1
|
Kasianov NS, Belousova IA, Pavlushin SV, Dubovskiy IM, Podgwaite JD, Martemyanov VV, Bakhvalov SA. The activity of phenoloxidase in haemolymph plasma is not a predictor of Lymantria dispar resistance to its baculovirus. PLoS One 2017; 12:e0183940. [PMID: 28854240 PMCID: PMC5576713 DOI: 10.1371/journal.pone.0183940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022] Open
Abstract
Host innate immunity is one of the factors that determines the resistance of insects to their entomopathogens. In the research reported here we studied whether or not phenoloxidase (PO), a key enzyme in the melanogenesis component of humoral immunity of insects, plays a role in the protection of Lymantria dispar larvae from infection by L. dispar multiple nucleopolyhedrovirus. We studied two types of viral infection: overt and covert. The following lines of investigation were tested: i) the intravital individual estimation of baseline PO activity in haemolymph plasma followed by virus challenging; ii) the specific inhibition of PO activity in vivo by peroral treatment of infected larvae with phenylthiourea (PTU), a competitive inhibitor of PO; iii) the evaluation of PO activity in the haemolymph plasma after larval starvation. Starvation is a stress that activates the covert infection to an overt form. All of these experiments did not show a relationship between PO activity in haemolymph plasma of L. dispar larvae and larval susceptibility to baculovirus. Moreover, starvation-induced activation of covert viral infection to an overt form occurred in 70 percent of virus-carrying larvae against the background of a dramatic increase of PO activity in haemolymph plasma in the insects studied. Our conclusion is that in L. dispar larvae PO activity is not a predictor of host resistance to baculovirus.
Collapse
Affiliation(s)
- Nikita S. Kasianov
- Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Department of Natural science, Novosibirsk National Research State University, Novosibirsk, Russia
| | - Irina A. Belousova
- Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
| | - Sergey V. Pavlushin
- Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Ivan M. Dubovskiy
- Laboratory of Insect Pathology, Institute of Systematics and Ecology of Animal SB RAS, Novosibirsk, Russia
- Novosibirsk State Agrarian University, Novosibirsk, Russia
| | - John D. Podgwaite
- Northern Research Station, USDA Forest Service, Hamden, CT, United States of America
| | - Vyacheslav V. Martemyanov
- Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Biological Institute, National Research Tomsk State University, Tomsk, Russia
| | - Stanislav A. Bakhvalov
- Laboratory of Insect Pathology, Institute of Systematics and Ecology of Animal SB RAS, Novosibirsk, Russia
| |
Collapse
|
2
|
Sugumaran M. Reactivities of Quinone Methides versus o-Quinones in Catecholamine Metabolism and Eumelanin Biosynthesis. Int J Mol Sci 2016; 17:ijms17091576. [PMID: 27657049 PMCID: PMC5037842 DOI: 10.3390/ijms17091576] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
Melanin is an important biopolymeric pigment produced in a vast majority of organisms. Tyrosine and its hydroxylated product, dopa, form the starting material for melanin biosynthesis. Earlier studies by Raper and Mason resulted in the identification of dopachrome and dihydroxyindoles as important intermediates and paved way for the establishment of well-known Raper-Mason pathway for the biogenesis of brown to black eumelanins. Tyrosinase catalyzes the oxidation of tyrosine as well as dopa to dopaquinone. Dopaquinone thus formed, undergoes intramolecular cyclization to form leucochrome, which is further oxidized to dopachrome. Dopachrome is either converted into 5,6-dihydroxyindole by decarboxylative aromatization or isomerized into 5,6-dihydroxyindole-2-carboxylic acid. Oxidative polymerization of these two dihydroxyindoles eventually produces eumelanin pigments via melanochrome. While the role of quinones in the biosynthetic pathway is very well acknowledged, that of isomeric quinone methides, however, remained marginalized. This review article summarizes the key role of quinone methides during the oxidative transformation of a vast array of catecholamine derivatives and brings out the importance of these transient reactive species during the melanogenic process. In addition, possible reactions of quinone methides at various stages of melanogenesis are discussed.
