1
|
Zhang Y, Han Y, Zou X, Xu Q, Ma F, Zhang CY. Construction of a damage site-specific fluorescent biosensor for single-molecule detection of DNA damage. Talanta 2021; 235:122809. [PMID: 34517666 DOI: 10.1016/j.talanta.2021.122809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023]
Abstract
The 8-oxoguanine (8-oxoG) represents the most common DNA damage type, and it has been regarded as the oxidative stress biomarker, but the reported 8-oxoguanine assays are limited by poor specificity and low sensitivity. Herein, we demonstrate the construction of damage site-specific fluorescent biosensor for 8-oxoG assay by integrating single-molecule detection with hyperbranched signal amplification. In this assay, the 8-oxoG damages in DNA can generate free 3' OH with the assistance of formamidopyrimidine DNA glycosylase (Fpg) and polynucleotide kinase (PNK), which subsequently triggers the incorporation of abundant Cy5-labeled dUTPs via terminal deoxynucleotidyl transferase (TDT)-mediated site-specific hyperbranched nucleic acid amplification. After digestion of amplification products with nuclease treatment, abundant mononucleotide Cy5-dUTPs are produced, which will be easily monitored via single-molecule imaging and detection. The introduction of hyperbranched nucleic acid amplification and single-molecule detection can greatly improve the sensitivity to achieve a detection limit of 7.62 × 10-18 M. This biosensor is highly specific with the capability of discriminating 0.001% 8-oxoG target from the DNA mixture. Moreover, it can be applied for quantitative detection of 8-oxoG damage in genomic DNAs with a detection limit of 0.0017 ng, and even accurately quantifies the absolute number (7025 - 8506) of 8-oxoG damage base in single HeLa cell treated with 150 μM H2O2. Importantly, this biosensor can measure the 8-oxoG damage level in different cancer cell lines, facilitating the oxidative damage-associated biomedical researches and clinical diagnosis.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Yun Han
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
2
|
Csintalan Z, Péli ER. Effect of Salicylic Acid Pre-Treatment after Long-Term Desiccation in the Moss Syntrichia ruralis (Hedw.) Web. and Mohr. PLANTS 2020; 9:plants9091097. [PMID: 32858991 PMCID: PMC7569889 DOI: 10.3390/plants9091097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022]
Abstract
The main objective of this research was to examine the effects of exogenous salicylic acid (SA) and to study the seasonal variation of the chlorophyll a fluorescence parameters and antioxidant enzymatic activities in desiccation-tolerant moss species Syntrichia ruralis (Hedw.) Web. and Mohr. Aqueous 0.001 M SA solution was sprayed on the moss cushions collected from semi-arid sandy grassland, Hungary in three seasons (spring, summer, autumn). These cushions were kept under the observation for 10 Days. Chlorophyll a fluorescence parameters, i.e., maximum photochemical quantum yield of PS II (Fv/Fm), effective photochemical quantum yield of PS II (ΦPSII), non-photochemical quenching (NPQ), and antioxidant enzymatic activities, i.e., ascorbate peroxidase (APX), catalase (CAT), guaiacol peroxidase (POD), and protein content were determined. The results showed the increase of Fv/Fm in spring and autumn season while ΦPSII was reduced significantly during spring and summer season after treatment with SA compared to control. SA-treated mosses showed higher values of non-photochemical quenching (NPQ) during the spring and autumn season than in summer. Activities of enzyme APX and CAT were found to increase in SA-treated except POD activity. In SA-treated moss cushions, lower protein content was found. It can be concluded that seasonal variation has been observed in chlorophyll fluorescence and antioxidant system after long term of desiccation in S. ruralis species that could be because of SA and might be due to fluctuations in conditions of their habitat, duration of light intensity, temperature and precipitation.
Collapse
Affiliation(s)
- Zsolt Csintalan
- Doctoral School of Biological Sciences, Institute of Botany and Ecophysiology, Szent István University, Páter Károly utca 1., H-2100 Gödöllő, Hungary;
| | - Evelin Ramóna Péli
- Department of Botany, University of Veterinary Medicine, István utca. 2., H-1078 Budapest, Hungary
- Correspondence: (R.); (E.R.P.)
