1
|
Rojas G, Carmenate T, García-Pérez G, Pérez-Martínez D. Phagekines: Directed Evolution and Characterization of Functional Cytokines Displayed on Phages. Methods Mol Biol 2023; 2702:149-189. [PMID: 37679619 DOI: 10.1007/978-1-0716-3381-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The current chapter focuses on the use of filamentous phages to display and modify biologically active cytokines, with special emphasis on directed evolution of novel variants showing improved receptor binding. Cytokines are essential protein mediators involved in cell-to-cell communication. Their functional importance and the complexity of their interactions with multichain receptors make cytokine engineering a promising tool for the discovery and optimization of therapeutic molecules. Protocols used at the laboratory are illustrated through examples of manipulation of interleukin-2 and interleukin-6, two members of the family of alpha-helix-bundle cytokines playing pivotal roles in immunity and inflammation.
Collapse
|
2
|
Directed evolution of super-secreted variants from phage-displayed human Interleukin-2. Sci Rep 2019; 9:800. [PMID: 30692603 PMCID: PMC6349883 DOI: 10.1038/s41598-018-37280-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/30/2018] [Indexed: 11/30/2022] Open
Abstract
Selection from a phage display library derived from human Interleukin-2 (IL-2) yielded mutated variants with greatly enhanced display levels of the functional cytokine on filamentous phages. Introduction of a single amino acid replacement selected that way (K35E) increased the secretion levels of IL-2-containing fusion proteins from human transfected host cells up to 20-fold. Super-secreted (K35E) IL-2/Fc is biologically active in vitro and in vivo, has anti-tumor activity and exhibits a remarkable reduction in its aggregation propensity- the major manufacturability issue limiting IL-2 usefulness up to now. Improvement of secretion was also shown for a panel of IL-2-engineered variants with altered receptor binding properties, including a selective agonist and a super agonist that kept their unique properties. Our findings will improve developability of the growing family of IL-2-derived immunotherapeutic agents and could have a broader impact on the engineering of structurally related four-alpha-helix bundle cytokines.
Collapse
|
3
|
León K, García-Martínez K, Carmenate T, Rojas G. Combining computational and experimental biology to develop therapeutically valuable IL2 muteins. Semin Oncol 2018; 45:95-104. [PMID: 30318089 DOI: 10.1053/j.seminoncol.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/28/2018] [Accepted: 04/20/2018] [Indexed: 01/23/2023]
Abstract
High-dose IL2, first approved in 1992, has been used in the treatment of advanced renal cell carcinoma and melanoma. In these indications, IL2 induces long lasting objective responses in 5% to 20% of patients. However, toxicity and the unexpected expansion of regulatory T cells (Tregs) have limited its practical use and therapeutic impact, respectively. At the Center of Molecular Immunology in Havana, Cuba, a project was launched in 2005 to rationally design IL2 muteins that could be deployed in the therapy of cancer. The basic goal was to uncouple the pleiotropic effect of IL2 on different immune T cells, to obtain a mutein with a therapeutic index that was better than that achieved with wild type (wt) IL2. Using a combination of computational and experimental biology approaches, we predicted and developed two novel IL2 muteins with therapeutic potential. The first, designated no-alpha mutein, is an agonist of IL2R signaling with a reduced ability to expand Treg in vivo. In mice, the no-alpha mutein IL2 has higher antitumor activity and lower toxicity than wt IL2. It represents a potential best-in-class drug that has begun phase I/II clinical trials in solid tumors. The second, designated no-gamma mutein, is an antagonist of IL2R signaling, with some preferential affinity for Tregs. This mutein has antitumor activity in mice that likely derives from its ability to reduce Treg accumulation in vivo. It represents a first-in-class drug that offers a novel strategy to inhibit Treg activity in vivo.
Collapse
Affiliation(s)
- Kalet León
- Center of Molecular Immunology (CIM), Havana, Cuba.
| | | | | | | |
Collapse
|
4
|
Rojas G, Carmenate T. Phagekines: Screening Binding Properties and Biological Activity of Functional Cytokines Displayed on Phages. Methods Mol Biol 2018; 1701:535-560. [PMID: 29116526 DOI: 10.1007/978-1-4939-7447-4_30] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The current chapter focuses on the use of filamentous phages to display, modify, and characterize cytokines, which are proteins belonging to a versatile group of essential mediators involved in cell-cell communication. Cytokines exhibit a considerable diversity, both in functions and in structural features underlying their biological effects. A broad variety of cytokines have been successfully displayed on phages, allowing the high-throughput study of their binding properties and biological activities and the discovery of novel therapeutics through directed evolution. The technical singularities and some potential applications of cytokine phage display are illustrated here with the case of Interleukin-2, a prototypic member of the four-alpha-helix bundle cytokine family playing a pivotal role in the immune response and having a long history of therapeutic use.