Collapse
Affiliation(s)
- Manickam Sugumaran
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| |
Collapse
|
3
|
Qi YB, Wang XL, Shi T, Liu S, Xu ZH, Li X, Shi X, Xu P, Zhao YL. Multicomponent kinetic analysis and theoretical studies on the phenolic intermediates in the oxidation of eugenol and isoeugenol catalyzed by laccase. Phys Chem Chem Phys 2015; 17:29597-607. [PMID: 26477512 DOI: 10.1039/c5cp03475b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is important for understanding the lignin polymerization and may shed some light on the development of efficient laccase-mediator systems.
Collapse
Affiliation(s)
- Yan-Bing Qi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Vavricka CJ, Han Q, Mehere P, Ding H, Christensen BM, Li J. Tyrosine metabolic enzymes from insects and mammals: a comparative perspective. INSECT SCIENCE 2014; 21:13-19. [PMID: 23955993 DOI: 10.1111/1744-7917.12038] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/17/2013] [Indexed: 06/02/2023]
Abstract
Differences in the metabolism of tyrosine between insects and mammals present an interesting example of molecular evolution. Both insects and mammals possess fine-tuned systems of enzymes to meet their specific demands for tyrosine metabolites; however, more homologous enzymes involved in tyrosine metabolism have emerged in many insect species. Without knowledge of modern genomics, one might suppose that mammals, which are generally more complex than insects and require tyrosine as a precursor for important catecholamine neurotransmitters and for melanin, should possess more enzymes to control tyrosine metabolism. Therefore, the question of why insects actually possess more tyrosine metabolic enzymes is quite interesting. It has long been known that insects rely heavily on tyrosine metabolism for cuticle hardening and for innate immune responses, and these evolutionary constraints are likely the key answers to this question. In terms of melanogenesis, mammals also possess a high level of regulation; yet mammalian systems possess more mechanisms for detoxification whereas insects accelerate pathways like melanogenesis and therefore must bear increased oxidative pressure. Our research group has had the opportunity to characterize the structure and function of many key proteins involved in tyrosine metabolism from both insects and mammals. In this mini review we will give a brief overview of our research on tyrosine metabolic enzymes in the scope of an evolutionary perspective of mammals in comparison to insects.
Collapse
Affiliation(s)
- Christopher John Vavricka
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
5
|
d'Ischia M, Wakamatsu K, Napolitano A, Briganti S, Garcia-Borron JC, Kovacs D, Meredith P, Pezzella A, Picardo M, Sarna T, Simon JD, Ito S. Melanins and melanogenesis: methods, standards, protocols. Pigment Cell Melanoma Res 2013; 26:616-33. [PMID: 23710556 DOI: 10.1111/pcmr.12121] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/17/2013] [Indexed: 01/03/2023]
Abstract
Despite considerable advances in the past decade, melanin research still suffers from the lack of universally accepted and shared nomenclature, methodologies, and structural models. This paper stems from the joint efforts of chemists, biochemists, physicists, biologists, and physicians with recognized and consolidated expertise in the field of melanins and melanogenesis, who critically reviewed and experimentally revisited methods, standards, and protocols to provide for the first time a consensus set of recommended procedures to be adopted and shared by researchers involved in pigment cell research. The aim of the paper was to define an unprecedented frame of reference built on cutting-edge knowledge and state-of-the-art methodology, to enable reliable comparison of results among laboratories and new progress in the field based on standardized methods and shared information.