| |
Collapse
|
3
|
Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. FRONTIERS IN PLANT SCIENCE 2018; 9:393. [PMID: 29692787 PMCID: PMC5902779 DOI: 10.3389/fpls.2018.00393] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/12/2018] [Indexed: 05/18/2023]
Abstract
Plants face a combination of different abiotic stresses under field conditions which are lethal to plant growth and production. Simultaneous occurrence of chilling and drought stresses in plants due to the drastic and rapid global climate changes, can alter the morphological, physiological and molecular responses. Both these stresses adversely affect the plant growth and yields due to physical damages, physiological and biochemical disruptions, and molecular changes. In general, the co-occurrence of chilling and drought combination is even worse for crop production rather than an individual stress condition. Plants attain various common and different physiological and molecular protective approaches for tolerance under chilling and drought stresses. Nevertheless, plant responses to a combination of chilling and drought stresses are unique from those to individual stress. In the present review, we summarized the recent evidence on plant responses to chilling and drought stresses on shared as well as unique basis and tried to find a common thread potentially underlying these responses. We addressed the possible cross talk between plant responses to these stresses and discussed the potential management strategies for regulating the mechanisms of plant tolerance to drought and/or chilling stresses. To date, various novel approaches have been tested in minimizing the negative effects of combine stresses. Despite of the main improvements there is still a big room for improvement in combination of drought and chilling tolerance. Thus, future researches particularly using biotechnological and molecular approaches should be carried out to develop genetically engineered plants with enhanced tolerance against these stress factors.
Collapse
Affiliation(s)
- Hafiz A. Hussain
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abdul Khaliq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Umair Ashraf
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shakeel A. Anjum
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shengnan Men
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Longchang Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
4
|
López AV, López KH, Giannakis S, Benítez N. Effect of reactor material and its reuse on photo-Fenton process efficiency at near-neutral pH: Alterations in E. coli inactivation and resorcinol degradation kinetics in water. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Thakur S, Kapila S. Seasonal changes in antioxidant enzymes, polyphenol oxidase enzyme, flavonoids and phenolic content in three leafy liverworts. LINDBERGIA 2017. [DOI: 10.25227/linbg.01076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shivani Thakur
- S. Thakur and S. Kapila , Dept of Botany, Panjab Univ., Chandigarh, India
| | - Sunita Kapila
- S. Thakur and S. Kapila , Dept of Botany, Panjab Univ., Chandigarh, India
| |
Collapse
|
6
|
Mulder JE, Bondy GS, Mehta R, Massey TE. The impact of chronic Aflatoxin B1 exposure and p53 genotype on base excision repair in mouse lung and liver. Mutat Res 2015; 773:63-8. [PMID: 25847422 DOI: 10.1016/j.mrfmmm.2015.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 12/05/2014] [Accepted: 01/18/2015] [Indexed: 12/15/2022]
Abstract
Aflatoxin B1 (AFB1) is produced by species of Aspergillus, and is a known human carcinogen. AFB1-induced oxidative DNA damage, specifically 8-hydroxy-2-deoxyguanosine (8-OHdG) lesions, has been demonstrated in both animal models and in humans, and is repaired by base excision repair (BER). The tumour suppressor gene p53 is implicated in the regulation of DNA repair, and heterozygous p53 knockouts have an attenuated nucleotide excision repair response to AFB1. Male heterozygous p53 knockout mice and their wild-type controls were exposed to 0, 0.2 or 1.0ppm AFB1 for 26 weeks in their diet. BER activity of lung and liver was assessed with an in vitro assay, using 8-OHdG-damaged plasmid DNA as a substrate. BER activity did not differ between livers or lungs from untreated wild-type versus heterozygous p53 knockout mice. In wild-type mice, repair was 65% lower in liver extracts from mice exposed to 1.0ppm AFB1 than in liver extracts from mice exposed to 0.2ppm AFB1 (p<0.05), but not significantly lower than that in liver extracts from control mice. AFB1 did not affect BER in lung extracts from wild-type mice, or in lung and liver extracts from heterozygous p53 knockout mice. In liver and lung, AFB1 exposure did not alter levels of 8-oxoguanine glycosylase protein, a key enzyme in the repair of 8-OHdG, and did not cause hepatotoxicity, as indicated by plasma alanine aminotransferase levels. In conclusion, chronic exposure to AFB1 did not affect BER in lungs or livers of heterozygous p53 knockout mice. BER activity was lower in livers from p53 wild type mice exposed to 1.0ppm AFB1 versus those exposed to 0.2ppm AFB1, an effect that was not attributable to liver cell death or altered levels of 8-oxoguanine glycosylase.