Collapse
Affiliation(s)
- Gertrudis Rojas
- Center of Molecular Immunology, Calle 216 esq 15, Atabey, Playa, La Habana, CP, 11300, Cuba.
| | - Tania Carmenate
- Center of Molecular Immunology, Calle 216 esq 15, Atabey, Playa, La Habana, CP, 11300, Cuba
| |
Collapse
|
5
|
Rojas G, Tundidor Y, Infante YC. High throughput functional epitope mapping: revisiting phage display platform to scan target antigen surface. MAbs 2015; 6:1368-76. [PMID: 25484050 DOI: 10.4161/mabs.36144] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibody engineering must be accompanied by mapping strategies focused on identifying the epitope recognized by each antibody to define its unique functional identity. High throughput fine specificity determination remains technically challenging. We review recent experiences aimed at revisiting the oldest and most extended display technology to develop a robust epitope mapping platform, based on the ability to manipulate target-derived molecules (ranging from the whole native antigen to antigen domains and smaller fragments) on filamentous phages. Single, multiple and combinatorial mutagenesis allowed comprehensive scanning of phage-displayed antigen surface that resulted in the identification of clusters of residues contributing to epitope formation. Functional pictures of the epitope(s) were thus delineated in the natural context. Successful mapping of antibodies against interleukin-2, epidermal growth factor and its receptor, and vascular endothelial growth factor showed the versatility of these procedures, which combine the accuracy of site-directed mutagenesis with the high throughput potential of phage display.
Collapse
Key Words
- Abs, antibodies
- Ag, antigen
- EGF
- EGF receptor
- EGF, epidermal growth factor
- EGFR, EGF receptor
- ELISA, enzyme-linked immunosorbent assay
- IL-2
- IL-2, interleukin-2
- PCR, polymerase chain reaction
- VEGF
- VEGF, vascular endothelial growth factor
- aa, amino acid
- epitope mapping
- library
- mAb, monoclonal Ab
- phage display
- site-directed mutagenesis
Collapse
Affiliation(s)
- Gertrudis Rojas
- a Systems Biology Department ; Center of Molecular Immunology ; La Habana , Cuba
| | | | | |
Collapse
|
6
|
Rojas G, Carmenate T, Leon K. Molecular dissection of the interactions of an antitumor interleukin-2-derived mutein on a phage display-based platform. J Mol Recognit 2015; 28:261-8. [PMID: 25683569 DOI: 10.1002/jmr.2440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/04/2014] [Accepted: 09/30/2014] [Indexed: 11/08/2022]
Abstract
A mutein with stronger antitumor activity and lower toxicity than wild-type human interleukin-2 (IL-2) has been recently described. The rationale behind its design was to reinforce the immunostimulatory potential through the introduction of four mutations that would selectively disrupt the interaction with the IL-2 receptor alpha chain (thought to be critical for both IL-2-driven expansion of T regulatory cells and IL-2-mediated toxic effects). Despite the successful results of the mutein in several tumor models, characterization of its interactions was still to be performed. The current work, based on phage display of IL-2-derived variants, showed the individual contribution of each mutation to the impairment of alpha chain binding. A more sensitive assay, based on the ability of phage-displayed IL-2 variants to induce proliferation of the IL-2-dependent CTLL-2 cell line, revealed differences between the mutated variants. The results validated the mutein design, highlighting the importance of the combined effects of the four mutations. The developed phage display-based platform is robust and sensitive, allows a fast comparative evaluation of multiple variants, and could be broadly used to engineer IL-2 and related cytokines, accelerating the development of cytokine-derived therapeutics.