Collapse
Affiliation(s)
- Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Afzal A, Oriqat G, Akram Khan M, Jose J, Afzal M. Chemistry and Biochemistry of Terpenoids fromCurcumaand Related Species. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/22311866.2013.782757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Lezzi C, Bleve G, Spagnolo S, Perrotta C, Grieco F. Production of recombinant Agaricus bisporus tyrosinase in Saccharomyces cerevisiae cells. ACTA ACUST UNITED AC 2012; 39:1875-80. [DOI: 10.1007/s10295-012-1192-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Abstract
Abstract
It has been demonstrated that Agaricus bisporus tyrosinase is able to oxidize various phenolic compounds, thus being an enzyme of great importance for a number of biotechnological applications. The tyrosinase-coding PPO2 gene was isolated by reverse-transcription polymerase chain reaction (RT-PCR) using total RNA extracted from the mushroom fruit bodies as template. The gene was sequenced and cloned into pYES2 plasmid, and the resulting pY-PPO2 recombinant vector was then used to transform Saccharomyces cerevisiae cells. Native polyacrylamide gel electrophoresis followed by enzymatic activity staining with l-3,4-dihydroxyphenylalanine (l-DOPA) indicated that the recombinant tyrosinase is biologically active. The recombinant enzyme was overexpressed and biochemically characterized, showing that the catalytic constants of the recombinant tyrosinase were higher than those obtained when a commercial tyrosinase was used, for all the tested substrates. The present study describes the recombinant production of A. bisporus tyrosinase in active form. The produced enzyme has similar properties to the one produced in the native A. bisporus host, and its expression in S. cerevisiae provides good potential for protein engineering and functional studies of this important enzyme.
Collapse
Affiliation(s)
- Chiara Lezzi
- grid.9906.6 0000000122897785 Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali Università del Salento via Prov. Lecce-Monteroni 73100 Lecce Italy
| | - Gianluca Bleve
- grid.5326.2 0000 0001 1940 4177 Consiglio Nazionale delle Ricerche (CNR), Institute of Sciences of Food Production (ISPA) Operative Unit of Lecce via Provinciale Lecce-Monteroni 73100 Lecce Italy
| | - Stefano Spagnolo
- grid.5326.2 0000 0001 1940 4177 Consiglio Nazionale delle Ricerche (CNR), Institute of Sciences of Food Production (ISPA) Operative Unit of Lecce via Provinciale Lecce-Monteroni 73100 Lecce Italy
| | - Carla Perrotta
- grid.9906.6 0000000122897785 Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali Università del Salento via Prov. Lecce-Monteroni 73100 Lecce Italy
| | - Francesco Grieco
- grid.5326.2 0000 0001 1940 4177 Consiglio Nazionale delle Ricerche (CNR), Institute of Sciences of Food Production (ISPA) Operative Unit of Lecce via Provinciale Lecce-Monteroni 73100 Lecce Italy
| |
Collapse
|
8
|
Variations in IC(50) values with purity of mushroom tyrosinase. Int J Mol Sci 2009; 10:3811-3823. [PMID: 19865520 PMCID: PMC2769143 DOI: 10.3390/ijms10093811] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 08/19/2009] [Accepted: 08/31/2009] [Indexed: 11/16/2022] Open
Abstract
The effects of various inhibitors on crude, commercial and partially purified commercial mushroom tyrosinase were examined by comparing IC(50) values. Kojic acid, salicylhydroxamic acid, tropolone, methimazole, and ammonium tetrathiomolybdate had relatively similar IC(50) values for the crude, commercial and partially purified enzyme. 4-Hexylresorcinol seemed to have a somewhat higher IC(50) value using crude extracts, compared to commercial or purified tyrosinase. Some inhibitors (NaCl, esculetin, biphenol, phloridzin) showed variations in IC(50) values between the enzyme samples. In contrast, hydroquinone, lysozyme, Zn(2+), and anisaldehyde showed little or no inhibition in concentration ranges reported to be effective inhibitors. Organic solvents (DMSO and ethanol) had IC(50) values that were similar for some of the tyrosinase samples. Depending of the source of tyrosinase and choice of inhibitor, variations in IC(50) values were observed.