Collapse
Affiliation(s)
- Jeanne E Mulder
- Pharmacology and Toxicology Graduate Program, Department of Biomedical and Molecular Sciences, Queen's University Kingston, Ontario, Canada K7L 3N6
| | - Genevieve S Bondy
- Toxicology Research Division, 2202D, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9 Canada
| | - Rekha Mehta
- Toxicology Research Division, 2202D, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9 Canada
| | - Thomas E Massey
- Pharmacology and Toxicology Graduate Program, Department of Biomedical and Molecular Sciences, Queen's University Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
7
|
Ortega-Gómez E, Esteban García B, Ballesteros Martín MM, Fernández Ibáñez P, Sánchez Pérez JA. Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH. WATER RESEARCH 2014; 63:316-324. [PMID: 25078303 DOI: 10.1016/j.watres.2014.05.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
This study analyses the use of the solar photo-Fenton treatment in compound parabolic collector photo-reactors at neutral pH for the inactivation of wild enteric Escherichia coli and total coliform present in secondary effluents of a municipal wastewater treatment plant (SEWWTP). Control experiments were carried out to find out the individual effects of mechanical stress, pH, reactants concentration, and UVA radiation as well as the combined effects of UVA-Fe and UVA-H2O2. The synergistic germicidal effect of solar-UVA with 50 mg L(-1) of H2O2 led to complete disinfection (up to the detection limit) of total coliforms within 120 min. The disinfection process was accelerated by photo-Fenton, achieving total inactivation in 60 min reducing natural bicarbonate concentration found in the SEWWTP from 250 to 100 mg L(-1) did not give rise to a significant enhancement in bacterial inactivation. Additionally, the effect of hydrogen peroxide and iron dosage was evaluated. The best conditions were 50 mg L(-1) of H2O2 and 20 mg L(-1) of Fe(2+). Due to the variability of the SEWWTP during autumn and winter seasons, the inactivation kinetic constant varied between 0.07 ± 0.04 and 0.17 ± 0.04 min(-1). Moreover, the water treated by solar photo-Fenton fulfilled the microbiological quality requirement for wastewater reuse in irrigation as per the WHO guidelines and in particular for Spanish legislation.
Collapse
Affiliation(s)
- E Ortega-Gómez
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - B Esteban García
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - M M Ballesteros Martín
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Department of Molecular Biology and Biochemical Engineering, University of Pablo de Olavide, 41013 Sevilla, Spain
| | - P Fernández Ibáñez
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Plataforma Solar de Almería, CIEMAT, 04200 Tabernas, Almería, Spain
| | - J A Sánchez Pérez
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain.
| |
Collapse
|
8
|
Guindon-Kezis KA, Mulder JE, Massey TE. In vivo treatment with aflatoxin B1 increases DNA oxidation, base excision repair activity and 8-oxoguanine DNA glycosylase 1 levels in mouse lung. Toxicology 2014; 321:21-6. [DOI: 10.1016/j.tox.2014.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/03/2014] [Accepted: 03/16/2014] [Indexed: 11/24/2022]
|
9
|
Al-Issawi M, Rihan HZ, Woldie WA, Burchett S, Fuller MP. Exogenous application of molybdenum affects the expression of CBF14 and the development of frost tolerance in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:77-81. [PMID: 23246916 DOI: 10.1016/j.plaphy.2012.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 06/01/2023]
Abstract
Wheat is able to cold acclimate in response to low temperatures and thereby increase its frost tolerance and the extent of this acclimation is greater in winter genotypes compared to spring genotypes. Such up-regulation of frost tolerance is controlled by Cbf transcription factors. Molybdenum (Mo) application has been shown to enhance frost tolerance of wheat and this study aimed to investigate the effect of Mo on the development of frost tolerance in winter and spring wheat. Results showed that Mo treatment increased the expression of Cbf14 in wheat under non-acclimating condition but did not alter frost tolerance. However, when Mo was applied in conjunction with exposure of plants to low temperature, Mo increased the expression of Cbf14 and enhanced frost tolerance in both spring and winter genotypes but the effect was more pronounced in the winter genotype. It was concluded that the application of Mo could be useful in situations where enhanced frost resistance is required. Further studies are proposed to elucidate the effect of exogenous of applications of Mo on frost resistance in spring and winter wheat at different growth stages.
