1
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
2
|
Expression of highly sulfated keratan sulfate synthesized in human glioblastoma cells. Biochem Biophys Res Commun 2008; 368:217-22. [PMID: 18211804 DOI: 10.1016/j.bbrc.2008.01.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 01/11/2008] [Indexed: 11/23/2022]
Abstract
Keratan sulfate (KS) proteoglycan is expressed in the extracellular matrix or cell surface in numerous tissues, predominantly in those of the cornea, cartilage, and brain. However, its structure, function, and regulation remain poorly understood. Our investigation of KS expression in glioblastoma cell lines using Western-blot and flow cytometry with anti-KS antibody (5D4) revealed that LN229 glioblastoma cell highly expresses KS on a cell surface. Real-time PCR analysis showed that LN229 expresses a high level of keratan sulfate Gal-6-sulfotransferase. Results of this study also demonstrate that recombinant 5D4-reactive aggrecan is produced in LN229. Taken together, these results suggest that LN229 produces 5D4-reactive highly sulfated KS and is useful to investigate the KS structure and function in glioblastoma.
Collapse
|
3
|
Miwa HE, Gerken TA, Huynh TD, Flory DM, Hering TM. Mammalian expression of full-length bovine aggrecan and link protein: formation of recombinant proteoglycan aggregates and analysis of proteolytic cleavage by ADAMTS-4 and MMP-13. Biochim Biophys Acta Gen Subj 2005; 1760:472-86. [PMID: 16427204 DOI: 10.1016/j.bbagen.2005.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/01/2005] [Accepted: 12/04/2005] [Indexed: 11/18/2022]
Abstract
Aggrecan, a large chondroitin sulfate (CS) and keratan sulfate (KS) proteoglycan, has not previously been expressed as a full-length recombinant molecule. To facilitate structure/function analysis, we have characterized recombinant bovine aggrecan (rbAgg) and link protein expressed in COS-7 cells. We demonstrate that C-terminally truncated rbAgg was not secreted. Gel filtration chromatography of rbAgg and isolated glycosaminoglycan (GAG) chains, and their susceptibility to chondroitinase ABC digestion indicate that the GAG chains are predominantly CS, which likely occupy fewer serine residues than native aggrecan. To confirm functionality, we determined that rbAgg bound hyaluronan and recombinant link protein to form proteoglycan aggregates. In addition, cleavage of rbAgg by ADAMTS-4 revealed that the p68 form of ADAMTS-4 preferentially cleaves within the CS-2 domain, whereas the p40 form only effectively cleaves within the interglobular domain (IGD). MMP-13 cleaved rbAgg within the IGD, but cleaved more rapidly at a site within the CS domains, suggesting a role in C-terminal processing of aggrecan. Our results demonstrate that recombinant aggrecan can be used for in vitro analyses of matrix protease-dependent degradation of aggrecan in the IGD and CS domains, and both recombinant aggrecan and link protein can be used to study the assembly of proteoglycan aggregates with hyaluronan.
Collapse
Affiliation(s)
- Hazuki E Miwa
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
4
|
Poon CJ, Plaas AH, Keene DR, McQuillan DJ, Last K, Fosang AJ. N-linked keratan sulfate in the aggrecan interglobular domain potentiates aggrecanase activity. J Biol Chem 2005; 280:23615-21. [PMID: 15849197 DOI: 10.1074/jbc.m412145200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratan sulfate is thought to influence the cleavage of aggrecan by metalloenzymes. We have therefore produced a recombinant substrate, substituted with keratan sulfate, suitable for the study of aggrecanolysis in vitro. Recombinant human G1-G2 was produced in primary bovine keratocytes using a vaccinia virus expression system. Following purification and digestion with specific hydrolases, fluorophore-assisted carbohydrate electrophoresis was used to confirm the presence of the monosulfated Gal-GlcNAc6S and GlcNAc6s-Gal disaccharides and the disulfated Gal6S-GlcNAc6S disaccharides of keratan sulfate. Negligible amounts of fucose or sialic acid were detected, and the level of unsulfated disaccharides was minimal. Treatment with keratanases reduced the size of the recombinant G1-G2 by approximately 5 kDa on SDS-PAGE. Treatment with N-glycosidase F also reduced the size of G1-G2 by approximately 5 kDa and substantially reduced G1-G2 immunoreactivity with monoclonal antibody 5-D-4, indicating that keratan sulfate on the recombinant protein is N-linked. Cleavage of G1-G2 by aggrecanase was markedly reduced when keratan sulfate chains were removed by treatment with keratanase, keratanase II, endo-beta-galactosidase, or N-glycosidase F. These results indicate that modification of oligosaccharides in the aggrecan interglobular domain with keratan sulfate, most likely at asparagine residue 368, potentiates aggrecanase activity in this part of the core protein.