Collapse
|
9
|
Flurkey A, Cooksey J, Reddy A, Spoonmore K, Rescigno A, Inlow J, Flurkey WH. Enzyme, protein, carbohydrate, and phenolic contaminants in commercial tyrosinase preparations: potential problems affecting tyrosinase activity and inhibition studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4760-4768. [PMID: 18500813 DOI: 10.1021/jf800109a] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Commercial mushroom tyrosinase contains other proteins, enzymes, carbohydrates, and phenolic material besides tyrosinase. Carbohydrate and phenolic material comprise a large percentage of the powder resuspensions derived from Agaricus bisporus. Enzyme assays identified the presence of tyrosinase, laccase, beta-glucosidase, beta-galactosidase, beta-xylosidase, cellulase, chitinase, xylanase, and mannanase in the commercial tyrosinase. Protein sequencing indicated the presence of tyrosinase, a lectin, and a putative mannanase as well as 10 unidentified protein/peptides in the commercial tyrosinase preparations. Characteristics of tyrosinase isoforms were similar in two different commercial tyrosinase sources. Inhibition studies indicated that I 50 values for some tyrosinase inhibitors were different when the crude powder was compared to a partially purified tyrosinase. The presence of these contaminants has the potential to affect studies using commercial tyrosinase.
Collapse
Affiliation(s)
- Allison Flurkey
- Department of Chemistry, Indiana State University, Terre Haute, Indiana 47809, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Rescigno A, Zucca P, Flurkey A, Inlow J, Flurkey WH. Identification and discrimination between some contaminant enzyme activities in commercial preparations of mushroom tyrosinase. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Völkert M, Koul S, Müller GH, Lehnig M, Waldmann H. Phenylhydrazide as an enzyme-labile protecting group in peptide synthesis. J Org Chem 2002; 67:6902-10. [PMID: 12353981 DOI: 10.1021/jo0259966] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzymatic cleavage of amino acid phenylhydrazides with the enzyme tyrosinase (EC 1.14.18.1) offers a new, mild, and selective method for C-terminal deprotection of peptides. The advantages of the described methodology are the very mild oxidative removal of the protecting group at room temperature and pH 7, a high chemo- and regioselectivity, and the availability of the biocatalyst. Even in oxygen-saturated solution, the oxidation of sensitive methionine residues was not observed. These features make the methodology suitable for the synthesis of sensitive peptide conjugates. Mechanistic data suggest that the hydrolysis of the oxidized adducts proceeds by a free-radical mechanism.
Collapse
Affiliation(s)
- Martin Völkert
- Department of Chemical Biology, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
12
|
Sugumaran M. Oxidation chemistry of 1,2-dehydro-N-acetyldopamines: direct evidence for the formation of 1,2-dehydro-N-acetyldopamine quinone. Arch Biochem Biophys 2000; 378:404-10. [PMID: 10860558 DOI: 10.1006/abbi.2000.1839] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two-electron oxidation of catecholamines either by phenol oxidase or by chemical oxidants such as sodium periodate produces their corresponding o-quinones as observable products. But, in the case of 1,2-dehydro-N-acetyldopamine, an important insect cuticular sclerotizing precursor, phenol oxidase catalyzed oxidation has been reported to generate a quinone methide analog as a transient, but first observable product. ¿Sugumaran, M., Semensi, V., Kalyanaraman, B., Bruce, J. M., and Land, E. J. (1992) J. Biol. Chem. 267, 10355-10361. The corresponding quinone has escaped detection until now. However, in this paper, for the first time, we present direct evidence for the formation of dehydro-N-acetyldopamine quinone and show that it can readily be produced from the tautomeric quinone methide imine amide during the chemical oxidation of dehydro-N-acetyldopamine under acidic conditions. This situation is in sharp contrast to other known alkyl-substituted catechol oxidations, where quinone is the first observable product and quinone methide is the subsequently generated product. Dehydro-N-acetyldopamine quinone thus formed is also highly unstable. Semiempirical molecular orbital calculation also indicates that quinone methide imine amide is more stable than the quinone. Chemical considerations indicate that the quinone methide tautomer, and not the dehydro-N-acetyldopamine quinone, is responsible for crosslinking the structural proteins and chitin polymer in the insect cuticle. Therefore, the quinone methide tautomer, and not the quinone, is the key reactive intermediate aiding the hardening of insect cuticle.