Collapse
Affiliation(s)
- Mohammed Al-Issawi
- School of Biomedical and Biological Sciences, Faculty of Science and Technology, Plymouth University, Plymouth, Devon PL4 8AA, UK
| | | | | | | | | |
Collapse
|
10
|
Fan A, Cao Z, Li H, Kai M, Lu J. Chemiluminescence platforms in immunoassay and DNA analyses. ANAL SCI 2009; 25:587-97. [PMID: 19430138 DOI: 10.2116/analsci.25.587] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chemiluminescent (CL) detection techniques for DNA assays and immunoassays have become very popular in recent years. This review discusses recent advances in those CL assays that have occurred over the last few years. In the monoplex assay section, different classes of CL labels including nanoparticle, DNAzyme, acridinium ester, enzyme and luminol-based CL assays are reviewed concerning the detection of DNAs and proteins. In the multiplex assay section, both spatial resolution and substrate zone-resolved techniques are discussed.
Collapse
Affiliation(s)
- Aiping Fan
- School of Pharmacy, Fudan University, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
11
|
Cold-induced response of buckwheat (Fagopyrum esculentum Moench) seedlings. ARCH BIOL SCI 2009. [DOI: 10.2298/abs0903003l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Zhang F, Stott WT, Clark AJ, Schisler MR, Grundy JJ, Gollapudi BB, Bartels MJ. Quantitation of 8-hydroxydeoxyguanosine in DNA by liquid chromatography/positive atmospheric pressure photoionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:3949-3955. [PMID: 17990277 DOI: 10.1002/rcm.3299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A methodology has been developed and validated for quantifying 8-hydroxydeoxyguanosine (8-OHdG) in both commercial DNA and DNA isolated from livers of male Sprague-Dawley rats by liquid chromatography/positive atmospheric pressure photoionization tandem mass spectrometry. The analytical method conditions, including conditions for stabilizing 8-OHdG during complex nuclease P1 enzymatic digestion, were also evaluated. The limit of detection for 8-OHdG was 1.0 ng/mL (17.6 fmol on-column), and the linearity of the calibration curve was greater than 0.998 from 1.0 to 500 ng/mL. The intraday assay precision relative standard deviation (RSD) value for quality control (QC) samples was < or =5.59% with accuracies ranging from 91.84 to 117.61%. The interday assay precision (RSD) value was < or =1.76% with accuracies ranging from 91.84 to 116.67%. This method, combined with the LC/UV analysis of deoxyguanosine (dG), was used for determination of the levels of 8-OHdG/10(6) dG in DNA nuclease P1 enzymatic hydrolysates from both commercial DNA and rat liver DNA.
Collapse
Affiliation(s)
- Fagen Zhang
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, 1803 Building, Midland, MI 48674, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Orsière T, Sari-Minodier I, Iarmarcovai G, Botta A. Genotoxic risk assessment of pathology and anatomy laboratory workers exposed to formaldehyde by use of personal air sampling and analysis of DNA damage in peripheral lymphocytes. Mutat Res 2006; 605:30-41. [PMID: 16584911 DOI: 10.1016/j.mrgentox.2006.01.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/10/2006] [Accepted: 01/22/2006] [Indexed: 01/01/2023]
Abstract
A study was conducted to evaluate the genotoxic effect of occupational exposure to formaldehyde on pathology and anatomy laboratory workers. The level of exposure to formaldehyde was determined by use of passive air-monitoring badges clipped near the breathing zone of 59 workers for a total sampling time of 15 min or 8 h. To estimate DNA damage, a chemiluminescence microplate assay was performed on 57 workers before and after a 1-day exposure. Assessment of chromosomal damage was carried out by use of the cytokinesis-blocked micronucleus assay (CBMN) in peripheral lymphocytes of 59 exposed subjects in comparison with 37 controls matched for gender, age, and smoking habits. The CBMN assay was combined with fluorescent in situ hybridization with a pan-centromeric DNA probe in 18 exposed subjects and 18 control subjects randomized from the initial populations. Mean concentrations of formaldehyde were 2.0 (range <0.1-20.4 ppm) and 0.1 ppm (range <0.1-0.7 ppm) for the sampling times of 15 min and 8 h, respectively. No increase in DNA damage was detected in lymphocytes after a one-workday exposure. However, the frequency of binucleated micronucleated cells was significantly higher in pathologists/anatomists than in controls (16.9‰±9.3 versus 11.1‰±6.0, P=0.001). The frequency of centromeric micronuclei was higher in exposed subjects than in controls (17.3‰±11.5 versus 10.3‰±7.1) but the difference was not significant. The frequency of monocentromeric micronuclei was significantly higher in exposed subjects than in controls (11.0‰±6.2 versus 3.1‰±2.4, P<0.001), while that of the acentromeric micronuclei was similar in exposed subjects and controls (3.7‰±4.2 and 4.1‰±2.7, respectively). The enhanced chromosomal damage (particularly chromosome loss) in peripheral lymphocytes of pathologists/anatomists emphasizes the need to develop safety programs.
