1
|
Vijayraghavan S, Ruggiero A, Becker S, Mieczkowski P, Hanna GS, Hamann MT, Saini N. Methylglyoxal mutagenizes single-stranded DNA via Rev1-associated slippage and mispairing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643935. [PMID: 40166206 PMCID: PMC11956917 DOI: 10.1101/2025.03.18.643935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Methylglyoxal (MG) is a highly reactive aldehyde that is produced endogenously during metabolism and is derived from exogenous sources such as sugary food items and cigarette smoke. Unless detoxified by glyoxalases (Glo1 and Glo2), MG can readily react with all major biomolecules, including DNA and proteins, generating characteristic lesions and glycation-derived by- products. As a result, MG exposure has been linked to a variety of human diseases, including cancers. Prior studies show that MG can glycate DNA, preferentially on guanine residues, and cause DNA damage. However, the mutagenicity of MG is poorly understood in vivo. In the context of cancer, it is essential to comprehend the true contribution of MG to genome instability and global mutational burden. In the present study, we show that MG can robustly mutagenize induced single-stranded DNA (ssDNA) in yeast, within a guanine centered mutable motif. We demonstrate that genome-wide MG mutagenesis in ssDNA is greatly elevated throughout the genome in the absence of Glo1, and abrogated in the presence of the aldehyde quencher aminoguanidine. We uncovered strand slippage and mispairing as the predominant mechanism for generation of all MG-associated mutations, and demonstrate that the translesion polymerase Rev1 is necessary in this pathway. Finally, we find that the primary MG-associated mutation is enriched in a variety of sequenced tumor datasets. We discuss the genomic impact of methylglyoxal exposure in the context of mutagenesis, DNA damage, and carcinogenesis.
Collapse
|
2
|
Burman MD, Bag S, Ghosal S, Bhowmik S. Glycation of Proteins and Its End Products: From Initiation to Natural Product-Based Therapeutic Preventions. ACS Pharmacol Transl Sci 2025; 8:636-653. [PMID: 40109756 PMCID: PMC11915047 DOI: 10.1021/acsptsci.4c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Diabetes is a chronic metabolic disorder characterized by elevated blood glucose levels, which lead to the glycation of proteins and the formation of advanced glycation end products (AGEs). These AGEs contribute to oxidative stress, inflammation, and the development of complications such as cardiovascular disease, nephropathy, and anemia, significantly increasing mortality rates among diabetic patients. This Review focuses on the role of glycation inhibitors as a potential strategy to prevent AGE-related pathologies. While synthetic glycation inhibitors have shown promise, their adverse effects highlight the need for safer alternatives. We specifically explore a range of natural compounds-flavonoids, curcuminoids, terpenes, stilbenes, lignans, and coumarins-that have demonstrated significant antiglycating properties. The mechanisms through which these natural products inhibit glycation, including antioxidant activity, metal ion chelation, and direct interference with the glycation process, are discussed in detail. This review underscores the potential of natural products as effective and safer glycation inhibitors, offering a promising avenue for the development of therapeutic strategies against diabetes and AGE-related disorders.
Collapse
Affiliation(s)
- Mangal Deep Burman
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| |
Collapse
|
3
|
Martin MS, Jacob-Dolan JW, Pham VTT, Sjoblom NM, Scheck RA. The chemical language of protein glycation. Nat Chem Biol 2025; 21:324-336. [PMID: 38942948 DOI: 10.1038/s41589-024-01644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/10/2024] [Indexed: 06/30/2024]
Abstract
Glycation is a non-enzymatic post-translational modification (PTM) that is correlated with many diseases, including diabetes, cancer and age-related disorders. Although recent work points to the importance of glycation as a functional PTM, it remains an open question whether glycation has a causal role in cellular signaling and/or disease development. In this Review, we contextualize glycation as a specific mechanism of carbon stress and consolidate what is known about advanced glycation end-product (AGE) structures and mechanisms. We highlight the current understanding of glycation as a PTM, focusing on mechanisms for installing, removing or recognizing AGEs. Finally, we discuss challenges that have hampered a more complete understanding of the biological consequences of glycation. The development of tools for predicting, modulating, mimicking or capturing glycation will be essential for interpreting a post-translational glycation network. Therefore, continued insights into the chemistry of glycation will be necessary to advance understanding of glycation biology.
Collapse
|
4
|
Takeuchi M. Toxic AGEs (TAGE) Cause Lifestyle-Related Diseases. Antioxidants (Basel) 2024; 13:1372. [PMID: 39594514 PMCID: PMC11591050 DOI: 10.3390/antiox13111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Advanced glycation end-products (AGEs) play a role in the onset/progression of lifestyle-related diseases (LSRD), suggesting that the suppression of AGE-induced effects can be exploited to prevent and treat LSRD. However, AGEs have a variety of structures with different biological effects. Glyceraldehyde (GA) is an intermediate of glucose, and fructose metabolism and GA-derived AGEs (GA-AGEs) have been associated with LSRD, leading to the concept of toxic AGEs (TAGE). Elevated blood TAGE levels have been implicated in the onset/progression of LSRD; therefore, the measurement of TAGE levels may enable disease prediction at an early stage. Moreover, recent studies have revealed the structures and degradation pathways of TAGE. Herein, we provide an overview of the research on TAGE. The TAGE theory provides novel insights into LSRD and is expected to elucidate new targets for many diseases.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan
| |
Collapse
|
5
|
Rybnikářová A, Buchal R, Pláteník J. Ferritin with methylglyoxal produces reactive oxygen species but remains functional. Free Radic Res 2024; 58:702-722. [PMID: 39508662 DOI: 10.1080/10715762.2024.2417281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Iron is necessary for life, but the simultaneous iron-catalyzed formation of reactive oxygen species (ROS) is involved in pathogenesis of many diseases. One of them is diabetes mellitus, a widespread disease with severe long-term complications, including neuropathy, retinopathy, and nephropathy. Much evidence points to methylglyoxal, a potent glycating agent, as the key mediator of diabetic complications. In diabetes, there is also a peculiar dysregulation of iron homeostasis, leading to an expansion of redox-active iron. This in vitro study focuses on the interaction of methylglyoxal with ferritin, which is the main cellular protein for iron storage. Methylglyoxal effectively liberates iron from horse spleen ferritin, as well as synthetic iron cores; in both cases, it is partially mediated by superoxide. The interaction of methylglyoxal with ferritin increases the production of hydrogen peroxide, much above the generation of peroxide by methylglyoxal alone, in an iron-dependent manner. Glycation with methylglyoxal results in structural changes in ferritin. All of these findings can be demonstrated with pathophysiologically relevant (submillimolar) methylglyoxal concentrations. However, the rate of iron release by ascorbate, the ferroxidase activity, or the diameter of gated pores even in intensely glycated ferritin is not altered. In conclusion, although the functional features of ferritin resist alterations due to glycation, the interaction of methylglyoxal with ferritin liberates iron and markedly increases ROS production, both of which could enhance oxidative stress in vivo. Our findings may have implications for the pathogenesis of long-term diabetic complications, as well as for the use of ferritin as a nanocarrier in chemotherapy.
Collapse
Affiliation(s)
- Adriana Rybnikářová
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, Praha 2, Czech Republic
| | - Richard Buchal
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, Praha 2, Czech Republic
| | - Jan Pláteník
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, Praha 2, Czech Republic
| |
Collapse
|
6
|
de la Mora-de la Mora I, García-Torres I, Flores-López LA, López-Velázquez G, Hernández-Alcántara G, Gómez-Manzo S, Enríquez-Flores S. Methylglyoxal-Induced Modifications in Human Triosephosphate Isomerase: Structural and Functional Repercussions of Specific Mutations. Molecules 2024; 29:5047. [PMID: 39519689 PMCID: PMC11547674 DOI: 10.3390/molecules29215047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Triosephosphate isomerase (TPI) dysfunction is a critical factor in diverse pathological conditions. Deficiencies in TPI lead to the accumulation of toxic methylglyoxal (MGO), which induces non-enzymatic post-translational modifications, thus compromising protein stability and leading to misfolding. This study investigates how specific TPI mutations (E104D, N16D, and C217K) affect the enzyme's structural stability when exposed to its substrate glyceraldehyde 3-phosphate (G3P) and MGO. We employed circular dichroism, intrinsic fluorescence, native gel electrophoresis, and Western blotting to assess the structural alterations and aggregation propensity of these TPI mutants. Our findings indicate that these mutations markedly increase TPI's susceptibility to MGO-induced damage, leading to accelerated loss of enzymatic activity and enhanced protein aggregation. Additionally, we observed the formation of MGO-induced adducts, such as argpyrimidine (ARGp), that contribute to enzyme inactivation and aggregation. Importantly, the application of MGO-scavenging molecules partially mitigated these deleterious effects, highlighting potential therapeutic strategies to counteract MGO-induced damage in TPI-related disorders.