Collapse
Affiliation(s)
- M Sugumaran
- Department of Biology, University of Massachusetts-Boston, Boston, Massachusetts 02125, USA.
| |
Collapse
|
13
|
Sugumaran M, Duggaraju R, Generozova F, Ito S. Insect melanogenesis. II. Inability of Manduca phenoloxidase to act on 5,6-dihydroxyindole-2-carboxylic acid. PIGMENT CELL RESEARCH 1999; 12:118-25. [PMID: 10231199 DOI: 10.1111/j.1600-0749.1999.tb00751.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eumelanins in animals are biosynthesized by the combined action of tyrosinase, 3,4-dihydroxyphenylalanine (DOPA)chrome isomerase, and other factors. Two kinds of eumelanins were characterized from mammalian systems; these are 5,6-dihydroxyindole (DHI)-melanin and 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-melanin. In insects, melanin biosynthesis is initiated by phenoloxidase and supported by DOPAchrome isomerase (decarboxylating). Based on the facts that DOPA is a poor substrate for insect phenoloxidases and DHI is the sole product of insect DOPAchrome isomerase reaction, it is proposed that insects lack DHICA-melanin. Accordingly, the phenoloxidase isolated from the hemolymph of Manduca sexta failed to oxidize DHICA. Control experiments reveal that mushroom tyrosinase, as well as laccase, which is a contaminant in the commercial preparations of mushroom tyrosinase, are capable of oxidizing DHICA. Neither the whole hemolymph nor the cuticular extracts of M. sexta possessed any detectable oxidase activity towards this substrate. Thus, insects do not seem to produce DHICA-eumelanin. A useful staining procedure to localize DHICA oxidase activity on gels is also presented.
Collapse
Affiliation(s)
- M Sugumaran
- Department of Biology, University of Massachusetts at Boston, 02125, USA.
| | | | | | | |
Collapse
|
14
|
Zhang X, van Leeuwen J, Wichers HJ, Flurkey WH. Characterization of tyrosinase from the cap flesh of portabella mushrooms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 1999; 47:374-378. [PMID: 10563903 DOI: 10.1021/jf980874t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tyrosinase, purified from the cap flesh tissue of portabella mushrooms, was characterized with regard to its physical and biochemical properties. A native molecular size of 41 kDa for the enzyme was obtained by size exclusion chromatography, whereas SDS-PAGE indicated that the enzyme contained a single subunit with a size of approximately 48 kDa under reduced and nonreduced conditions. The purified enzyme showed a single immunological cross-reacting protein after Western blotting when probed with antibodies against Agaricus bisporus tyrosinase. Isoelectric focusing demonstrated that the enzyme preparation, apparently homogeneous by electrophoresis, still contained three isoforms of pI 5.1, 5.2, and 5.3. The purified enzyme was able to oxidize a variety of mono-, di-, and triphenolic compounds. An apparent K(m) of 5 mM was obtained using catechol as the substrate, and an apparent K(m) of 9 mM was found using L-Dopa as a substrate. Ascorbic acid, kojic acid, tropolone, mercaptobenzothiazole, and salicylhydroxamic acid inhibited the enzyme severely at 100 microM.
Collapse
Affiliation(s)
- X Zhang
- Department of Chemistry, Indiana State University, Terre Haute, Indiana 47809, USA
| | | | | | | |
Collapse
|