Collapse
Affiliation(s)
- T Orsière
- Laboratoire de Biogénotoxicologie et Mutagenèse Environnementale (EA 1784-IFR PMSE 112), Faculté de Médecine, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France.
| | | | | | | |
Collapse
|
14
|
Weiss JM, Goode EL, Ladiges WC, Ulrich CM. Polymorphic variation in hOGG1 and risk of cancer: a review of the functional and epidemiologic literature. Mol Carcinog 2005; 42:127-41. [PMID: 15584022 DOI: 10.1002/mc.20067] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The gene encoding human 8-oxoguanine glycosylase 1 (hOGG1) is involved in DNA base excision repair. The encoded DNA glycosylase excises 7,8-dihydro-8-oxoguanine (8-OHdG), a highly mutagenic base produced in DNA as a result of exposure to reactive oxygen species (ROS). Polymorphisms in this gene may alter glycosylase function and an individual's ability to repair damaged DNA, possibly resulting in genetic instability that can foster carcinogenesis. In order to elucidate the possible impact of polymorphisms in hOGG1, we performed a literature review of both functional and epidemiologic studies that assessed the effects of these polymorphisms on repair function, levels of oxidative DNA damage, or associations with cancer risk. Fourteen functional studies and 19 epidemiologic studies of breast, colon, esophageal, head and neck, lung, nasopharyngeal, orolaryngeal, prostate, squamous cell carcinoma of the head and neck (SCCHN), and stomach cancers were identified. Although the larger functional studies suggest reduced repair function with variant alleles in hOGG1, the evidence is generally inconclusive. There is some epidemiologic evidence that risk for esophageal, lung, nasopharyngeal, orolaryngeal, and prostate is related to hOGG1 genotype, whereas risk of breast cancer does not appear related. In studies that explored potential interactions with environmental factors, cancer risk for hOGG1 genotypes differed depending on exposure, especially for colon cancer. In summary, there is limited evidence that polymorphisms in hOGG1 affect repair function and carcinogenesis. Larger, well-designed functional and epidemiologic studies are needed to clarify these relationships, especially with respect to interactions with other DNA repair enzymes and interactions with environmental factors that increase carcinogenic load.
Collapse
Affiliation(s)
- J M Weiss
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
15
|
Peng T, Shen HM, Liu ZM, Yan LN, Peng MH, Li LQ, Liang RX, Wei ZL, Halliwell B, Ong CN. Oxidative DNA damage in peripheral leukocytes and its association with expression and polymorphisms of hOGG 1: A study of adolescents in a high risk region for hepatocellular carcinoma in China. World J Gastroenterol 2003; 9:2186-93. [PMID: 14562375 PMCID: PMC4656460 DOI: 10.3748/wjg.v9.i10.2186] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the oxidative DNA damage to adolescents of hepatocellular carcinoma (HCC) families in Guangxi Zhuang Autonomous Region, China.
METHODS: Peripheral leukocytes’ DNA 7,8-dihydro-8-oxoguanine (8-oxoG) and repair enzyme hOGG1 were quantified by flow-cytometry. hOGG1-Cys326Ser single nucleotide polymorphism (SNP) was distinguished by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) assay.
RESULTS: There was a positive correlation between 8-oxoG and repair enzyme hOGG1 expression (P < 0.001). HCC children (n = 21) in Fusui county had a higher level of hOGG1 (P < 0.01) and a lower level of 8-oxoG (P < 0.05) than the controls (n = 63) in Nanning city. Children in Nanning exposed to passive-smoking had a higher hOGG1 expression (P < 0.05) than the non-exposers. 8-oxoG and hOGG1 were negatively correlated with body mass index, while hOGG1 was positively correlated with age. There was a peak of 8-oxoG level nearby the 12 year point. Individuals with the hOGG1 326Ser allele had a significantly marginal higher concentration of leukocyte 8-oxoG level than hOGG1 326Cys allele.
CONCLUSION: This is the first report using flow-cytometry to simultaneously quantify both the DNA oxidative damage and its repairing enzyme hOGG1. The results provide new insights towards a better understanding of the mechanisms of oxidative stress in a population highly susceptible to hepatocarcinogenesis.