Collapse
Affiliation(s)
- Christopher J Poon
- Department of Paediatrics, University of Melbourne and Murdoch Childrens Research Institute, Arthritis Research Group, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
5
|
Funderburgh JL, Mann MM, Funderburgh ML. Keratocyte phenotype mediates proteoglycan structure: a role for fibroblasts in corneal fibrosis. J Biol Chem 2003; 278:45629-37. [PMID: 12933807 PMCID: PMC2877919 DOI: 10.1074/jbc.m303292200] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In pathological corneas, accumulation of fibrotic extracellular matrix is characterized by proteoglycans with altered glycosaminoglycans that contribute to the reduced transparency of scarred tissue. During wound healing, keratocytes in the corneal stroma transdifferentiate into fibroblasts and myofibroblasts. In this study, molecular markers were developed to identify keratocyte, fibroblast, and myofibroblast phenotypes in primary cultures of corneal stromal cells and the structure of glycosaminoglycans secreted by these cells was characterized. Quiescent primary keratocytes expressed abundant protein and mRNA for keratocan and aldehyde dehydrogenase class 3 and secreted proteoglycans containing macromolecular keratan sulfate. Expression of these marker compounds was reduced in fibroblasts and also in transforming growth factor-beta-induced myofibroblasts, which expressed high levels of alpha-smooth muscle actin, biglycan, and the extra domain A (EDA or EIIIA) form of cellular fibronectin. Collagen types I and III mRNAs were elevated in both fibroblasts and in myofibroblasts. Expression of these molecular markers clearly distinguishes the phenotypic states of stromal cells in vitro. Glycosaminoglycans secreted by fibroblasts and myofibroblasts were qualitatively similar to and differed from those of keratocytes. Chondroitin/dermatan sulfate abundance, chain length, and sulfation were increased as keratocytes became fibroblasts and myofibroblasts. Fluorophore-assisted carbohydrate electrophoresis analysis demonstrated increased N-acetylgalactosamine sulfation at both 4- and 6-carbons. Hyaluronan, absent in keratocytes, was secreted by fibroblasts and myofibroblasts. Keratan sulfate biosynthesis, chain length, and sulfation were significantly reduced in both fibroblasts and myofibroblasts. The qualitatively similar expression of glycosaminoglycans shared by fibroblasts and myofibroblasts suggests a role for fibroblasts in deposition of non-transparent fibrotic tissue in pathological corneas.
Collapse
Affiliation(s)
- James L Funderburgh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-2588, USA.
| | | | | |
Collapse
|
6
|
Ogata N, Takahashi I, Nakazawa K. Purification and characterization of chick corneal beta-D-glucuronyltransferase involved in chondroitin sulfate biosynthesis. Biol Pharm Bull 2002; 25:1282-8. [PMID: 12392079 DOI: 10.1248/bpb.25.1282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-D-Glucuronyltransferase, which transfers D-glucuronic acid (GlcA) from UDP-GlcA to N-acetyl-D-galactosamine (GalNAc) at the nonreducing end of chondro-pentasaccharide-PA (pyridylamino-), GalNAcbeta1-(4GlcAbeta1-3GalNAcbeta1)2-PA, was purified 339-fold with an 11.0% yield from 2-d-old chick corneas by chromatography on DEAE-Sepharose, WGA-agarose, heparin-Sepharose, and 1st and 2nd UDP-GlcA-agarose (in the presence of Gal) columns. The activity was detected by fluorescence of PA residues of the product. The purified enzyme has an optimum pH of 7.0 (Mes buffer), and much higher activity toward chondro-heptasaccharide-PA than toward the chondro-pentasaccharide-PA, but no activity toward p-nitrophenyl-beta-GalNAc. The enzyme activity was almost completely inhibited by GalNAc (20 mm). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the purified enzyme fraction showed one band of 38 kDa with many other bands. The amino acid sequence was determined for the tryptic digests of the 38 kDa band protein. The sequences determined showed no homology to those of several beta-glucuronyltransferases reported previously. It seems that the enzyme is involved in the elongation of chondroitin sulfate chains in vivo.