Collapse
Affiliation(s)
- Ignacio de la Mora-de la Mora
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.G.-T.); (L.A.F.-L.); (G.L.-V.)
| | - Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.G.-T.); (L.A.F.-L.); (G.L.-V.)
| | - Luis Antonio Flores-López
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.G.-T.); (L.A.F.-L.); (G.L.-V.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.G.-T.); (L.A.F.-L.); (G.L.-V.)
| | - Gloria Hernández-Alcántara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.G.-T.); (L.A.F.-L.); (G.L.-V.)
| |
Collapse
|
7
|
Vizuete AFK, Fróes F, Seady M, Hansen F, Ligabue-Braun R, Gonçalves CA, Souza DO. A Mechanism of Action of Metformin in the Brain: Prevention of Methylglyoxal-Induced Glutamatergic Impairment in Acute Hippocampal Slices. Mol Neurobiol 2024; 61:3223-3239. [PMID: 37980327 DOI: 10.1007/s12035-023-03774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Metformin, a biguanide compound (N-1,1-dimethylbiguanide), is widely prescribed for diabetes mellitus type 2 (T2D) treatment. It also presents a plethora of properties, such as anti-oxidant, anti-inflammatory, anti-apoptosis, anti-tumorigenic, and anti-AGE formation activity. However, the precise mechanism of action of metformin in the central nervous system (CNS) needs to be clarified. Herein, we investigated the neuroprotective role of metformin in acute hippocampal slices exposed to methylglyoxal (MG), a highly reactive dicarbonyl compound and a key molecule in T2D developmental pathophysiology. Metformin protected acute hippocampal slices from MG-induced glutamatergic neurotoxicity and neuroinflammation by reducing IL-1β synthesis and secretion and RAGE protein expression. The drug also improved astrocyte function, particularly with regard to the glutamatergic system, increasing glutamate uptake. Moreover, we observed a direct effect of metformin on glutamate transporters, where the compound prevented glycation, by facilitating enzymatic phosphorylation close to Lys residues, suggesting a new neuroprotective role of metformin via PKC ζ in preventing dysfunction in glutamatergic system induced by MG.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| | - Fernanda Fróes
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Hansen
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre, 90050-130, Brazil
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo O Souza
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
8
|
Uceda AB, Mariño L, Casasnovas R, Adrover M. An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys Rev 2024; 16:189-218. [PMID: 38737201 PMCID: PMC11078917 DOI: 10.1007/s12551-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/14/2024] Open
Abstract
The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Rodrigo Casasnovas
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Miquel Adrover
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| |
Collapse
|
9
|
Sakai-Sakasai A, Takeda K, Suzuki H, Takeuchi M. Structures of Toxic Advanced Glycation End-Products Derived from Glyceraldehyde, A Sugar Metabolite. Biomolecules 2024; 14:202. [PMID: 38397439 PMCID: PMC10887030 DOI: 10.3390/biom14020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Advanced glycation end-products (AGEs) have recently been implicated in the onset/progression of lifestyle-related diseases (LSRDs); therefore, the suppression of AGE-induced effects may be used in both the prevention and treatment of these diseases. Various AGEs are produced by different biological pathways in the body. Glyceraldehyde (GA) is an intermediate of glucose and fructose metabolism, and GA-derived AGEs (GA-AGEs), cytotoxic compounds that accumulate and induce damage in mammalian cells, contribute to the onset/progression of LSRDs. The following GA-AGE structures have been detected to date: triosidines, GA-derived pyridinium compounds, GA-derived pyrrolopyridinium lysine dimers, methylglyoxal-derived hydroimidazolone 1, and argpyrimidine. GA-AGEs are a key contributor to the formation of toxic AGEs (TAGE) in many cells. The extracellular leakage of TAGE affects the surrounding cells via interactions with the receptor for AGEs. Elevated serum levels of TAGE, which trigger different types of cell damage, may be used as a novel biomarker for the prevention and early diagnosis of LSRDs as well as in evaluations of treatment efficacy. This review provides an overview of the structures of GA-AGEs.
Collapse
Affiliation(s)
- Akiko Sakai-Sakasai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (A.S.-S.); (K.T.)
- General Medicine Center, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan
| | - Kenji Takeda
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (A.S.-S.); (K.T.)
- Department of Cardiology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan
| | - Hirokazu Suzuki
- Department of Organic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Ishikawa, Japan;
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (A.S.-S.); (K.T.)
| |
Collapse
|
10
|
Risum AB, Bevilacqua M, Li C, Engholm-Keller K, Poojary MM, Rinnan Å, Lund MN. Resolving fluorescence spectra of Maillard reaction products formed on bovine serum albumin using parallel factor analysis. Food Res Int 2024; 178:113950. [PMID: 38309910 DOI: 10.1016/j.foodres.2024.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Formation of Maillard reaction products (MRPs) is increasingly studied by the use of fluorescence spectroscopy, and most often, by measuring single excitation/emission pairs or use of unresolved spectra. However, due to the matrix complexity and potential co-formation of fluorescent oxidation products on tryptophan and tyrosine residues, this practice will often introduce errors in both identification and quantification. The present study investigates the combination of fluorescence excitation emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) to resolve the EEMs into its underlying fluorescent signals, allowing for better identification and quantification of MRPs. EEMs were recorded on a sample system of bovine serum albumin incubated at 40 °C for up to one week with either glucose, methylglyoxal or glyoxal added. Ten unique PARAFAC components were resolved, and assignment was attempted based on similarity with fluorescence of pure standards of MRPs and oxidation products and reported data from literature. Of the ten fluorescent PARAFAC components, tyrosine and buried and exposed tryptophan were resolved and identified, as well as the formation of specific MRPs (argpyrimidine and Nα-acetyl-Nδ-(5-methyl-4-imidazolon-2-yl)ornithine) and tryptophan oxidation products (kynurenine and dioxindolylalanine). The formation of the PARAFAC resolved protein modifications were qualitatively validated by liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Anne Bech Risum
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Marta Bevilacqua
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Chengkang Li
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Kasper Engholm-Keller
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Åsmund Rinnan
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Marianne N Lund
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| |
Collapse
|
11
|
Kotian NP, Prabhu A, Tender T, Raghu Chandrashekar H. Methylglyoxal Induced Modifications to Stabilize Therapeutic Proteins: A Review. Protein J 2024; 43:39-47. [PMID: 38017314 DOI: 10.1007/s10930-023-10166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
Therapeutic proteins are potent, fast-acting drugs that are highly effective in treating various conditions. Medicinal protein usage has increased in the past 10 years, and it will evolve further as we better understand disease molecular pathways. However, it is associated with high processing costs, limited stability, difficulty in being administered as an oral medication, and the inability of large proteins to penetrate tissue and reach their target locations. Many methods have been developed to overcome the problems with the stability and chaperone activity of therapeutic proteins, viz., the addition of external agents (changing the properties of the surrounding solvent by using stabilizing excipients, e.g., amino acids, sugars, polyols) and internal agents (chemical modifications that influence its structural properties, e.g., mutations, glycosylation). However, these methods must completely clear protein instability and chaperone issues. There is still much work to be done on finetuning chaperone proteins to increase their biological efficacy and stability. Methylglyoxal (MGO), a potent dicarbonyl compound, reacts with proteins and forms covalent cross-links. Much research on MGO scavengers has been conducted since they are known to alter protein structure, which may result in alterations in biological activity and stability. MGO is naturally produced within our body, however, its impact on chaperones and protein stability needs to be better understood and seems to vary based on concentration. This review highlights the efforts of several research groups on the effect of MGO on various proteins. It also addresses the impact of MGO on a client protein, α-crystallin, to understand the potential solutions to the protein's chaperone and stability problems.
Collapse
Affiliation(s)
- Nainika Prashant Kotian
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anusha Prabhu
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Tenzin Tender
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Hariharapura Raghu Chandrashekar
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
12
|
Kuzan A, Kozak-Sykała A, Fiedorowicz A, Kałas W, Strządała L, Gamian A. Advanced Glycation End-Products in Blood Serum-Novel Ischemic Stroke Risk Factors? Implication for Diabetic Patients. J Clin Med 2024; 13:443. [PMID: 38256577 PMCID: PMC10816329 DOI: 10.3390/jcm13020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
New predictors of ischemic incidents are constantly sought since they raise the awareness of patients and their doctors of stroke occurrence. The goal was to verify whether Advanced Glycation End Products (AGEs), in particular AGE10, could be one of them. The AGE10 measurement was conducted using a non-commercial ELISA assay in the blood serum of neurological patients without cerebrovascular event (n = 24), those with transient brain attack (TIA) (n = 17), and severe ischemic stroke (n = 35). Twice as many of the people with TIA or severe stroke presented high AGE10 serum concentrations compared to the patients with other neurological conditions (χ2 = 8.2, p = 0.004; χ2 = 8.0, p = 0.005, respectively). The risk of ischemic incident was significantly risen in people with higher levels of AGE10 (OR = 6.5, CI95%: 1.7-24.8; OR = 4.7, CI95%: 1.5-14.5 for TIA and stroke subjects, respectively). We observed a positive correlation (r = 0.40) between high AGE10 levels and diabetes. Moreover, all the diabetic patients that had a high AGE10 content experienced either a severe ischemic stroke or TIA. The patients with high levels of AGE10 exhibited higher grades of disability assessed by the NIHSS scale (r = 0.35). AGE10 can be considered a new biomarker of ischemic stroke risk. Patients with diabetes presenting high AGE10 levels are particularly prone to the occurrence of cerebrovascular incidents.
Collapse
Affiliation(s)
- Aleksandra Kuzan
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Kozak-Sykała
- Neurology and Stroke Department, Independent Public Healthcare Centre, Jankowski Regional Hospital in Przeworsk, Szpitalna 16, 37-200 Przeworsk, Poland;
| | - Anna Fiedorowicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland (W.K.); (L.S.); (A.G.)
| | - Wojciech Kałas
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland (W.K.); (L.S.); (A.G.)
| | - Leon Strządała
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland (W.K.); (L.S.); (A.G.)
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland (W.K.); (L.S.); (A.G.)
| |
Collapse
|
13
|
Koike S, Saito Y, Ogasawara Y. Novel Fluorometric Assay of Antiglycation Activity Based on Methylglyoxal-Induced Protein Carbonylation. Antioxidants (Basel) 2023; 12:2030. [PMID: 38136150 PMCID: PMC10740428 DOI: 10.3390/antiox12122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced glycation end products (AGEs), which can have multiple structures, are formed at the sites where the carbonyl groups of reducing sugars bind to the free amino groups of proteins through the Maillard reaction. Some AGE structures exhibit fluorescence, and this fluorescence has been used to measure the formation and quantitative changes in carbonylated proteins. Recently, fluorescent AGEs have also been used as an index for the evaluation of compounds that inhibit protein glycation. However, the systems used to generate fluorescent AGEs from the reaction of reducing sugars and proteins used for the evaluation of antiglycation activity have not been determined through appropriate research; thus, problems remain regarding sensitivity, quantification, and precision. In the present study, using methylglyoxal (MGO), a reactive carbonyl compound to induce glycation, a comparative analysis of the mechanisms of formation of fluorescent substances from several types of proteins was conducted. The analysis identified hen egg lysozyme (HEL) as a protein that produces stronger fluorescent AGEs faster in the Maillard reaction with MGO. It was also found that the AGE structure produced in MGO-induced in HEL was argpyrimidine. By optimizing the reaction system, we developed a new evaluation method for compounds with antiglycation activity and established an efficient evaluation method (HEL-MGO assay) with greater sensitivity and accuracy than the conventional method, which requires high concentrations of bovine serum albumin and glucose. Furthermore, when compounds known to inhibit glycation were evaluated using this method, their antiglycation activities were clearly and significantly measured, demonstrating the practicality of this method.
