1
|
Polaczek J, Kieca K, Oszajca M, Impert O, Katafias A, Chatterjee D, Ćoćić D, Puchta R, Stochel G, Hubbard CD, van Eldik R. A Personal Account on Inorganic Reaction Mechanisms. CHEM REC 2023:e202300278. [PMID: 37821418 DOI: 10.1002/tcr.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Indexed: 10/13/2023]
Abstract
The presented Review is focused on the latest research in the field of inorganic chemistry performed by the van Eldik group and his collaborators. The first part of the manuscript concentrates on the interaction of nitric oxide and its derivatives with biologically important compounds. We summarized mechanistic information on the interaction between model porphyrin systems (microperoxidase) and NO as well as the recent studies on the formation of nitrosylcobalamin (CblNO). The following sections cover the characterization of the Ru(II)/Ru(III) mixed-valence ion-pair complexes, including Ru(II)/Ru(III)(edta) complexes. The last part concerns the latest mechanistic information on the DFT techniques applications. Each section presents the most important results with the mechanistic interpretations.
Collapse
Affiliation(s)
- Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Konrad Kieca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków, 30-348, Krakow, Poland
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Olga Impert
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Anna Katafias
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Debabrata Chatterjee
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
- Vice-Chancellor's Research Group, Zoology Department, University of Burdwan, Burdwan, 713104, India
| | - Dušan Ćoćić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, P. O. Box 60, 34000, Kragujevac, Serbia
| | - Ralph Puchta
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058, Erlangen, Germany
- Central Institute for Scientific Computing (CISC), University of Erlangen-Nuremberg, Martensstr. 5a, 91058, Erlangen, Germany
- Computer Chemistry Center, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Nägelsbachstr. 25, 91052, Erlangen, Germany
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Colin D Hubbard
- Department of Chemistry, University of New Hampshire, Durham, 03824, USA
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058, Erlangen, Germany
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| |
Collapse
|
2
|
Young RD, Gupta R. A Review on the Halodefluorination of Aliphatic Fluorides. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1684-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractHalodefluorination of alkyl fluorides using group 13 metal halides has been known for quite some time (first reported by Newman in 1938) and is often utilized in its crude stoichiometric form to substitute fluorine with heavier halogens. However, recently halodefluorination has undergone many developments. The reaction can be effected with a range of metal halide sources (including s-block, f-block, and p-block metals), and has been developed into a catalytic process. Furthermore, methods for monoselective halodefluorination in polyfluorocarbons have been developed, allowing exchange of only a single fluorine with a heavier halogen. The reaction has also found use in cascade processes, where the final product may not even contain a halide, but where the conversion of fluorine to a more reactive halogen is a pivotal reaction step in the cascade. This review provides a summary of the developments in the reaction from its inception until now.1 Introduction2 Stoichiometric Halodefluorination2.1 Group 13 Halodefluorination Reagents2.2 Other Metal Halide Mediated Halodefluorination3 Catalytic Halodefluorination4 Monoselective Halodefluorination5 Cascade Reactions Involving Halodefluorination6 Summary and Outlook
Collapse
|
3
|
Buchner MR, Thomas-Hargreaves LR. s-Block chemistry in weakly coordinating solvents. Dalton Trans 2021; 50:16916-16922. [PMID: 34738606 DOI: 10.1039/d1dt03443j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alkaline earth metal catalysis has been a growing field in recent years. To enhance reactivity and to understand the metal-substrate interactions in more detail, reactions are increasingly carried out in weakly coordinating solvents. This article gives an overview over the two main approaches to facilitate this, which are either through the employment of highly dipolar haloaryls as solvents, or by increasing the solubility of the ligand systems. The resulting coordination modes and reactivities are presented together with the synthetic strategies. Additionally, the latest results of group 1 complex chemistry in aliphatic solvents are illustrated and future challenges are highlighted.