Collapse
Affiliation(s)
- Nana Ogata
- Section of Radiochemistry, Meijo University, Nagoya, Japan
| | | | | |
Collapse
|
7
|
Abstract
Keratan sulfate was originally identified as the major glycosaminoglycan of cornea but is now known to modify at least a dozen different proteins in a wide variety of tissues. Despite a large body of research documenting keratan sulfate structure, and an increasing interest in the biological functions of keratan sulfate, until recently little was known of the specific enzymes involved in keratan sulfate biosynthesis or of the molecular mechanisms that control keratan sulfate expression. In the last 2 years, however, marked progress has been achieved in identification of genes involved in keratan sulfate biosynthesis and in development of experimental conditions to study keratan sulfate secretion and control in vitro. This review summarizes current understanding of keratan sulfate structure and recent developments in understanding keratan sulfate biosynthesis.
Collapse
Affiliation(s)
- James L Funderburgh
- University of Pittsburgh, Department of Ophthalmology, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
8
|
Funderburgh JL, Funderburgh ML, Mann MM, Corpuz L, Roth MR. Proteoglycan expression during transforming growth factor beta -induced keratocyte-myofibroblast transdifferentiation. J Biol Chem 2001; 276:44173-8. [PMID: 11555658 PMCID: PMC2876312 DOI: 10.1074/jbc.m107596200] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratocytes of the corneal stroma secrete a unique population of proteoglycan molecules considered essential for corneal transparency. In healing corneal wounds, keratocytes exhibit a myofibroblastic phenotype in response to transforming growth factor beta (TGF-beta), characterized by expression of alpha-smooth muscle actin. This study examined proteoglycan and collagen expression by keratocytes in vitro during the TGF-beta-induced keratocyte-myofibroblast transition. TGF-beta-treated primary bovine keratocytes developed myofibroblastic features, including actin stress fibers anchored to paxillin-containing focal adhesions, cell-associated fibronectin, alpha(5) integrin, and alpha-smooth muscle actin. Collagen I and III protein and mRNA increased in response to TGF-beta. Secretion of [(35)S]sulfate-labeled keratan sulfate proteoglycans decreased markedly in response to TGF-beta. Dermatan sulfate proteoglycans, however, increased in size and abundance. Protein and mRNA transcripts for normal stromal proteoglycans (lumican, keratocan, mimecan, and decorin) all decreased in response to TGF-beta, but protein expression and mRNA for biglycan, a proteoglycan present in fibrotic tissue, was markedly up-regulated. These results show that TGF-beta in vitro induces a proteoglycan expression pattern similar to that of corneal scars in vivo. This altered proteoglycan expression occurred coordinately with transdifferentiation of keratocytes to the myofibroblastic phenotype, implicating these cells as the source of fibrotic tissue in nontransparent corneal scars.
Collapse
Affiliation(s)
- J L Funderburgh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-2588, USA.