Collapse
Affiliation(s)
| | | | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; (S.K.); (Y.S.)
| |
Collapse
|
14
|
Dube G, Tiamiou A, Bizet M, Boumahd Y, Gasmi I, Crake R, Bellier J, Nokin MJ, Calonne E, Deplus R, Wissocq T, Peulen O, Castronovo V, Fuks F, Bellahcène A. Methylglyoxal: a novel upstream regulator of DNA methylation. J Exp Clin Cancer Res 2023; 42:78. [PMID: 36998085 PMCID: PMC10064647 DOI: 10.1186/s13046-023-02637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/02/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Aerobic glycolysis, also known as the Warburg effect, is predominantly upregulated in a variety of solid tumors, including breast cancer. We have previously reported that methylglyoxal (MG), a very reactive by-product of glycolysis, unexpectedly enhanced the metastatic potential in triple negative breast cancer (TNBC) cells. MG and MG-derived glycation products have been associated with various diseases, such as diabetes, neurodegenerative disorders, and cancer. Glyoxalase 1 (GLO1) exerts an anti-glycation defense by detoxifying MG to D-lactate. METHODS Here, we used our validated model consisting of stable GLO1 depletion to induce MG stress in TNBC cells. Using genome-scale DNA methylation analysis, we report that this condition resulted in DNA hypermethylation in TNBC cells and xenografts. RESULTS GLO1-depleted breast cancer cells showed elevated expression of DNMT3B methyltransferase and significant loss of metastasis-related tumor suppressor genes, as assessed using integrated analysis of methylome and transcriptome data. Interestingly, MG scavengers revealed to be as potent as typical DNA demethylating agents at triggering the re-expression of representative silenced genes. Importantly, we delineated an epigenomic MG signature that effectively stratified TNBC patients based on survival. CONCLUSION This study emphasizes the importance of MG oncometabolite, occurring downstream of the Warburg effect, as a novel epigenetic regulator and proposes MG scavengers to reverse altered patterns of gene expression in TNBC.
Collapse
Affiliation(s)
- Gaurav Dube
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Assia Tiamiou
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yasmine Boumahd
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Imène Gasmi
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Rebekah Crake
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tom Wissocq
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO (Walloon Excellence in Lifesciences & Biotechnology), Brussels, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium.
| |
Collapse
|
15
|
Advanced Glycation End-Products and Diabetic Neuropathy of the Retina. Int J Mol Sci 2023; 24:ijms24032927. [PMID: 36769249 PMCID: PMC9917392 DOI: 10.3390/ijms24032927] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Diabetic retinopathy is a tissue-specific neurovascular impairment of the retina in patients with both type 1 and type 2 diabetes. Several pathological factors are involved in the progressive impairment of the interdependence between cells that consist of the neurovascular units (NVUs). The advanced glycation end-products (AGEs) are one of the major pathological factors that cause the impairments of neurovascular coupling in diabetic retinopathy. Although the exact mechanisms for the toxicities of the AGEs in diabetic retinopathy have not been definitively determined, the AGE-receptor of the AGE (RAGE) axis, production of reactive oxygen species, inflammatory reactions, and the activation of the cell death pathways are associated with the impairment of the NVUs in diabetic retinopathy. More specifically, neuronal cell death is an irreversible change that is directly associated with vision reduction in diabetic patients. Thus, neuroprotective therapies must be established for diabetic retinopathy. The AGEs are one of the therapeutic targets to examine to ameliorate the pathological changes in the NVUs in diabetic retinopathy. This review focuses on the basic and pathological findings of AGE-induced neurovascular abnormalities and the potential therapeutic approaches, including the use of anti-glycated drugs to protect the AGE-induced impairments of the NVUs in diabetic retinopathy.
Collapse
|
16
|
Wang J, Yang X, Wang Z, Wang J. Role of the Glyoxalase System in Breast Cancer and Gynecological Cancer-Implications for Therapeutic Intervention: a Review. Front Oncol 2022; 12:857746. [PMID: 35898868 PMCID: PMC9309216 DOI: 10.3389/fonc.2022.857746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022] Open
Abstract
Methyglyoxal (MGO), an essential endogenous dicarbonyl metabolite, can lead to multiple physiological problems including hyperglycemia, kidney diseases, malignant tumors, beyond its normal concentration range. The glyoxalase system, making MGO maintained at a low level, links glycation to carcinogenesis, growth, metastasis, and cancer chemotherapy. The glyoxalase system comprises glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), which is often overexpressed in various tumor tissues. However, very little is known about the glyoxalase system in breast cancer and gynecological cancer. In this review, we introduce the role of the glyoxalase system in breast cancer, endometrial cancer, ovarian cancer and cervical cancer, and highlight the potential of the glyoxalase system to be both as a marker for diagnosis and a novel target for antitumor therapy. However, the intrinsic molecular biology and mechanisms of the glyoxalase system in breast cancer and gynecological cancer need further exploration.
Collapse
|
17
|
Biophysical changes in methylglyoxal modified fibrinogen and its role in the immunopathology of type 2 diabetes mellitus. Int J Biol Macromol 2022; 202:199-214. [PMID: 34999047 DOI: 10.1016/j.ijbiomac.2021.12.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/10/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
Methylglyoxal (MG), a highly reactive dicarbonyl metabolite gets generated during glucose oxidation and lipid peroxidation, which contributes to glycation. In type 2 diabetes mellitus (T2DM), non-enzymatic glycosylation of proteins mediated by hyperglycemia results in the pathogenesis of diabetes-associated secondary complications via the generation of AGEs. Under in vitro conditions, MG altered the tertiary structure of fibrinogen. High-performance liquid chromatography (HPLC) and liquid chromatography mass spectroscopy (LCMS) studies confirmed the generation of N-(carboxymethyl) lysine, N-(carboxyethyl) lysine, hydroimidazolone, pentosidine and argpyrimidine in the modified protein. The altered fibrinogen structure upon glycation was further confirmed by confocal microscopy and nuclear magnetic resonance spectra (NMR). MG-Fib was found to be more immunogenic, as compared to its native analogue, in the immunological studies conducted on experimental rabbits. Our results reflect the presence of neo-antigenic determinants on modified fibrinogen. Competitive inhibition enzyme-linked immunosorbent assay suggested the presence of neo-epitopes with marked immunogenicity eliciting specific immune response. Binding studies on purified immunoglobulin G (IgG) confirmed the enhanced and specific immunogenicity of MG-Fib. Studies on interaction of MG-Fib with the circulating auto-antibodies from T2DM patients showed high affinity of serum antibodies toward MG-Fib. This study suggests a potent role of glycoxidatively modified fibrinogen in the generation of auto-immune response in T2DM patients.
Collapse
|
18
|
Protective Effects of Transient Glucose Exposure in Adult C. elegans. Antioxidants (Basel) 2022; 11:antiox11010160. [PMID: 35052664 PMCID: PMC8772789 DOI: 10.3390/antiox11010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
C. elegans are used to study molecular pathways, linking high glucose levels (HG) to diabetic complications. Persistent exposure of C. elegans to a HG environment induces the mitochondrial formation of reactive oxygen species (ROS) and advanced glycation endproducts (AGEs), leading to neuronal damage and decreased lifespan. Studies suggest that transient high glucose exposure (TGE) exerts different effects than persistent exposure. Thus, the effects of TGE on ROS, AGE-formation and life span were studied in C. elegans. Four-day TGE (400 mM) as compared to controls (0mM) showed a persistent increase of ROS (4-days 286 ± 40 RLUs vs. control 187 ± 23 RLUs) without increased formation of AGEs. TGE increased body motility (1-day 0.14 ± 0.02; 4-days 0.15 ± 0.01; 6-days 0.16 ± 0.02 vs. control 0.10 ± 0.02 in mm/s), and bending angle (1-day 17.7 ± 1.55; 3-days 18.7 ± 1.39; 6-days 20.3 ± 0.61 vs. control 15.3 ± 1.63 in degree/s) as signs of neuronal damage. Lifespan was increased by 27% (21 ± 2.4 days) after one-day TGE, 34% (22 ± 1.2 days) after four-days TGE, and 26% (21 ± 1.4 days) after six-days TGE vs. control (16 ± 1.3 days). These experiments suggest that TGE in C. elegans has positive effects on life span and neuronal function, associated with mildly increased ROS-formation. From the perspective of metabolic memory, hormetic effects outweighed the detrimental effects of a HG environment.
Collapse
|
19
|
Coukos JS, Moellering RE. Methylglyoxal Forms Diverse Mercaptomethylimidazole Crosslinks with Thiol and Guanidine Pairs in Endogenous Metabolites and Proteins. ACS Chem Biol 2021; 16:2453-2461. [PMID: 34581579 PMCID: PMC8609522 DOI: 10.1021/acschembio.1c00553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methylglyoxal (MGO) is a reactive byproduct formed by several metabolic precursors, the most notable being triosephosphates in glycolysis. While many MGO-mediated adducts have been described, the reactivity and specific biomolecular targets of MGO remain incompletely mapped. Based on our recent discovery that MGO can form stable mercaptomethylimidazole crosslinks between cysteine and arginine (MICA) in proteins, we hypothesized that MGO may participate in myriad reactions with biologically relevant guanidines and thiols in proteins, metabolites, and perhaps other biomolecules. Herein, we performed steady-state and kinetic analyses of MGO reactivity with several model thiols, guanidines, and biguanide drugs to establish the plausible and prevalent adducts formed by MGO in proteins, peptides, and abundant cellular metabolites. We identified several novel, stable MICA metabolites that form in vitro and in cells, as well as a novel intermolecular post-translational MICA modification of surface cysteines in proteins. These data confirm that kinetic trapping of free MGO by thiols occurs rapidly and can decrease formation of more stable imidazolone (MG-H1) arginine adducts. However, reversible hemithioacetal adducts can go on to form stable MICA modifications in an inter- and intramolecular fashion with abundant or proximal guanidines, respectively. Finally, we discovered that intracellular MICA-glutathione metabolites are recognized and exported by the efflux pump MRP1, providing a parallel and perhaps complementary pathway for MGO detoxification working alongside the glyoxalase pathway. These data provide new insights into the plausible reactions involving MGO in cells and tissues, as well as several new molecular species in proteins and metabolites for further study.