Collapse
Affiliation(s)
- Magnus R Buchner
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Lewis R Thomas-Hargreaves
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| |
Collapse
|
4
|
Dankert F, Hänisch C. Siloxane Coordination Revisited: Si−O Bond Character, Reactivity and Magnificent Molecular Shapes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fabian Dankert
- Leibniz-Institut für Katalyse e. V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Carsten Hänisch
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Germany
| |
Collapse
|
5
|
Dorian A, Landgreen EJ, Petras HR, Shepherd JJ, Williams FJ. Iron-Catalyzed Halogen Exchange of Trifluoromethyl Arenes*. Chemistry 2021; 27:10839-10843. [PMID: 34137084 DOI: 10.1002/chem.202101324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 11/10/2022]
Abstract
The facile production of ArCF2 X and ArCX3 from ArCF3 using catalytic iron(III)halides is reported, which constitutes the first iron-catalyzed halogen exchange for non-aromatic C-F bonds. Theoretical calculations suggest direct activation of C-F bonds by iron coordination. ArCX3 and ArCF2 X products of the reaction are synthetically valuable due to their diversification potential. In particular, chloro- and bromodifluoromethyl arenes (ArCF2 Cl, ArCF2 Br respectively) provide access to a myriad of difluoromethyl arene derivatives (ArCF2 R). To optimize for mono-halogen exchange, a statistical method called Design of Experiments was used. Optimized parameters were successfully applied to electron rich and electron deficient aromatic substrates, and to the late stage diversification of flufenoxuron, a commercial insecticide. These methods are highly practical, being run at convenient temperatures and using inexpensive common reagents.
Collapse
Affiliation(s)
- Andreas Dorian
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Emily J Landgreen
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Hayley R Petras
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | - James J Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242, USA
| | | |
Collapse
|
6
|
Dankert F, Richter R, Weigend F, Xie X, Balmer M, Hänisch C. Aufbau anorganischer Kronenether durch s‐Block‐Metall‐templatgesteuerte Si‐O‐Bindungsaktivierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fabian Dankert
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - Roman‐Malte Richter
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - Florian Weigend
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - Xiulan Xie
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - Markus Balmer
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| | - Carsten Hänisch
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Deutschland
| |
Collapse
|
7
|
Dankert F, Richter R, Weigend F, Xie X, Balmer M, von Hänisch C. Construction of Inorganic Crown Ethers by s-Block-Metal-Templated Si-O Bond Activation. Angew Chem Int Ed Engl 2021; 60:10393-10401. [PMID: 33591587 PMCID: PMC8252370 DOI: 10.1002/anie.202014822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/01/2021] [Indexed: 11/07/2022]
Abstract
We herein report the synthesis, structures, coordination ability, and mechanism of formation of silicon analogs of crown ethers. An oligomerization of 2 D2 (I) (2 Dn ,=(Me4 Si2 O)n ) was achieved by the reaction with GaI3 and MIx (M=Li, Na, Mg, Ca, Sr). In these reactions the metal cations serve as template and the anions (I- /[GaI4 ]- ) are required as nucleophiles. In case of MIx =LiI, [Li(2 D3 )GaI4 ] (1) is formed. In case of MIx =NaI, MgI2 , CaI2 , and SrI2 the compounds [M(2 D4 )(GaI4 )x ] (M=Mg2+ (3), Ca2+ (4), Sr2+ (5) are obtained. Furthermore the proton complex [H(2 D3 )][Ga2 I7 ] (6) was isolated and structurally characterized. All complexes were characterized by means of multinuclear NMR spectroscopy, DOSY experiments and, except for compound 3, also by single crystal X-ray diffraction. Quantum chemical calculations were carried out to compare the affinity of M+ to 2 Dn and other ligands and to shed light on the formation of larger rings from smaller ones.
Collapse
Affiliation(s)
- Fabian Dankert
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Roman‐Malte Richter
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Florian Weigend
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Xiulan Xie
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Markus Balmer
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Carsten von Hänisch
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| |
Collapse
|
8
|
Buchner MR. Beryllium coordination chemistry and its implications on the understanding of metal induced immune responses. Chem Commun (Camb) 2020; 56:8895-8907. [DOI: 10.1039/d0cc03802d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The coordination chemistry of beryllium with ligands containing biologically relevant functional groups is discussed. The geometry, speciation and reactivity of these compounds, aids a better understanding of metal ion induced immune reactions.
Collapse
Affiliation(s)
- Magnus R. Buchner
- Anorganische Chemie
- Nachwuchsgruppe Hauptgruppenmetallchemie
- Fachbereich Chemie
- Philipps-Universität Marburg
- 35032 Marburg
| |
Collapse
|