| | | | | | | | | |
Collapse
|
9
|
Plaas AH, West LA, Thonar EJ, Karcioglu ZA, Smith CJ, Klintworth GK, Hascall VC. Altered fine structures of corneal and skeletal keratan sulfate and chondroitin/dermatan sulfate in macular corneal dystrophy. J Biol Chem 2001; 276:39788-96. [PMID: 11514545 DOI: 10.1074/jbc.m103227200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The content and fine structure of keratan and chondroitin/dermatan sulfate in normal human corneas and corneas affected by macular corneal dystrophies (MCD) types I and II were examined by fluorophore-assisted carbohydrate electrophoresis. Normal tissues (n = 11) contained 15 microg of keratan sulfate and 8 microg of chondroitin/dermatan sulfate per mg dry weight. Keratan sulfates consisted of approximately 4% unsulfated, 42% monosulfated, and 54% disulfated disaccharides with number of average chain lengths of approximately 14 disaccharides. Chondroitin/dermatan sulfates were significantly longer, approximately 40 disaccharides per chain, and consisted of approximately 64% unsulfated, 28% 4-sulfated, and 8% 6-sulfated disaccharides. The fine structural parameters were altered in all diseased tissues. Keratan sulfate chain size was reduced to 3-4 disaccharides; chain sulfation was absent in MCD type I corneas and cartilages, and sulfation of both GlcNAc and Gal was significantly reduced in MCD type II. Chondroitin/dermatan sulfate chain sizes were also decreased in all diseased corneas to approximately 15 disaccharides, and the contents of 4- and 6-sulfated disaccharides were proportionally increased. Tissue concentrations (nanomole of chains per mg dry weight) of all glycosaminoglycan types were affected in the disease types. Keratan sulfate chain concentrations were reduced by approximately 24 and approximately 75% in type I corneas and cartilages, respectively, and by approximately 50% in type II corneas. Conversely, chondroitin/dermatan sulfate chain concentrations were increased by 60-70% in types I and II corneas. Such changes imply a modified tissue content of individual proteoglycans and/or an altered efficiency of chain substitution on the core proteins. Together with the finding that hyaluronan, not normally present in healthy adult corneas, was also detected in both disease subtypes, the data support the conclusion that a wide range of keratocyte-specific proteoglycan and glycosaminoglycan remodeling processes are activated during degeneration of the stromal matrix in the macular corneal dystrophies.
Collapse
Affiliation(s)
- A H Plaas
- Shriners Hospital for Children, 12502 N. Pine Drive, Tampa, FL 33612, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Yamamoto Y, Takahashi I, Ogata N, Nakazawa K. Purification and characterization of N-acetylglucosaminyl sulfotransferase from chick corneas. Arch Biochem Biophys 2001; 392:87-92. [PMID: 11469798 DOI: 10.1006/abbi.2001.2422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N-Acetylglucosaminyl(GlcNAc) sulfotransferase, which transfers sulfate from adenosine 3'-phosphate 5'-phosphosulfate to GlcNAc at the nonreducing end of oligosaccharides, was purified 887-fold with a 8.4% yield from 2-day-old chick corneas by chromatography on CM-Sepharose, WGA-agarose, GlcNAc-agarose, and 3',5'-ADP-agarose columns. The purified enzyme has an optimum pH of 6.0 (Mes buffer) and specifically transfers a sulfate to GlcNAc at the nonreducing end but not to internal GlcNAc. The enzyme was stimulated by protamine and Mn(2+). SDS-polyacrylamide gel electrophoresis of the purified enzyme still showed two main bands (66 and 55 kDa) with some minor bands. It appears that this enzyme competes with beta-galactosyltransferase in binding to the nonreducing GlcNAc residue on KS synthesis; this suggests that the sulfation of the GlcNAc residue is coupled with the elongation of the KS chain.
Collapse
Affiliation(s)
- Y Yamamoto
- Section of Radiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | | | | | | |
Collapse
|
11
|
Akama TO, Nakayama J, Nishida K, Hiraoka N, Suzuki M, McAuliffe J, Hindsgaul O, Fukuda M, Fukuda MN. Human corneal GlcNac 6-O-sulfotransferase and mouse intestinal GlcNac 6-O-sulfotransferase both produce keratan sulfate. J Biol Chem 2001; 276:16271-8. [PMID: 11278593 DOI: 10.1074/jbc.m009995200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human corneal N-acetylglucosamine 6-O-sulfotransferase (hCGn6ST) has been identified by the positional candidate approach as the gene responsible for macular corneal dystrophy (MCD). Because of its high homology to carbohydrate sulfotransferases and the presence of mutations of this gene in MCD patients who lack sulfated keratan sulfate in the cornea and serum, hCGn6ST protein is thought to be a sulfotransferase that catalyzes sulfation of GlcNAc in keratan sulfate. In this report, we analyzed the enzymatic activity of hCGn6ST by expressing it in cultured cells. A lysate prepared from HeLa cells transfected with an intact form of hCGn6ST cDNA or culture medium from cells transfected with a secreted form of hCGn6ST cDNA showed an activity of transferring sulfate to C-6 of GlcNAc of synthetic oligosaccharide substrates in vitro. When hCGn6ST was expressed together with human keratan sulfate Gal-6-sulfotransferase (hKSG6ST), HeLa cells produced highly sulfated carbohydrate detected by an anti-keratan sulfate antibody 5D4. These results indicate that hCGn6ST transfers sulfate to C-6 of GlcNAc in keratan sulfate. Amino acid substitutions in hCGn6ST identical to changes resulting from missense mutations found in MCD patients abolished enzymatic activity. Moreover, mouse intestinal GlcNAc 6-O-sulfotransferase had the same activity as hCGn6ST. This observation suggests that mouse intestinal GlcNAc 6-O-sulfotransferase is the orthologue of hCGn6ST and functions as a sulfotransferase to produce keratan sulfate in the cornea.