Collapse
Affiliation(s)
- John S. Coukos
- Department of Chemistry, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Raymond E. Moellering
- Department of Chemistry, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
20
|
Singh IR, Yesylevskyy SO, Mitra S. Dietary polyphenols inhibit plasma protein arabinosylation: Biomolecular interaction of genistein and ellagic acid with serum albumins. Biophys Chem 2021; 277:106651. [PMID: 34217110 DOI: 10.1016/j.bpc.2021.106651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/08/2023]
Abstract
The mode of interaction of polyphenolic compounds like genistein (GTN) and ellagic acid (EGA) with human and bovine serum albumin (HSA and BSA, respectively) was found to differ significantly. Stern-Volmer (SV) analysis of the fluorescence quenching data revealed that the binding strength of EGA (1.9 ± 0.09 × 105 M-1) to HSA is about one order of magnitude higher than GTN (2.24 ± 0.06 × 104 M-1). While the static quenching of HSA fluorescence was found to proceed through simple Stern-Volmer (SV) mechanism, a quenching sphere-of-action model was indispensable for BSA. Temperature dependent fluorescence along with a series of other biophysical experiments and ensemble docking calculation revealed that EGA and GTN bind to the serum proteins primarily through the entropy driven process. The α-helical content and the microenvironment near Trp residue of HSA and BSA did not show any appreciable change due to the binding of either GTN or EGA. Interestingly, both GTN and EGA were found to inhibit the formation of advanced glycated end (AGE) product of serum proteins up to the extent of 70-90% within 12-24 h. Relatively moderate binding propensity along with the anti-glycation ability of the polyphenols confirmed that GTN and EGA can be used either as an alternative or towards development of suitable drugs in the prevention of many diabetic-related complications.
Collapse
Affiliation(s)
| | - Semen O Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
21
|
Kehm R, Baldensperger T, Raupbach J, Höhn A. Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol 2021; 42:101901. [PMID: 33744200 PMCID: PMC8113053 DOI: 10.1016/j.redox.2021.101901] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Generation of reactive oxygen species and related oxidants is an inevitable consequence of life. Proteins are major targets for oxidation reactions, because of their rapid reaction rates with oxidants and their high abundance in cells, extracellular tissues, and body fluids. Additionally, oxidative stress is able to degrade lipids and carbohydrates to highly reactive intermediates, which eventually attack proteins at various functional sites. Consequently, a wide variety of distinct posttranslational protein modifications is formed by protein oxidation, glycoxidation, and lipoxidation. Reversible modifications are relevant in physiological processes and constitute signaling mechanisms ("redox signaling"), while non-reversible modifications may contribute to pathological situations and several diseases. A rising number of publications provide evidence for their involvement in the onset and progression of diseases as well as aging processes. Certain protein oxidation products are chemically stable and formed in large quantity, which makes them promising candidates to become biomarkers of oxidative damage. Moreover, progress in the development of detection and quantification methods facilitates analysis time and effort and contributes to their future applicability in clinical routine. The present review outlines the most important classes and selected examples of oxidative protein modifications, elucidates the chemistry beyond their formation and discusses available methods for detection and analysis. Furthermore, the relevance and potential of protein modifications as biomarkers in the context of disease and aging is summarized.
Collapse
Affiliation(s)
- Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tim Baldensperger
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
22
|
Sugiura K, Koike S, Suzuki T, Ogasawara Y. Carbonylation of skin collagen induced by reaction with methylglyoxal. Biochem Biophys Res Commun 2021; 562:100-104. [PMID: 34049202 DOI: 10.1016/j.bbrc.2021.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
Our previous studies have shown that glycerin, which is present at high concentrations in moisturizers and skin lotions, gradually oxidizes to produce methylglyoxal (MGO). In this study, we observed that MGO-treated porcine dermis type-I collagen was carbonylated in an MGO concentration- and time-dependent manner. Furthermore, we examined the structure of advanced glycation end products (AGEs) induced by MGO reacting with type-I collagen. Our findings demonstrate that the α chains of collagen reacted with MGO and easily transformed into a modified protein containing a methylglyoxal-derived hydroimidazolone (MG-H1) moiety in a concentration- and time-dependent manner. Moreover, porcine skin proteins underwent carbonylation when the skin section was treated with MGO for four weeks. Analysis of the structure of AGEs on the carbonylated proteins extracted from MGO-treated skin sections revealed that skin collagen had been converted to MG-H1-modified protein. These novel findings suggest that continuous application of MGO to the skin leads to carbonylation of proteins, which may cause prompt accumulation of MG-H1-modified dermis collagen, thereby resulting in morphological and functional changes of collagen in the skin.
Collapse
Affiliation(s)
- Ko Sugiura
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Toshihiro Suzuki
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
23
|
Czech M, Konopacka M, Rogoliński J, Maniakowski Z, Staniszewska M, Łaczmański Ł, Witkowska D, Gamian A. The Genotoxic and Pro-Apoptotic Activities of Advanced Glycation End-Products (MAGE) Measured with Micronuclei Assay Are Inhibited by Their Low Molecular Mass Counterparts. Genes (Basel) 2021; 12:genes12050729. [PMID: 34068126 PMCID: PMC8152725 DOI: 10.3390/genes12050729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
An association between the cancer invasive activities of cells and their exposure to advanced glycation end-products (AGEs) was described early in some reports. An incubation of cells with BSA-AGE (bovine serum albumin-AGE), BSA-carboxymethyllysine and BSA-methylglyoxal (BSA-MG) resulted in a significant increase in DNA damage. We examined the genotoxic activity of new products synthesized under nonaqueous conditions. These were high molecular mass MAGEs (HMW-MAGEs) formed from protein and melibiose and low molecular mass MAGEs (LMW-MAGEs) obtained from the melibiose and N-α-acetyllysine and N-α-acetylarginine. We have observed by measuring of micronuclei in human lymphocytes in vitro that the studied HMW-MAGEs expressed the genotoxicity. The number of micronuclei (MN) in lymphocytes reached 40.22 ± 5.34 promille (MN/1000CBL), compared to 28.80 ± 6.50 MN/1000 CBL for the reference BSA-MG, whereas a control value was 20.66 ± 1.39 MN/1000CBL. However, the LMW-MAGE fractions did not induce micronuclei formation in the culture of lymphocytes and partially protected DNA against damage in the cells irradiated with X-ray. Human melanoma and all other studied cells, such as bronchial epithelial cells, lung cancer cells and colorectal cancer cells, are susceptible to the genotoxic effects of HMW-MAGEs. The LMW-MAGEs are not genotoxic, while they inhibit HMW-MAGE genotoxic activity. With regard to apoptosis, it is induced with the HMW-MAGE compounds, in the p53 independent way, whereas the low molecular mass product inhibits the apoptosis induction. Further investigations will potentially indicate beneficial apoptotic effect on cancer cells.
Collapse
Affiliation(s)
- Monika Czech
- Dr. Józef Rostek Regional Hospital, Gamowska 3, 47-400 Racibórz, Poland;
| | - Maria Konopacka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-100 Gliwice, Poland; (M.K.); (J.R.)
| | - Jacek Rogoliński
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-100 Gliwice, Poland; (M.K.); (J.R.)
| | - Zbigniew Maniakowski
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-100 Gliwice, Poland;
| | - Magdalena Staniszewska
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Natural Sciences and Health, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland;
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (Ł.Ł.); (D.W.)
| | - Łukasz Łaczmański
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (Ł.Ł.); (D.W.)
| | - Danuta Witkowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (Ł.Ł.); (D.W.)
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland; (Ł.Ł.); (D.W.)
- Wrocław Research Center EIT+, PORT, Stabłowicka 147/149, 54-066 Wrocław, Poland
- Correspondence:
| |
Collapse
|
24
|
Metal cations promote α-dicarbonyl formation in glucose-containing peritoneal dialysis fluids. Glycoconj J 2020; 38:319-329. [PMID: 33283256 PMCID: PMC8116238 DOI: 10.1007/s10719-020-09964-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/04/2022]
Abstract
Heat sterilization of peritoneal dialysis fluids (PDFs) leads to the formation of glucose degradation products (GDPs), which impair long-term peritoneal dialysis. The current study investigated the effects of metal ions, which occur as trace impurities in the fluids, on the formation of six major α-dicarbonyl GDPs, namely glucosone, glyoxal, methylglyoxal, 3-deoxyglucosone, 3-deoxygalactosone, and 3,4-dideoxyglucosone-3-ene. The chelation of metal ions by 2-[bis[2-[bis(carboxymethyl)amino]ethyl]amino]acetic acid (DTPA) during sterilization significantly decreased the total GDP content (585 μM vs. 672 μM), mainly due to the decrease of the glucose-oxidation products glucosone (14 μM vs. 61 μM) and glyoxal (3 μM vs. 11 μM), but also of methylglyoxal (14 μM vs. 31 μM). The glucose-dehydration products 3-deoxyglucosone, 3-deoxygalactosone, and 3,4-dideoxyglucosone-3-ene were not significantly affected by chelation of metal ions. Additionally, PDFs were spiked with eleven different metal ions, which were detected as traces in commercial PDFs, to investigate their influence on GDP formation during heat sterilization. Iron(II), manganese(II), and chromium(III) had the highest impact increasing the formation of glucosone (1.2–1.5 fold increase) and glyoxal (1.3–1.5 fold increase). Nickel(II) and vanadium(III) further promoted the formation of glyoxal (1.3 fold increase). The increase of the pH value of the PDFs from pH 5.5 to a physiological pH of 7.5 resulted in a decreased formation of total GDPs (672 μM vs 637 μM). These results indicate that the adjustment of metal ions and the pH value may be a strategy to further decrease the content of GDPs in PDFs.