Collapse
Affiliation(s)
- Gertrudis Rojas
- Systems Biology Department, Center of Molecular Immunology, Calle 216 esq 15, PO Box 16040, Atabey, Playa, La Habana, CP, 11600, Cuba
| | | | | |
Collapse
|
7
|
Rojas G, Cabrera Infante Y, Pupo A, Carmenate T. Fine epitope specificity of antibodies against interleukin-2 explains their paradoxical immunomodulatory effects. MAbs 2013; 6:273-85. [PMID: 24253188 DOI: 10.4161/mabs.27224] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The functional dichotomy of antibodies against interleukin-2 (IL-2) is thought to depend upon recognition of different cytokine epitopes. Beyond functional studies, the only molecular evidence obtained so far located the epitopes recognized by the immunoenhancing antibodies S4B6 and JES6-5H4 within the predicted interface of IL-2 with the α receptor subunit, explaining the preferential stimulation of effector cells displaying only β and γ receptor chains. A consistent functional map of the epitope bound by the immunoregulatory antibody JES6-1A12 has now been delineated by screening the interactions of phage-displayed antigen variants (with single and multiple mutations) and antigen mimotopes. The target determinant resides in a region between the predicted interfaces with α and β/γ receptor subunits, supporting the dual inhibitory role of the antibody on both interactions. Binding by JES6-1A12 would thus convert complexed IL-2 into a very weak agonist, reinforcing the advantage of T regulatory cells (displaying the high affinity αβγ heterotrimeric receptor) to capture the cytokine by competition and expand over effector cells, ultimately resulting in the observed strong tolerogenic effect of this antibody. Detailed knowledge of the epitopes recognized by anti-IL-2 antibodies with either immunoenhancing or immunoregulatory properties completes the molecular scenario underlying their use to boost or inhibit immune responses in multiple experimental systems. The expanded functional mapping platform now available could be exploited to study other interactions involving related molecular pairs with the final goal of optimizing cytokine and anti-cytokine therapies.
Collapse
Affiliation(s)
- Gertrudis Rojas
- Systems Biology Department; Center of Molecular Immunology; La Habana, Cuba
| | | | - Amaury Pupo
- Systems Biology Department; Center of Molecular Immunology; La Habana, Cuba
| | - Tania Carmenate
- Systems Biology Department; Center of Molecular Immunology; La Habana, Cuba
| |
Collapse
|
8
|
Tonelli RR, Colli W, Alves MJM. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro. Front Immunol 2013; 3:419. [PMID: 23316203 PMCID: PMC3540409 DOI: 10.3389/fimmu.2012.00419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/20/2012] [Indexed: 11/13/2022] Open
Abstract
Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, and Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques. The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development, and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen–host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment), were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite–host interaction. In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic organisms will be discussed. Using these techniques, recent results on the interaction of Trypanosoma cruzi with the host will be highlighted focusing on members of the 85 kDa protein family, a subset of the gp85/TS superfamily.
Collapse
Affiliation(s)
- R R Tonelli
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo São Paulo, Brazil
| | | | | |
Collapse
|
9
|
Rojas G, Pupo A, Leon K, Avellanet J, Carmenate T, Sidhu S. Deciphering the molecular bases of the biological effects of antibodies against Interleukin-2: A versatile platform for fine epitope mapping. Immunobiology 2013; 218:105-13. [DOI: 10.1016/j.imbio.2012.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
|
10
|
Baird A. Gene transfer into Mammalian cells using targeted filamentous bacteriophage. Cold Spring Harb Protoc 2011; 2011:950-7. [PMID: 21807851 DOI: 10.1101/pdb.prot5653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Baird A, Eliceiri BP, Gonzalez AM, Johanson CE, Leadbeater W, Stopa EG. Targeting the choroid plexus-CSF-brain nexus using peptides identified by phage display. Methods Mol Biol 2011; 686:483-98. [PMID: 21082389 DOI: 10.1007/978-1-60761-938-3_25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Drug delivery to the central nervous system requires the use of specific portals to enable drug entry into the brain and, as such, there is a growing need to identify processes that can enable drug transfer across both blood-brain and blood-cerebrospinal fluid barriers. Phage display is a powerful combinatorial technique that identifies specific peptides that can confer new activities to inactive particles. Identification of these peptides is directly dependent on the specific screening strategies used for their selection and retrieval. This chapter describes three selection strategies, which can be used to identify peptides that target the choroid plexus (CP) directly or for drug translocation across the CP and into cerebrospinal fluid.