Collapse
Affiliation(s)
- Tao Peng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Capella MAM, Capella LS. A light in multidrug resistance: photodynamic treatment of multidrug-resistant tumors. J Biomed Sci 2003; 10:361-6. [PMID: 12824695 DOI: 10.1007/bf02256427] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Accepted: 03/24/2003] [Indexed: 11/25/2022] Open
Abstract
The major drawback of cancer chemotherapy is the development of multidrug-resistant (MDR) tumor cells, which are cross-resistant to a broad range of structurally and functionally unrelated agents, making it difficult to treat these tumors. In the last decade, a number of authors have studied the effects of photodynamic therapy (PDT), a combination of visible light with photosensitizing agents, on MDR cells. The results, although still inconclusive, have raised the possibility of treating MDR tumors by PDT. This review examines the growing literature concerning the responses of MDR cells to PDT, while stressing the need for the development of new photosensitizers that possess the necessary characteristics for the photodynamic treatment of this class of tumor.
Collapse
Affiliation(s)
- Márcia Alves Marques Capella
- Instituto de Biofísica Carlos Chagas Filho, Departmento de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | |
Collapse
|
17
|
Guetens G, De Boeck G, Highley M, van Oosterom AT, de Bruijn EA. Oxidative DNA damage: biological significance and methods of analysis. Crit Rev Clin Lab Sci 2002; 39:331-457. [PMID: 12385502 DOI: 10.1080/10408360290795547] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
All forms of aerobic life are subjected constantly to oxidant pressure from molecular oxygen and also reactive oxygen species (ROS), produced during the biochemical utilization of O2 and prooxidant stimulation of O2 metabolism. ROS are thought to influence the development of human cancer and more than 50 other human diseases. To prevent oxidative DNA damage (protection) or to reverse damage, thereby preventing mutagenesis and cancer (repair), the aerobic cell possesses antioxidant defense systems and DNA repair mechanisms. During the last 20 years, many analytical techniques have been developed to monitor oxidative DNA base damage. High-performance liquid chromatography-electrochemical detection and gas chromatography-mass spectrometry are the two pioneering contributions to the field. Currently, the arsenal of methods available include the promising high-performance liquid chromatography-tandem mass spectrometry technique, capillary electrophoresis, 32P-postlabeling, fluorescence postlabeling, 3H-postlabeling, antibody-base immunoassays, and assays involving the use of DNA repair glycosylases such as the comet assay, the alkaline elution assay, and the alkaline unwinding method. Recently, the use of liquid chromatography-mass spectrometry has been introduced for the measurement of a number of modified nucleosides in oxidatively damaged DNA. The bulk of available chromatographic methods aimed at measuring individual DNA base lesions require either chemical hydrolysis or enzymatic digestion of oxidized DNA, following extraction from cells or tissues. The effect of experimental conditions (DNA isolation, hydrolysis, and/or derivatization) on the levels of oxidatively modified bases in DNA is enormous and has been studied intensively in the last 10 years.
Collapse
|
18
|
Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer's disease. J Neurosci 2002. [PMID: 11880504 DOI: 10.1523/jneurosci.22-05-01752.2002] [Citation(s) in RCA: 413] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent epidemiological and clinical data suggest that persons with low folic acid levels and elevated homocysteine levels are at increased risk of Alzheimer's disease (AD), but the underlying mechanism is unknown. We tested the hypothesis that impaired one-carbon metabolism resulting from folic acid deficiency and high homocysteine levels promotes accumulation of DNA damage and sensitizes neurons to amyloid beta-peptide (Abeta) toxicity. Incubation of hippocampal cultures in folic acid-deficient medium or in the presence of methotrexate (an inhibitor of folic acid metabolism) or homocysteine induced cell death and rendered neurons vulnerable to death induced by Abeta. Methyl donor deficiency caused uracil misincorporation and DNA damage and greatly potentiated Abeta toxicity as the result of reduced repair of Abeta-induced oxidative modification of DNA bases. When maintained on a folic acid-deficient diet, amyloid precursor protein (APP) mutant transgenic mice, but not wild-type mice, exhibited increased cellular DNA damage and hippocampal neurodegeneration. Levels of Abeta were unchanged in the brains of folate-deficient APP mutant mice. Our data suggest that folic acid deficiency and homocysteine impair DNA repair in neurons, which sensitizes them to oxidative damage induced by Abeta.
Collapse
|