Collapse
|
25
|
Suzuki A, Yabu A, Nakamura H. Advanced glycation end products in musculoskeletal system and disorders. Methods 2020; 203:179-186. [PMID: 32987130 DOI: 10.1016/j.ymeth.2020.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
The human population is ageing globally, and the number of old people is increasing yearly. Diabetes is common in the elderly, and the number of diabetic patients is also increasing. Elderly and diabetic patients often have musculoskeletal disorder, which are associated with advanced glycation end products (AGEs). AGEs are heterogeneous molecules derived from non-enzymatic products of the reaction of glucose or other sugar derivatives with proteins or lipids, and many different types of AGEs have been identified. AGEs are a biomarker for ageing and for evaluating disease conditions. Fluorescence, spectroscopy, mass spectrometry, chromatography, and immunological methods are commonly used to measure AGEs, but there is no standardized evaluation method because of the heterogeneity of AGEs. The formation of AGEs is irreversible, and they accumulate in tissue, eventually causing damage. AGE accumulation has been confirmed in neuromusculoskeletal tissues, including bones, cartilage, muscles, tendons, ligaments, and nerves, where they adversely affect biomechanical properties by causing charge changes and forming cross-linkages. AGEs also bind to receptors, such as the receptor for AGEs (RAGE), and induce inflammation by intracellular signal transduction. These mechanisms cause many varied aging and diabetes-related pathological conditions, such as osteoporosis, osteoarthritis, sarcopenia, tendinopathy, and neuropathy. Understanding of AGEs related pathomechanism may lead to develop novel methods for the prevention and therapy of such disorders which affect patients' quality of life. Herein, we critically review the current methodology used for detecting AGEs, and present potential mechanisms by which AGEs cause or exacerbate musculoskeletal disorders.
Collapse
Affiliation(s)
- Akinobu Suzuki
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Japan.
| | - Akito Yabu
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Japan
| |
Collapse
|
26
|
Cellular and Molecular Aspects of Blood Cell-Endothelium Interactions in Vascular Disorders. Int J Mol Sci 2020; 21:ijms21155315. [PMID: 32727002 PMCID: PMC7432596 DOI: 10.3390/ijms21155315] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 12/21/2022] Open
Abstract
In physiology and pathophysiology the molecules involved in blood cell–blood cell and blood cell–endothelium interactions have been identified. Platelet aggregation and adhesion to the walls belonging to vessels involve glycoproteins (GP), GP llb and GP llla and the GP Ib–IX–V complex. Red blood cells (RBCs) in normal situations have little interaction with the endothelium. Abnormal adhesion of RBCs was first observed in sickle cell anemia involving vascular cell adhesion molecule (VCAM)-1, α4β1, Lu/BCAM, and intercellular adhesion molecule (ICAM)-4. More recently RBC adhesion was found to be increased in retinal-vein occlusion (RVO) and in polycythemia vera (PV). The molecules which participate in this process are phosphatidylserine and annexin V in RVO, and phosphorylated Lu/BCAM and α5 laminin chain in PV. The additional adhesion in diabetes mellitus occurs due to the glycated RBC band 3 and the advanced glycation end-product receptors. The multiligand receptor binds advanced glycation end products (AGEs) or S100 calgranulins, or β-amyloid peptide. This receptor for advanced glycation end products is known as RAGE. The binding to RAGE-activated endothelial cells leads to an inflammatory reaction and a prothrombotic state via NADPH activation and altered gene expression. RAGE blockade is a potential target for drugs preventing the deleterious consequences of RAGE activation.
Collapse
|
27
|
Raupbach J, Ott C, Koenig J, Grune T. Proteasomal degradation of glycated proteins depends on substrate unfolding: Preferred degradation of moderately modified myoglobin. Free Radic Biol Med 2020; 152:516-524. [PMID: 31760091 DOI: 10.1016/j.freeradbiomed.2019.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
The Maillard reaction generates protein modifications which can accumulate during hyperglycemia or aging and may have inflammatory consequences. The proteasome is one of the major intracellular systems involved in the proteolytic degradation of modified proteins but its role in the degradation of glycated proteins is scarcely studied. In this study, chemical and structural changes of glycated myoglobin were analyzed and its degradation by 20S proteasome was studied. Myoglobin was incubated with physiological (5-10 mM), moderate (50-100 mM) and severe levels (300 mM) of glucose or methylglyoxal (MGO, 50 mM). Glycation increased myoglobin's fluorescence and surface hydrophobicity. Severe glycation generated crosslinked proteins as shown by gel electrophoresis. The concentration of advanced glycation endproducts (AGEs) N-ε-carboxymethyl lysine (CML), N-ε-carboxyethyl lysine (CEL), methylglyoxal-derived hydroimidazolone-1 (MG-H1), pentosidine and pyrraline was analyzed after enzymatic hydrolysis followed by UPLC-MS/MS. Higher concentrations of glucose increased all analyzed AGEs and incubation with MGO led to a pronounced increase of CEL and MG-H1. The binding of the heme group to apo-myoglobin was decreased with increasing glycation indicating the loss of tertiary protein structure. Proteasomal degradation of modified myoglobin compared to native myoglobin depends on the degree of glycation: physiological conditions decreased proteasomal degradation whereas moderate glycation increased degradation. Severe glycation again decreased proteolytic cleavage which might be due to crosslinking of protein monomers. The activity of the proteasomal subunit β5 is influenced by the presence of glycated myoglobin. In conclusion, the role of the proteasome in the degradation of glycated proteins is highly dependent on the level of glycation and consequent protein unfolding.
Collapse
Affiliation(s)
- Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany
| | - Jeannette Koenig
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14458, Germany; German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| |
Collapse
|
28
|
Chernyshev A, Braggins T. Investigation of Temporal Apparent C4 Sugar Change in Manuka Honey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4261-4267. [PMID: 32159341 DOI: 10.1021/acs.jafc.9b06965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
New Zealand manuka honeys are known for their propensity to increase apparent C4 sugar content during storage. Depending on the particular storage regime and the initial content of dihydroxyacetone (DHA) in honey, the ready-to-market product often fails the C4 sugar test because of the above phenomenon. We have used DHA labeled with a radioactive 14C isotope in a set of honeys subject to an incubation experiment. These honeys were analyzed for DHA, methylglyoxal (MG), hydroxymethylfurfural (HMF), apparent C4 sugars, and 14C scintillation counts over a period of 18 months. The major conclusion of this experiment is that neither DHA nor MG is responsible for the δ13C shift in the honey protein extract. There must be some other yet unknown substance of manuka honey, which binds to the protein and causes negative δ13C shift. One identified candidate for such a binding is carbon dioxide.
Collapse
Affiliation(s)
- Anatoly Chernyshev
- Analytica Laboratories Ltd., Ruakura Research Centre, 10 Bisley Rd, Hamilton 3240, New Zealand
| | - Terry Braggins
- Analytica Laboratories Ltd., Ruakura Research Centre, 10 Bisley Rd, Hamilton 3240, New Zealand
| |
Collapse
|
29
|
Jin C, Zhu X, Wu H, Wang Y, Hu X. Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells. J Biol Chem 2020; 295:6425-6446. [PMID: 32217690 DOI: 10.1074/jbc.ra119.012312] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Phosphoglycerate kinase 1 (PGK1) plays important roles in glycolysis, yet its forward reaction kinetics are unknown, and its role especially in regulating cancer cell glycolysis is unclear. Here, we developed an enzyme assay to measure the kinetic parameters of the PGK1-catalyzed forward reaction. The Km values for 1,3-bisphosphoglyceric acid (1,3-BPG, the forward reaction substrate) were 4.36 μm (yeast PGK1) and 6.86 μm (human PKG1). The Km values for 3-phosphoglycerate (3-PG, the reverse reaction substrate and a serine precursor) were 146 μm (yeast PGK1) and 186 μm (human PGK1). The V max of the forward reaction was about 3.5- and 5.8-fold higher than that of the reverse reaction for the human and yeast enzymes, respectively. Consistently, the intracellular steady-state concentrations of 3-PG were between 180 and 550 μm in cancer cells, providing a basis for glycolysis to shuttle 3-PG to the serine synthesis pathway. Using siRNA-mediated PGK1-specific knockdown in five cancer cell lines derived from different tissues, along with titration of PGK1 in a cell-free glycolysis system, we found that the perturbation of PGK1 had no effect or only marginal effects on the glucose consumption and lactate generation. The PGK1 knockdown increased the concentrations of fructose 1,6-bisphosphate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and 1,3-BPG in nearly equal proportions, controlled by the kinetic and thermodynamic states of glycolysis. We conclude that perturbation of PGK1 in cancer cells insignificantly affects the conversion of glucose to lactate in glycolysis.
Collapse
Affiliation(s)
- Chengmeng Jin
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xiaobing Zhu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hao Wu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yuqi Wang
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
30
|
Affiliation(s)
- Thomas Henle
- Institute of Food Chemistry, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
31
|
Di Emidio G, Placidi M, Rea F, Rossi G, Falone S, Cristiano L, Nottola S, D’Alessandro AM, Amicarelli F, Palmerini MG, Tatone C. Methylglyoxal-Dependent Glycative Stress and Deregulation of SIRT1 Functional Network in the Ovary of PCOS Mice. Cells 2020; 9:cells9010209. [PMID: 31947651 PMCID: PMC7017084 DOI: 10.3390/cells9010209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/17/2022] Open
Abstract
Advanced glycation end-products (AGEs) are involved in the pathogenesis and consequences of polycystic ovary syndrome (PCOS), a complex metabolic disorder associated with female infertility. The most powerful AGE precursor is methylglyoxal (MG), a byproduct of glycolysis, that is detoxified by the glyoxalase system. By using a PCOS mouse model induced by administration of dehydroepiandrosterone (DHEA), we investigated whether MG-dependent glycative stress contributes to ovarian PCOS phenotype and explored changes in the Sirtuin 1 (SIRT1) functional network regulating mitochondrial functions and cell survival. In addition to anovulation and reduced oocyte quality, DHEA ovaries revealed altered collagen deposition, increased vascularization, lipid droplets accumulation and altered steroidogenesis. Here we observed increased intraovarian MG-AGE levels in association with enhanced expression of receptor for AGEs (RAGEs) and deregulation of the glyoxalase system, hallmarks of glycative stress. Moreover, DHEA mice exhibited enhanced ovarian expression of SIRT1 along with increased protein levels of SIRT3 and superoxide dismutase 2 (SOD2), and decreased peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC1α), mitochondrial transcriptional factor A (mtTFA) and translocase of outer mitochondrial membrane 20 (TOMM20). Finally, the presence of autophagy protein markers and increased AMP-activated protein kinase (AMPK) suggested the involvement of SIRT1/AMPK axis in autophagy activation. Overall, present findings demonstrate that MG-dependent glycative stress is involved in ovarian dysfunctions associated to PCOS and support the hypothesis of a SIRT1-dependent adaptive response.