Collapse
Affiliation(s)
- Andrew Baird
- Department of Surgery, Division of Trauma, Burns and Critical Care, University of California San Diego, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Phage display has been extensively used to study protein-protein interactions, receptor- and antibody-binding sites, and immune responses, to modify protein properties, and to select antibodies against a wide range of different antigens. In the format most often used, a polypeptide is displayed on the surface of a filamentous phage by genetic fusion to one of the coat proteins, creating a chimeric coat protein, and coupling phenotype (the protein) to genotype (the gene within). As the gene encoding the chimeric coat protein is packaged within the phage, selection of the phage on the basis of the binding properties of the polypeptide displayed on the surface simultaneously results in the isolation of the gene encoding the polypeptide. This unit describes the background to the technique, and illustrates how it has been applied to a number of different problems, each of which has its neurobiological counterparts. Although this overview concentrates on the use of filamentous phage, which is the most popular platform, other systems are also described.
Collapse
|
13
|
Bradbury A. The use of phage display in neurobiology. ACTA ACUST UNITED AC 2008; Chapter 5:Unit 5.12. [PMID: 18428495 DOI: 10.1002/0471142301.ns0100s07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phage display is a technique that involves the coupling of phenotype to genotype in a selectable format. It has been extensively used in molecular biology to study protein-protein interactions, receptor and antibody binding sites, and immune responses; to modify protein properties; and to select antibodies against a wide range of different antigens. In the format most often used, a polypeptide is displayed on the surface of a filamentous phage by genetic fusion to one of the coat proteins, creating a chimeric coat protein. As the gene encoding the chimeric coat protein is packaged within the phage, selection of the phage on the basis of the binding properties of the polypeptide displayed on the surface simultaneously results in the isolation of the gene encoding the polypeptide. This unit describes the background of the technique and illustrates how it has been applied to a number of different problems, each of which has its neurobiological counterparts.
Collapse
Affiliation(s)
- A Bradbury
- Los Alamos National Laboratories, Los Alamos, New Mexico, USA
| |
Collapse
|
14
|
Aström E, Ohlson S. Detection of weakly interacting anti-carbohydrate scFv phages using surface plasmon resonance. J Mol Recognit 2006; 19:282-6. [PMID: 16739238 DOI: 10.1002/jmr.786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Methods to characterise and confirm specificity of scFv displayed on phages are important during panning procedures, especially when selecting for antibody fragments with weak affinities in the millimole to micromole range. In this report the surface plasmon resonance (SPR) biosensor was used to study and verify specificity of phages displaying weak anti-carbohydrate scFvs. The variable immunoglobulin light (VL) and heavy (VH) chain genes of the weak monoclonal antibody 39.5 were amplified and cloned into a phagemid and displayed as a scFv-pIII fusion protein on filamentous phage. This monoclonal antibody recognises with weak affinity the structural sequence Glcalpha1-4Glc present in a variety of carbohydrate molecules. Injection of the 39.5 phages over a biosensor chip immobilised with a (Glc)4-BSA conjugate confirmed selective binding of the scFv to its antigen. Inhibition studies verified the specificity. These results clearly show that SPR technology can be used to evaluate in terms of binding and specificity weakly interacting scFv displayed on the phage surface.
