregation of ZrO2 from bulk intermetallic PdxZry leads to a highly active composite layer of carbide-modified Pd0 metal nanoparticles in contact with tetragonal ZrO2. This active state exhibits reaction rates exceeding those of a conventional supported Pd–ZrO2 reference catalyst and its high activity is unambiguously linked to the fast conversion of the highly reactive carbidic/dissolved C-species inside Pd0 toward CO at the Pd/ZrO2 phase boundary, which serves the role of providing efficient CO2 activation sites. In contrast, the near-surface intermetallic precursor decomposes toward ZrO2 islands at the surface of a quasi-infinite Pd0 metal bulk. Strongly delayed Pd carbide accumulation and thus carbon resegregation under reaction conditions leads to a much less active interfacial ZrO2–Pd0 state.
Collapse
|
6
|
Bonmassar N, Bekheet MF, Schlicker L, Gili A, Gurlo A, Doran A, Gao Y, Heggen M, Bernardi J, Klötzer B, Penner S. In Situ-Determined Catalytically Active State of LaNiO3 in Methane Dry Reforming. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03687] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolas Bonmassar
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Maged F. Bekheet
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Lukas Schlicker
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Albert Gili
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Aleksander Gurlo
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Andrew Doran
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley, California 94720, United States
| | - Yuanxu Gao
- Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marc Heggen
- Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Johannes Bernardi
- University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Bernhard Klötzer
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Simon Penner
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| |
Collapse
|