Collapse
Affiliation(s)
- Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.D.E.); (M.P.); (F.R.); (G.R.); (S.F.); (L.C.); (A.M.D.); (F.A.); (M.G.P.)
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.D.E.); (M.P.); (F.R.); (G.R.); (S.F.); (L.C.); (A.M.D.); (F.A.); (M.G.P.)
| | - Francesco Rea
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.D.E.); (M.P.); (F.R.); (G.R.); (S.F.); (L.C.); (A.M.D.); (F.A.); (M.G.P.)
| | - Giulia Rossi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.D.E.); (M.P.); (F.R.); (G.R.); (S.F.); (L.C.); (A.M.D.); (F.A.); (M.G.P.)
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.D.E.); (M.P.); (F.R.); (G.R.); (S.F.); (L.C.); (A.M.D.); (F.A.); (M.G.P.)
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.D.E.); (M.P.); (F.R.); (G.R.); (S.F.); (L.C.); (A.M.D.); (F.A.); (M.G.P.)
| | - Stefania Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, 00161 Roma, Italy;
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.D.E.); (M.P.); (F.R.); (G.R.); (S.F.); (L.C.); (A.M.D.); (F.A.); (M.G.P.)
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.D.E.); (M.P.); (F.R.); (G.R.); (S.F.); (L.C.); (A.M.D.); (F.A.); (M.G.P.)
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.D.E.); (M.P.); (F.R.); (G.R.); (S.F.); (L.C.); (A.M.D.); (F.A.); (M.G.P.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.D.E.); (M.P.); (F.R.); (G.R.); (S.F.); (L.C.); (A.M.D.); (F.A.); (M.G.P.)
- Correspondence: ; +39-(0)-862-433-441
| |
Collapse
|
32
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
33
|
Hemmler D, Gonsior M, Powers LC, Marshall JW, Rychlik M, Taylor AJ, Schmitt‐Kopplin P. Simulated Sunlight Selectively Modifies Maillard Reaction Products in a Wide Array of Chemical Reactions. Chemistry 2019; 25:13208-13217. [PMID: 31314140 PMCID: PMC6856810 DOI: 10.1002/chem.201902804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 11/30/2022]
Abstract
The photochemical transformation of Maillard reaction products (MRPs) under simulated sunlight into mostly unexplored photoproducts is reported herein. Non-enzymatic glycation of amino acids leads to a heterogeneous class of intermediates with extreme chemical diversity, which is of particular relevance in processed and stored food products as well as in diabetic and age-related protein damage. Here, three amino acids (lysine, arginine, and histidine) were reacted with ribose at 100 °C in water for ten hours. Exposing these model systems to simulated sunlight led to a fast decay of MRPs. The photodegradation of MRPs and the formation of new compounds have been studied by fluorescence spectroscopy and nontargeted (ultra)high-resolution mass spectrometry. Photoreactions showed strong selectivity towards the degradation of electron-rich aromatic heterocycles, such as pyrroles and pyrimidines. The data show that oxidative cleavage mechanisms dominate the formation of photoproducts. The photochemical transformations differed fundamentally from "traditional" thermal Maillard reactions and indicated a high amino acid specificity.
Collapse
Affiliation(s)
- Daniel Hemmler
- Comprehensive Foodomics Platform, Analytical Food ChemistryTechnical University MunichMaximus-von-Imhof-Forum 285354FreisingGermany
- Research Unit Analytical BioGeoChemistry (BGC)Helmholtz Zentrum MünchenIngolstädter Landstrasse 185764NeuherbergGermany
| | - Michael Gonsior
- University of Maryland Center for Environmental ScienceChesapeake Biological LaboratorySolomonsUSA
| | - Leanne C. Powers
- University of Maryland Center for Environmental ScienceChesapeake Biological LaboratorySolomonsUSA
| | - James W. Marshall
- The Waltham Centre for Pet NutritionMars Petcare (UK)Waltham-on-the-WoldsLeicestershireLE14 4RTUK
| | - Michael Rychlik
- Comprehensive Foodomics Platform, Analytical Food ChemistryTechnical University MunichMaximus-von-Imhof-Forum 285354FreisingGermany
| | - Andrew J. Taylor
- The Waltham Centre for Pet NutritionMars Petcare (UK)Waltham-on-the-WoldsLeicestershireLE14 4RTUK
| | - Philippe Schmitt‐Kopplin
- Comprehensive Foodomics Platform, Analytical Food ChemistryTechnical University MunichMaximus-von-Imhof-Forum 285354FreisingGermany
- Research Unit Analytical BioGeoChemistry (BGC)Helmholtz Zentrum MünchenIngolstädter Landstrasse 185764NeuherbergGermany
- University of Maryland Center for Environmental ScienceChesapeake Biological LaboratorySolomonsUSA
| |
Collapse
|
34
|
Analysis of Chemically Labile Glycation Adducts in Seed Proteins: Case Study of Methylglyoxal-Derived Hydroimidazolone 1 (MG-H1). Int J Mol Sci 2019; 20:ijms20153659. [PMID: 31357424 PMCID: PMC6695671 DOI: 10.3390/ijms20153659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Seeds represent the major source of food protein, impacting on both human nutrition and animal feeding. Therefore, seed quality needs to be appropriately addressed in the context of viability and food safety. Indeed, long-term and inappropriate storage of seeds might result in enhancement of protein glycation, which might affect their quality and longevity. Glycation of seed proteins can be probed by exhaustive acid hydrolysis and quantification of the glycation adduct Nɛ-(carboxymethyl)lysine (CML) by liquid chromatography-mass spectrometry (LC-MS). This approach, however, does not allow analysis of thermally and chemically labile glycation adducts, like glyoxal-, methylglyoxal- and 3-deoxyglucosone-derived hydroimidazolones. Although enzymatic hydrolysis might be a good solution in this context, it requires aqueous conditions, which cannot ensure reconstitution of seed protein isolates. Because of this, the complete profiles of seed advanced glycation end products (AGEs) are not characterized so far. Therefore, here we propose the approach, giving access to quantitative solubilization of seed proteins in presence of sodium dodecyl sulfate (SDS) and their quantitative enzymatic hydrolysis prior to removal of SDS by reversed phase solid phase extraction (RP-SPE). Using methylglyoxal-derived hydroimidazolone 1 (MG-H1) as a case example, we demonstrate the applicability of this method for reliable and sensitive LC-MS-based quantification of chemically labile AGEs and its compatibility with bioassays.
Collapse
|
35
|
Lassak J, Koller F, Krafczyk R, Volkwein W. Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biol Chem 2019; 400:1397-1427. [DOI: 10.1515/hsz-2019-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Franziska Koller
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Wolfram Volkwein
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| |
Collapse
|
36
|
Perween S, Abidi M, Faizy AF, Moinuddin. Post-translational modifications on glycated plasma fibrinogen: A physicochemical insight. Int J Biol Macromol 2019; 126:1201-1212. [DOI: 10.1016/j.ijbiomac.2019.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/11/2018] [Accepted: 01/04/2019] [Indexed: 12/29/2022]
|
37
|
SIRT1 participates in the response to methylglyoxal-dependent glycative stress in mouse oocytes and ovary. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1389-1401. [PMID: 30771486 DOI: 10.1016/j.bbadis.2019.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022]
Abstract
Methylglyoxal (MG), a highly reactive dicarbonyl derived from metabolic processes, is the most powerful precursor of advanced glycation end products (AGEs). Glycative stress has been recently associated with ovarian dysfunctions in aging and PCOS syndrome. We have investigated the role of the NAD+-dependent Class III deacetylase SIRT1 in the adaptive response to MG in mouse oocytes and ovary. In mouse oocytes, MG induced up-expression of glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) genes, components of the main MG detoxification system, whereas inhibition of SIRT1 by Ex527 or sirtinol reduced this response. In addition, the inhibition of SIRT1 worsened the effects of MG on oocyte maturation rates, while SIRT1 activation by resveratrol counteracted MG insult. Ovaries from female mice receiving 100 mg/kg MG by gastric administration for 28 days (MG mice) exhibited increased levels of SIRT1 along with over-expression of catalase, superoxide dismutase 2, SIRT3, PGC1α and mtTFA. Similar levels of MG-derived AGEs were observed in the ovaries from MG and control groups, along with enhanced protein expression of glyoxalase 1 in MG mice. Oocytes ovulated by MG mice exhibited atypical meiotic spindles, a condition predisposing to embryo aneuploidy. Our results from mouse oocytes revealed for the first time that SIRT1 could modulate MG scavenging by promoting expression of glyoxalases. The finding that up-regulation of glyoxalase 1 is associated with that of components of a SIRT1 functional network in the ovaries of MG mice provides strong evidence that SIRT1 participates in the response to methylglyoxal-dependent glycative stress in the female gonad.
Collapse
|
38
|
Ioannou A, Varotsis C. Probing hemoglobin glyco-products by fluorescence spectroscopy. RSC Adv 2019; 9:37614-37619. [PMID: 35542272 PMCID: PMC9075759 DOI: 10.1039/c9ra05243g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/13/2019] [Indexed: 11/21/2022] Open
Abstract
Fluorescence mapping of hemoglobin AGE formation after hemoglobin modification by Maillard reaction products.