Collapse
Affiliation(s)
- Eva Aström
- Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden
| | | |
Collapse
|
15
|
Steppan S, Eckart MR, Bajsarowicz K, Sternberg LR, Greve JM, Cassell DJ. Reduced Secondary Cytokine Induction by BAY 50-4798, a High-Affinity Receptor-Specific Interleukin-2 Analog. J Interferon Cytokine Res 2006; 26:171-8. [PMID: 16542139 DOI: 10.1089/jir.2006.26.171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recombinant interleukin-2 (IL-2) (aldesleukin, Proleukin, Chiron, Emeryville, CA) is approved for treatment of cancer patients and under investigation in HIV-infected individuals. However, treatment with aldesleukin is associated with toxicity, which may be due to its elicitation of inflammatory mediators from cells that express the intermediate-affinity IL-2 receptor. BAY 50-4798, a novel IL-2 analog, is a selective agonist for the high-affinity receptor. It induces the proliferation of activated T cells with a potency similar to that of aldesleukin but has reduced activity on cells expressing the intermediate-affinity receptor. In the current study, we compared cytokine responses elicited in peripheral blood mononuclear cell (PBMC) cultures stimulated with BAY 50-4798 or aldesleukin. BAY 50-4798 induced approximately 5-fold lower mean levels of endogenous IL-2 than aldesleukin, and at least 50% lower levels of proinflammatory cytokines, such as tumor necrosis fctor-alpha (TNF-alpha), IL-1beta, IL-6, and interferon-gamma (IFN-gamma). Furthermore, statistically significant reductions in the levels of IL-5, IL-8, IL-10, IL-13, and granulocyte-macrophage colony-stimulating factor (GM-CSF) were observed in response to BAY 50-4798. These findings increase our understanding of the biologic action of BAY 50-4798 and suggest a mechanism by which it may exhibit better safety than aldesleukin in humans.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Cells, Cultured
- Chemistry, Pharmaceutical
- Concanavalin A/pharmacology
- Cytokines/biosynthesis
- Dose-Response Relationship, Drug
- Humans
- Interleukin-2/analogs & derivatives
- Interleukin-2/pharmacology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Kinetics
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Mitogens/pharmacology
- RNA, Messenger/analysis
- Receptors, Interleukin-2/metabolism
- Recombinant Proteins/pharmacology
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Sonja Steppan
- Biotechnology Research Division, Bayer Corporation, Berkeley, CA 94710, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Johanson CE, Duncan JA, Stopa EG, Baird A. Enhanced Prospects for Drug Delivery and Brain Targeting by the Choroid Plexus–CSF Route. Pharm Res 2005; 22:1011-37. [PMID: 16028003 DOI: 10.1007/s11095-005-6039-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 04/12/2005] [Indexed: 02/07/2023]
Abstract
The choroid plexus (CP), i.e., the blood-cerebrospinal fluid barrier (BCSFB) interface, is an epithelial boundary exploitable for drug delivery to brain. Agents transported from blood to lateral ventricles are convected by CSF volume transmission (bulk flow) to many periventricular targets. These include the caudate, hippocampus, specialized circumventricular organs, hypothalamus, and the downstream pia-glia and arachnoid membranes. The CSF circulatory system normally provides micronutrients, neurotrophins, hormones, neuropeptides, and growth factors extensively to neuronal networks. Therefore, drugs directed to CSF can modulate a variety of endocrine, immunologic, and behavioral phenomema; and can help to restore brain interstitial and cellular homeostasis disrupted by disease and trauma. This review integrates information from animal models that demonstrates marked physiologic effects of substances introduced into the ventricular system. It also recapitulates how pharmacologic agents administered into the CSF system prevent disease or enhance the brain's ability to recover from chemical and physical insults. In regard to drug distribution in the CNS, the BCSFB interaction with the blood-brain barrier is discussed. With a view toward translational CSF pharmacotherapy, there are several promising innovations in progress: bone marrow cell infusions, CP encapsulation and transplants, neural stem cell augmentation, phage display of peptide ligands for CP epithelium, CSF gene transfer, regulation of leukocyte and cytokine trafficking at the BCSFB, and the purification of neurotoxic CSF in degenerative states. The progressively increasing pharmacological significance of the CP-CSF nexus is analyzed in light of treating AIDS, multiple sclerosis, stroke, hydrocephalus, and Alzheimer's disease.
Collapse
Affiliation(s)
- Conrad E Johanson
- Department of Clinical Neurosciences, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island 02912, USA.
| | | | | | | |
Collapse
|
17
|
Lee SC, Ibdah R, Van Valkenburgh C, Rowold E, Abegg A, Donnelly A, Klover J, Merlin S, McKearn JP. Phage display mutagenesis of the chimeric dual cytokine receptor agonist myelopoietin. Leukemia 2001; 15:1277-85. [PMID: 11480572 DOI: 10.1038/sj.leu.2402163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myelopoietins comprise a class of chimeric cytokine receptor agonists consisting of an hIL-3 (human interleukin-3) receptor agonist and an hG-CSF (human granulocyte colony-stimulating factor) receptor agonist linked head-to-tail at their respective carboxy and amino termini. The combination of an early acting cytokine (hIL-3) with a late acting one (hG-CSF) allows efficient hematopoeitic reconstruction following myeloablative insult, and drives differentiation of non-myelocytic lineages (ie thrombocytic lineages) that are inaccessible using hG-CSF alone, in both preclinical models and clinical settings. A myelopoietin species was displayed and mutagenized on filamentous bacteriophage: both component agonists of myelopoietin were presented in biologically functional conformations as each recognized its corresponding receptor. Five amino acid positions in a short region of the hG-CSF receptor agonist module of myelopoietin that had been identified as important for proliferative activity were mutagenized. Display was used because it allows very 'deep' mutagenesis at selected residues: >10(5) substitution variants were affinity-screened using the hG-CSF receptor and 130 new, active variants of myelopoietin were identified and characterized. None of the selected variants were significantly more active than the parental myelopoietin species in a hG-CSF-dependent cell proliferation assay, though many were as active. Many of these relatively high-activity variants contained parental amino acids at several positions, suggesting the parental sequence may already be optimal at these positions for the assays used, and potentially accounting for the failure to identify enhanced bioactivity variants. Analysis of substitutions of high-activity variants complements and extends previous alanine scanning, and other genetic and biochemical data for hG-CSF variants.
