Mallmann M, Wendl S, Strobel P, Schmidt PJ, Schnick W. Sr
3 P
3 N
7 : Complementary Approach by Ammonothermal and High-Pressure Syntheses.
Chemistry 2020;
26:6257-6263. [PMID:
32030819 PMCID:
PMC7318702 DOI:
10.1002/chem.202000297]
[Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 12/27/2022]
Abstract
Nitridophosphates exhibit an intriguing structural diversity with different structural motifs, for example, chains, layers or frameworks. In this contribution the novel nitridophosphate Sr3 P3 N7 with unprecedented dreier double chains is presented. Crystalline powders were synthesized using the ammonothermal method, while single crystals were obtained by a high-pressure multianvil technique. The crystal structure of Sr3 P3 N7 was solved and refined from single-crystal X-ray diffraction and confirmed by powder X-ray methods. Sr3 P3 N7 crystallizes in monoclinic space group P2/c. Energy-dispersive X-ray and Fourier-transformed infrared spectroscopy were conducted to confirm the chemical composition, as well as the absence of NHx functionality. The optical band gap was estimated to be 4.4 eV using diffuse reflectance UV/Vis spectroscopy. Upon doping with Eu2+ , Sr3 P3 N7 shows a broad deep-red to infrared emission (λem =681 nm, fwhm≈3402 cm-1 ) with an internal quantum efficiency of 42 %.
Collapse