Collapse
Affiliation(s)
- Aristos Ioannou
- Cyprus University of Technology
- Department of Environmental Science and Technology
- Limassol
- Cyprus
| | - Constantinos Varotsis
- Cyprus University of Technology
- Department of Environmental Science and Technology
- Limassol
- Cyprus
| |
Collapse
|
39
|
Navarro M, de Falco B, Morales FJ, Daliani D, Fiore A. Explorative investigation of the anti-glycative effect of a rapeseed by-product extract. Food Funct 2018; 9:5674-5681. [PMID: 30306992 DOI: 10.1039/c8fo01408f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The formation of advanced glycation end-products (AGEs) in biological systems is increased during hyperglycaemia due to higher levels of circulating glucose and carbonyl reactive species. AGEs are causative factors of common chronic diseases. Since synthetic AGE-inhibitors exert unwanted side effects and polyphenols act as potent antiglycative agents, vegetables (fruits, seeds and related by-products) are good candidates when searching for natural inhibitors. The aim of this research is to explore the suitability of a polyphenol-rich rapeseed cake extract (RCext) to decrease the formation of AGEs in an in vitro model. Different phenols, amino acids, carbohydrates, organic acids and fatty acids were identified in the RCext by GC-MS. The results confirm a high concentration of polyphenols (73.85 ± 0.64 and 86.85 ± 2.08 mg of gallic acid equivalents per g of RCext spray dried and freeze dried, respectively) which is correlated with the antioxidant capacity and anti-glycative activity in a dose dependent manner. Rapeseed cake extract (3.7 mg mL-1) significantly reduced the formation of free fluorescent AGEs and pentosidine up to 34.85%. The anti-glycative activity of the extract is likely to be due to the high concentration of sinapinic acid (0.108 ± 0.0043 mg g-1) in its metabolic profile, and the mechanism of action is mediated by methylglyoxal trapping. The results show promising potential for using rapeseed cake extract as a food supplement to ameliorate the formation of AGEs. Rapeseed cake extract should therefore be considered a potential candidate for the prevention of glycation-associated complications of age-related pathologies.
Collapse
Affiliation(s)
- Marta Navarro
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain.
| | | | | | | | | |
Collapse
|
40
|
Li CT, How SC, Chen ME, Lo CH, Chun MC, Chang CK, Chen WA, Wu JW, Wang SSS. Effects of glycation on human γd-crystallin proteins by different glycation-inducing agents. Int J Biol Macromol 2018; 118:442-451. [DOI: 10.1016/j.ijbiomac.2018.06.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023]
|
41
|
Antognelli C, Mancuso F, Frosini R, Arato I, Calvitti M, Calafiore R, Talesa VN, Luca G. Testosterone and Follicle Stimulating Hormone-Dependent Glyoxalase 1 Up-Regulation Sustains the Viability of Porcine Sertoli Cells through the Control of Hydroimidazolone- and Argpyrimidine-Mediated NF-κB Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2553-2563. [PMID: 30125541 DOI: 10.1016/j.ajpath.2018.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Because Sertoli cells (SCs) play a central role in germ cell survival, their death may result in marked germ cell loss and infertility. SCs are the only somatic cells within the seminiferous tubules and are essential for regulating spermatogenesis. Factors that enhance or diminish the viability of SCs may have profound effects on spermatogenesis. Yet the mechanisms underlying the maintenance of SC viability remain largely unknown. Glyoxalase 1 (Glo1) detoxifies methylglyoxal (MG), a highly reactive carbonyl species mainly formed during glycolysis, which is a potent precursor of cytotoxic advanced glycation end products (AGEs). Hydroimidazolone (MG-H1) and argpyrimidine (ArgPyr) are AGEs resulting from MG-mediated post-translational modification of arginine residues in various proteins. The role of Glo1 and MG-derived AGEs in regulating the fate of SCs has never been investigated. By using gene silencing and the specific MG scavenger, aminoguanidine, the authors demonstrate that Glo1, under testosterone and follicle-stimulating hormone control, sustains viability of porcine neonatal SCs through a mechanism involving the NF-κB pathway. Glo1 knockdown induces a mitochondrial apoptotic pathway driven by the intracellular accumulation of MG-H1 and ArgPyr that desensitizes NF-κB signaling by modifying the inhibitor of NF-κB kinase, IKKß. This is the first report describing a role for Glo1 and MG-derived AGEs in SC biology, providing valuable new insights into the potential involvement of this metabolic axis into spermatogenesis.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.
| | - Francesca Mancuso
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Roberta Frosini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Mario Calvitti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Vincenzo N Talesa
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giovanni Luca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
42
|
Leone S, Fonderico J, Melchiorre C, Carpentieri A, Picone D. Structural effects of methylglyoxal glycation, a study on the model protein MNEI. Mol Cell Biochem 2018; 451:165-171. [PMID: 30014221 DOI: 10.1007/s11010-018-3403-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/12/2018] [Indexed: 12/23/2022]
Abstract
The reaction of free amino groups in proteins with reactive carbonyl species, known as glycation, leads to the formation of mixtures of products, collectively referred to as advanced glycation endproducts (AGEs). These compounds have been implicated in several important diseases, but their role in pathogenesis and clinical symptoms' development is still debated. Particularly, AGEs are often associated to the formation of amyloid deposits in conformational diseases, such as Alzheimer's and Parkinson's disease, and it has been suggested that they might influence the mechanisms and kinetics of protein aggregation. We here present the characterization of the products of glycation of the model protein MNEI with methylglyoxal and their effect on the protein structure. We demonstrate that, despite being an uncontrolled process, glycation occurs only at specific residues of the protein. Moreover, while not affecting the protein fold, it alters its shape and hydrodynamic properties and increases its tendency to fibrillar aggregation. Our study opens the way to in deep structural investigations to shed light on the complex link between protein post-translational modifications, structure, and stability.
Collapse
Affiliation(s)
- Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy.
| | - Jole Fonderico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy.
| |
Collapse
|
43
|
Nowotny K, Castro JP, Hugo M, Braune S, Weber D, Pignitter M, Somoza V, Bornhorst J, Schwerdtle T, Grune T. Oxidants produced by methylglyoxal-modified collagen trigger ER stress and apoptosis in skin fibroblasts. Free Radic Biol Med 2018; 120:102-113. [PMID: 29550330 DOI: 10.1016/j.freeradbiomed.2018.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023]
Abstract
Methylglyoxal (MG), a highly reactive dicarbonyl, interacts with proteins to form advanced glycation end products (AGEs). AGEs include a variety of compounds which were shown to have damaging potential and to accumulate in the course of different conditions such as diabetes mellitus and aging. After confirming collagen as a main target for MG modifications in vivo within the extracellular matrix, we show here that MG-collagen disrupts fibroblast redox homeostasis and induces endoplasmic reticulum (ER) stress and apoptosis. In particular, MG-collagen-induced apoptosis is associated with the activation of the PERK-eIF2α pathway and caspase-12. MG-collagen contributes to altered redox homeostasis by directly generating hydrogen peroxide and oxygen-derived free radicals. The induction of ER stress in human fibroblasts was confirmed using collagen extracts isolated from old mice in which MG-derived AGEs were enriched. In conclusion, MG-derived AGEs represent one factor contributing to diminished fibroblast function during aging.
Collapse
Affiliation(s)
- Kerstin Nowotny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Martín Hugo
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Sabine Braune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14458 Nuthetal, Germany
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemisty, University of Vienna, 1090 Vienna, Austria
| | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemisty, University of Vienna, 1090 Vienna, Austria
| | - Julia Bornhorst
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Tanja Schwerdtle
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14458 Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14458 Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany.
| |
Collapse
|
44
|
Lee SH, Matsunaga A, Oe T. Inhibition effect of pyridoxamine on lipid hydroperoxide-derived modifications to human serum albumin. PLoS One 2018; 13:e0196050. [PMID: 29672562 PMCID: PMC5908094 DOI: 10.1371/journal.pone.0196050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/01/2018] [Indexed: 02/02/2023] Open
Abstract
Pyridoxamine (PM) is a promising drug candidate for treating various chronic conditions/diseases in which oxidative stress and carbonyl compounds are important factors affecting pathogenicity. These abilities of PM are mainly attributed to its inhibition of advanced glycation and lipoxidation end product formation, by scavenging reactive carbonyl species. PM might therefore prevent protein damage from lipid hydroperoxide-derived aldehydes such as 4-oxo-2(E)-nonenal (ONE) and 4-hydroxy-2(E)-nonenal (HNE) by trapping them. It was previously reported that PM reacts with ONE to produce pyrrolo-1,3-oxazine (PO8) through the formation of pyrido-1,3-oxazine (PO1/PO2). In this study, we found that ONE and HNE yield an identical product containing a pyrrole ring (PO7, PH2) upon reaction with PM. The structure of PO7/PH2 was shown by LC-MS and NMR analyses to be 1-(2-hydroxy-6-hydroxymethyl-3-methylpyridin-4-ylmethyl)-2-pentylpyrrole. PO1, PO7/PH2, and PO8 were the main stable PM-ONE/HNE adducts. In the incubation of human serum albumin (HSA) with ONE or HNE, Lys residues provided the most favorable modification sites for both aldehydes, and the number of HNE-modified sites was higher than that of ONE-modified sites. When HSA was allowed to react with a linoleic acid hydroperoxide in the presence of ascorbic acid, ONE modified more residues (10 Lys, 3 His, 2 Arg) than did HNE (8 His, 2 Lys), indicating the relative reactivity of aldehydes towards amino acid residues. Upon treatment with increasing concentrations of PM, the concentrations of ONE-modified HSA peptides, but not of HNE-modified peptides, were reduced significantly and dose-dependently. Concomitantly, the formation of PM-ONE adducts increased in a dose-dependent manner. The inhibition effect of PM was also confirmed in the cell system subjected to oxidative stress. Our results demonstrate that PM can inhibit lipid hydroperoxide-derived damage to proteins by trapping ONE preferentially, and the resulting PM-ONE adducts can be used as a dosimeter for ONE production to determine the levels of lipid peroxidation.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail: (SHL); (TO)
| | - Atsushi Matsunaga
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail: (SHL); (TO)
| |
Collapse
|
45
|
Jost T, Zipprich A, Glomb MA. Analysis of Advanced Glycation Endproducts in Rat Tail Collagen and Correlation to Tendon Stiffening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3957-3965. [PMID: 29620898 DOI: 10.1021/acs.jafc.8b00937] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Methylglyoxal is a major 1,2-dicarbonyl compound in vivo and leads to nonenzymatic protein modifications, known as advanced glycation endproducts. Especially long-lived proteins like collagen are prone to changes of the mechanical or biological function, respectively, by accumulation of Maillard-derived modifications. Specifically, the resulting nonenzymatic cross-link structures in parallel to the natural maturation process of collagen fibrils lead to complications with age or during disease. A novel lysine-lysine amide cross-link derived from methylglyoxal, 2,15-diamino-8-methyl-9-oxo-7,10-diaza-1,16-hexadecanedioic acid, named MOLA, was synthesized and identified in vitro and in vivo. Tail tendons of young, adult, and old rats (3, 12, and 22 months) were enzymatically digested prior to analysis of acid-labile glycation products via liquid chromatography-tandem mass spectrometry (LC-MS/MS). As a result, nine monovalent amino acid modifications, mostly originating from methylglyoxal (36 μmol/mol leucine-equivalents in total), and four glycation cross-links (0.72 μmol/mol glucosepane, 0.24 μmol/mol DODIC (3-deoxyglucosone-derived imidazoline cross-link), 0.04 μmol/mol MODIC (methylglyoxal-derived imidazoline cross-link), 0.34 μmol/mol MOLA) were quantitated in senescent tendon collagen. The results correlated with increased tail tendon breaking time from 10 to 190 min and indicate that methylglyoxal is a major player in the aging process of connective tissue.