Collapse
Affiliation(s)
- S C Lee
- GD Searle Pharmacia Company, St Louis, MO 63196, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
In recent years, the use of surface-display vectors for displaying polypeptides on the surface of bacteriophage and bacteria, combined with in vitro selection technologies, has transformed the way in which we generate and manipulate ligands, such as enzymes, antibodies and peptides. Phage display is based on expressing recombinant proteins or peptides fused to a phage coat protein. Bacterial display is based on expressing recombinant proteins fused to sorting signals that direct their incorporation on the cell surface. In both systems, the genetic information encoding for the displayed molecule is physically linked to its product via the displaying particle. Using these two complementary technologies, we are now able to design repertoires of ligands from scratch and use the power of affinity selection to select those ligands having the desired (biological) properties from a large excess of irrelevant ones. With phage display, tailor-made proteins (fused peptides, antibodies, enzymes, DNA-binding proteins) may be synthesized and selected to acquire the desired catalytic properties or affinity of binding and specificity for in vitro and in vivo diagnosis, for immunotherapy of human disease or for biocatalysis. Bacterial surface display has found a range of applications in the expression of various antigenic determinants, heterologous enzymes, single-chain antibodies, and combinatorial peptide libraries. This review explains the basis of phage and bacterial surface display and discusses the contributions made by these two leading technologies to biotechnological applications. This review focuses mainly on three areas where phage and cell display have had the greatest impact, namely, antibody engineering, enzyme technology and vaccine development.
Collapse
Affiliation(s)
- I Benhar
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Green Building, Room 202, Tel-Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
19
|
Wu SJ, Li J, Tsui P, Cook R, Zhang W, Hu Y, Canziani G, Chaiken I. Randomization of the receptor alpha chain recruitment epitope reveals a functional interleukin-5 with charge depletion in the CD loop. J Biol Chem 1999; 274:20479-88. [PMID: 10400676 DOI: 10.1074/jbc.274.29.20479] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the functional phage display of single chain human interleukin-5 (scIL-5) and its use for receptor-binding epitope randomization. Enzyme-linked immunosorbent assays and optical biosensor analyses verified expression of scIL-5 on the phage surface and binding of scIL-5 phage to interleukin-5 receptor alpha chain. Furthermore, an asymmetrically disabled but functional scIL-5 mutant, (wt/A5)scIL-5, was displayed on phage. (wt/A5)scIL-5 was constructed from an N-terminal half containing the original five charged residues (88EERRR92) in the CD loop, including the Glu89 and Arg91 believed key in the alpha chain recognition site, combined with a C-terminal half containing a disabled CD loop sequence (88AAAAA92) missing the key recognition residues. This asymmetric variant was used as a starting point to generate an scIL-5 library in which the intact 88-92 N-terminal CD loop was randomized. From this epitope library, a receptor-binding variant of IL-5 was detected, (SLRGG/A5)scIL-5, in which the only charged residue in the CD loop is an Arg at position 90. Characterization of this variant expressed as a soluble protein in E. coli shows that the IL-5 pharmacophore for receptor alpha chain binding can function with a single positive charge in the CD loop. Charge-depleted CD loop mimetics of IL-5 suggest the importance of charge distribution in functional IL-5 receptor recruitment.