Collapse
Affiliation(s)
- T O Akama
- Glycobiology Program, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Takahashi I, Sashima S, Nakazawa K. Comparative analysis of proteoglycans synthesized by chick corneal stromal cells in cell culture and organ culture. Biol Pharm Bull 2001; 24:27-33. [PMID: 11201241 DOI: 10.1248/bpb.24.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteoglycans (PGs) synthesized by chick corneal stromal cells in cell culture and organ culture were metabolically radiolabelled with [35S]sulfate (for glycosaminoglycans) and [3H]leucine (for core proteins). Media, cell extracts and organ extracts from cultures were chromatographed on DEAE-Sephacel columns and separated into three fractions: the pass-through fraction (Fraction 1: nonsulfated PGs, hardly sulfated PGs, or glycoproteins with some oligosaccharides), the fraction eluted with a low salt concentration (Fraction 2: undersulfated PGs), and the fraction eluted with a high salt concentration (Fraction 3: highly sulfated PGs). The PG compositions of each fraction of cell culture and organ culture were then compared. While the proportions of highly sulfated KSPG in Fractions 3 of medium and cell extract of cell culture were both very low compared with those of medium and organ extract of organ culture, respectively, the proportions of highly sulfated CS/DS PG in Fractions 3 of those of cell culture were higher than those of organ culture. On the other hand, the proportions in the 35S activities of nonsulfated or undersulfated KSPG in Fractions 1 and 2 of medium and cell extract of cell culture were comparable to those of organ culture. Furthermore, the proportions of core proteins of undersulfated KSPG in Fractions 2 were higher in cell culture than in organ culture. These results show that, when the cells are cell-cultured, the degree of sulfation of KS chains decreases markedly, but the syntheses of the glycosaminoglycan backbone and core protein are maintained.
Collapse
Affiliation(s)
- I Takahashi
- RI Center, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | | |
Collapse
|
13
|
Long CJ, Roth MR, Tasheva ES, Funderburgh M, Smit R, Conrad GW, Funderburgh JL. Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro. J Biol Chem 2000; 275:13918-23. [PMID: 10788517 DOI: 10.1074/jbc.275.18.13918] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Keratocytes of the corneal stroma produce a specialized extracellular matrix responsible for corneal transparency. Corneal keratan sulfate proteoglycans (KSPG) are unique products of keratocytes that are down-regulated in corneal wounds and in vitro. This study used cultures of primary bovine keratocytes to define factors affecting KSPG expression in vitro. KSPG metabolically labeled with [(35)S]sulfate decreased during the initial 2-4 days of culture in quiescent cultures with low serum concentrations (0.1%). Addition of fetal bovine serum, fibroblast growth factor-2 (FGF-2), transforming growth factor beta, or platelet derived growth factor all stimulated cell division, but only FGF-2 stimulated KSPG secretion. Combined with serum, FGF-2 also prevented serum-induced KSPG down-regulation. KSPG secretion was lost during serial subculture with or without FGF-2. Expression of KSPG core proteins (lumican, mimecan, and keratocan) was stimulated by FGF-2, and steady state mRNA pools for these proteins, particularly keratocan, were significantly increased by FGF-2 treatment. KSPG expression therefore is supported by exogenous FGF-2 and eliminated by subculture of the cells in presence of serum. FGF-2 stimulates KSPG core protein expression primarily through an increase in mRNA pools.
Collapse
Affiliation(s)
- C J Long
- Division of Biology, Kansas State University, Manhattan Kansas, 66506-4901, USA
| | | | | | | | | | | | | |
Collapse
|