Collapse
Affiliation(s)
- Tobias Jost
- Institute of Chemistry-Food Chemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2 , D-06120 Halle , Germany
| | - Alexander Zipprich
- Department of Internal Medicine I , Martin-Luther-University Halle-Wittenberg , Ernst-Grube-Strasse 40 , D-06120 Halle , Germany
| | - Marcus A Glomb
- Institute of Chemistry-Food Chemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2 , D-06120 Halle , Germany
| |
Collapse
|
46
|
Bellahcène A, Nokin MJ, Castronovo V, Schalkwijk C. Methylglyoxal-derived stress: An emerging biological factor involved in the onset and progression of cancer. Semin Cancer Biol 2018; 49:64-74. [DOI: 10.1016/j.semcancer.2017.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
|
47
|
Vanholder R, Argilés A, Baurmeister U, Brunet P, Clark W, Cohen G, Dedeyn P, Deppisch R, Descamps-Latscha B, Henle T, Jörres A, Massy Z, Rodriguez M, Stegmayr B, Stenvinkel P, Wratten M. Uremic Toxicity: Present State of the Art. Int J Artif Organs 2018. [DOI: 10.1177/039139880102401004] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The uremic syndrome is a complex mixture of organ dysfunctions, which is attributed to the retention of a myriad of compounds that under normal condition are excreted by the healthy kidneys (uremic toxins). In the area of identification and characterization of uremic toxins and in the knowledge of their pathophysiologic importance, major steps forward have been made during recent years. The present article is a review of several of these steps, especially in the area of information about the compounds that could play a role in the development of cardiovascular complications. It is written by those members of the Uremic Toxins Group, which has been created by the European Society for Artificial Organs (ESAO). Each of the 16 authors has written a state of the art in his/her major area of interest.
Collapse
Affiliation(s)
- R. Vanholder
- The Nephrology Section, Department of Internal Medicine, University Hospital, Gent - Belgium
| | - A. Argilés
- Institute of Human Genetics, IGH-CNRS UPR 1142, Montpellier - France
| | | | - P. Brunet
- Nephrology, Internal Medicine, Ste Marguerite Hospital, Marseille - France
| | - W. Clark
- Baxter Healthcare Corporation, Lessines - Belgium
| | - G. Cohen
- Division of Nephrology, Department of Medicine, University of Vienna, Vienna - Austria
| | - P.P. Dedeyn
- Department of Neurology, Middelheim Hospital, Laboratory of Neurochemistry and Behaviour, University of Antwerp - Belgium
| | - R. Deppisch
- Gambro Corporate Research, Hechingen - Germany
| | | | - T. Henle
- Institute of Food Chemistry, Technical University, Dresden - Germany
| | - A. Jörres
- Nephrology and Medical Intensive Care, UK Charité, Campus Virchow-Klinikum, Medical Faculty of Humboldt-University, Berlin - Germany
| | - Z.A. Massy
- Division of Nephrology, CH-Beauvais, and INSERM Unit 507, Necker Hospital, Paris - France
| | - M. Rodriguez
- University Hospital Reina Sofia, Research Institute, Cordoba - Spain
| | - B. Stegmayr
- Norrlands University Hospital, Medical Clinic, Umea - Sweden
| | - P. Stenvinkel
- Nephrology Department, University Hospital, Huddinge - Sweden
| | | |
Collapse
|
48
|
Lin JA, Wu CH, Yen GC. Methylglyoxal displays colorectal cancer-promoting properties in the murine models of azoxymethane and CT26 isografts. Free Radic Biol Med 2018; 115:436-446. [PMID: 29269310 DOI: 10.1016/j.freeradbiomed.2017.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022]
Abstract
Methylglyoxal (MG), a highly reactive carbonyl species (RCS) with pro-oxidant and proinflammatory properties, may be a colon tumor-promoting factor in food and biological systems. In the present study, we found that consumption of MG significantly deteriorated azoxymethane (AOM)-induced colonic preneoplastic lesions in ICR mice, in which biomarkers of oxidative stress and inflammation within the body and feces induced by MG-fueled carbonyl stress may have played important roles. Interestingly, exposure to MG also led to increases in the serum low-density lipoprotein (LDL)/high-density lipoprotein (HDL) ratio and fecal bile acid levels in mice, which may be critical factors involved in MG-induced colonic lesions. Additionally, MG treatment (50mg/kg body weight (BW); intraperitoneally) promoted tumor growth of CT26 isografts in mice partly by carbonyl stress-evoked protumorigenic responses, including low-grade inflammation and oxidative stress. Furthermore, primary tumor cells isolated from mice with MG-induced CT26 isografts had greater proliferative and migratory activities as well as stem-like properties compared to those isolated from the vehicle controls. Excitingly, enhanced expression or activation of proteins that modulate cell survival, proliferation, or migration/invasion was also observed in those cells. In conclusion, it is conceivable that MG-induced carbonyl stress may be the pivotal promoter involved in colon cancer progression.
Collapse
Affiliation(s)
- Jer-An Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan, ROC
| | - Chi-Hao Wu
- Department of Human Development and Family Studies, National Taiwan Normal University, 162, Section 1, Heping E. Rd., Taipei City 106, Taiwan, ROC
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan, ROC; Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan, ROC.
| |
Collapse
|
49
|
Antognelli C, Talesa VN. Glyoxalases in Urological Malignancies. Int J Mol Sci 2018; 19:ijms19020415. [PMID: 29385039 PMCID: PMC5855637 DOI: 10.3390/ijms19020415] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Urological cancers include a spectrum of malignancies affecting organs of the reproductive and/or urinary systems, such as prostate, kidney, bladder, and testis. Despite improved primary prevention, detection and treatment, urological cancers are still characterized by an increasing incidence and mortality worldwide. While advances have been made towards understanding the molecular bases of these diseases, a complete understanding of the pathological mechanisms remains an unmet research goal that is essential for defining safer pharmacological therapies and prognostic factors, especially for the metastatic stage of these malignancies for which no effective therapies are currently being used. Glyoxalases, consisting of glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), are enzymes that catalyze the glutathione-dependent metabolism of cytotoxic methylglyoxal (MG), thus protecting against cellular damage and apoptosis. They are generally overexpressed in numerous cancers as a survival strategy by providing a safeguard through enhancement of MG detoxification. Increasing evidence suggests that glyoxalases, especially Glo1, play an important role in the initiation and progression of urological malignancies. In this review, we highlight the critical role of glyoxalases as regulators of tumorigenesis in the prostate through modulation of various critical signaling pathways, and provide an overview of the current knowledge on glyoxalases in bladder, kidney and testis cancers. We also discuss the promise and challenges for Glo1 inhibitors as future anti-prostate cancer (PCa) therapeutics and the potential of glyoxalases as biomarkers for PCa diagnosis.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | | |
Collapse
|
50
|
Sell DR, Nemet I, Liang Z, Monnier VM. Evidence of glucuronidation of the glycation product LW-1: tentative structure and implications for the long-term complications of diabetes. Glycoconj J 2018; 35:177-190. [PMID: 29305779 DOI: 10.1007/s10719-017-9810-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023]
Abstract
LW-1 is a collagen-linked blue fluorophore whose skin levels increase with age, diabetes and end-stage renal disease (ESRD), and correlate with the long-term progression of microvascular disease and indices of subclinical cardiovascular disease in type 1 diabetes. The chemical structure of LW-1 is still elusive, but earlier NMR analyses showed it has a lysine residue in an aromatic ring coupled to a sugar molecule reminiscent of advanced glycation end-products (AGEs). We hypothesized and demonstrate here that the unknown sugar is a N-linked glucuronic acid. LW-1 was extracted and highly purified from ~99 g insoluble skin collagen obtained at autopsy from patients with diabetes/ESRD using multiple rounds of proteolytic digestion and purification by liquid chromatography (LC). Advanced NMR techniques (1H-NMR, 13C-NMR, 1H-13C HSQC, 1H-1H TOCSY, 1H-13C HMBC) together with LC-mass spectrometry (MS) revealed a loss of 176 amu (atomic mass unit) unequivocally point to the presence of a glucuronic acid moiety in LW-1. To confirm this data, LW-1 was incubated with β-glycosidases (glucosidase, galactosidase, glucuronidase) and products were analyzed by LC-MS. Only glucuronidase could cleave the sugar from the parent molecule. These results establish LW-1 as a glucuronide, now named glucuronidine, and for the first time raise the possible existence of a "glucuronidation pathway of diabetic complications". Future research is needed to rigorously probe this concept and elucidate the molecular origin and biological source of a circulating glucuronidine aglycone.
Collapse
Affiliation(s)
- David R Sell
- Department of Pathology, Case Western Reserve University, Wolstein Research Bldg. 5-301, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| | - Ina Nemet
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Zhili Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Vincent M Monnier
- Department of Pathology, Case Western Reserve University, Wolstein Research Bldg. 5-301, 2103 Cornell Road, Cleveland, OH, 44106, USA. .,Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|