Collapse
Affiliation(s)
- S J Wu
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ichiyama K, Ishikawa D, Tanaka Y, Kashiwa T, Koyanagi Y, Handa S, Yamashita A, Fukushi M, Yamamoto N, Taki T. Epitope mapping of rat neutralizing monoclonal antibody against human immunodeficiency virus type-1 by a phage peptide library: comparison with ELISA using synthetic peptides. Viral Immunol 1999; 12:57-66. [PMID: 10333243 DOI: 10.1089/vim.1999.12.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We generated a rat monoclonal antibody (mAb W#10) with the ability to neutralize human immunodeficiency virus type 1IIIB (HIV-1IIIB) infection. The epitope recognized by mAb W#10 was defined as R-I-Q-R-G-P-G by enzyme-linked immunosorbent assay (ELISA) with the use of synthetic peptides. The filamentous phage clones displaying random 15-amino-acid peptides on the amino terminus of the pIII coat protein reacting with mAb W#10 were identified with affinity and immunological selection procedures. Thirteen out of 16 selected phage clones contained the G-X-G-R-X-F sequence in the coat protein region representing significant homology to a part of conserved G-P-G-R-A-F sequence in the V3 loop of various HIV-1 strains. In addition, the phage clones included the G-X-G sequence in the sequence detected by synthetic peptides as the recognition site. The selected phage clones were stained by mAb W#10 specifically and were able to compete with mAb binding to cells expressing viral antigens.
Collapse
Affiliation(s)
- K Ichiyama
- Department of Microbiology, Tokyo Medical and Dental University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Larocca D, Kassner PD, Witte A, Ladner RC, Pierce GF, Baird A. Gene transfer to mammalian cells using genetically targeted filamentous bacteriophage. FASEB J 1999; 13:727-34. [PMID: 10094933 DOI: 10.1096/fasebj.13.6.727] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have genetically modified filamentous bacteriophage to deliver genes to mammalian cells. In previous studies we showed that noncovalently attached fibroblast growth factor (FGF2) can target bacteriophage to COS-1 cells, resulting in receptor-mediated transduction with a reporter gene. Thus, bacteriophage, which normally lack tropism for mammalian cells, can be adapted for mammalian cell gene transfer. To determine the potential of using phage-mediated gene transfer as a novel display phage screening strategy, we transfected COS-1 cells with phage that were engineered to display FGF2 on their surface coat as a fusion to the minor coat protein, pIII. Immunoblot and ELISA analysis confirmed the presence of FGF2 on the phage coat. Significant transduction was obtained in COS-1 cells with the targeted FGF2-phage compared with the nontargeted parent phage. Specificity was demonstrated by successful inhibition of transduction in the presence of excess free FGF2. Having demonstrated mammalian cell transduction by phage displaying a known gene targeting ligand, it is now feasible to apply phage-mediated transduction as a screen for discovering novel ligands.
Collapse
Affiliation(s)
- D Larocca
- Selective Genetics Inc., San Diego, California 92121, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Larocca D, Witte A, Johnson W, Pierce GF, Baird A. Targeting bacteriophage to mammalian cell surface receptors for gene delivery. Hum Gene Ther 1998; 9:2393-9. [PMID: 9829538 DOI: 10.1089/hum.1998.9.16-2393] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Filamentous bacteriophages represent one of nature's most elegant ways of packaging and delivering DNA. In an effort to develop novel methods for ligand discovery via phage gene delivery, we conferred mammalian cell tropism to filamentous bacteriophages by attaching basic fibroblast growth factor (FGF2), transferrin, or epidermal growth factor (EGF) to their coat proteins and measuring CMV promoter-driven reporter gene expression in target cells. In this system, FGF2 was a more effective targeting agent than transferrin or EGF. The detection of green fluorescent protein (GFP) or beta-galactosidase (beta-Gal) activity in cells required FGF2 targeting and was phage concentration dependent. Specificity of the targeting for high-affinity FGF receptors was demonstrated by competing the targeted phage with FGF2, by the failure of FGF2-targeted bacteriophage to transduce high-affinity FGF receptor-negative cells, and by their ability to transduce these same cells when stably transfected with FGFR1, a high-affinity FGF receptor. Long-term transgene expression was established by selecting colonies for G418 resistance, suggesting that with the appropriate targeted tropism, filamentous bacteriophage can serve as a vehicle for targeted gene delivery to mammalian cells.
Collapse
Affiliation(s)
- D Larocca
- Selective Genetics, Inc., San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|